예제 #1
0
파일: ProblemClass.py 프로젝트: kidaa/pySDC
    def u_init(self):
        """
        Routine to compute the starting values for the particles

        Returns:
            particle set filled with initial data
        """

        u0 = self.u0
        N = self.nparts

        u = particles(N)

        if u0[2][0] is not 1 or u0[3][0] is not 1:
            print('Error: so far only q = m = 1 is implemented (I think)')
            exit()

        # set first particle to u0
        u.pos.values[0] = u0[0][0]
        u.pos.values[1] = u0[0][1]
        u.pos.values[2] = u0[0][2]
        u.vel.values[0] = u0[1][0]
        u.vel.values[1] = u0[1][1]
        u.vel.values[2] = u0[1][2]

        u.q[0] = u0[2][0]
        u.m[0] = u0[3][0]

        # initialize random seed
        np.random.seed(N)

        comx = u.pos.values[0]
        comy = u.pos.values[1]
        comz = u.pos.values[2]

        for n in range(1,N):

            # draw 3 random variables in [-1,1] to shift positions
            r = 2*np.random.random_sample(3)-1
            u.pos.values[3*n  ] = r[0]+u0[0][0]
            u.pos.values[3*n+1] = r[1]+u0[0][1]
            u.pos.values[3*n+2] = r[2]+u0[0][2]

            # draw 3 random variables in [-5,5] to shift velocities
            r = 10*np.random.random_sample(3)-5
            u.vel.values[3*n  ] = r[0]+u0[1][0]
            u.vel.values[3*n+1] = r[1]+u0[1][1]
            u.vel.values[3*n+2] = r[2]+u0[1][2]

            u.q[n] = u0[2][0]
            u.m[n] = u0[3][0]

            # gather positions to check center
            comx += u.pos.values[3*n  ]
            comy += u.pos.values[3*n+1]
            comz += u.pos.values[3*n+2]

        print('Center of positions:',comx/N,comy/N,comz/N)

        return u
예제 #2
0
    def u_init(self):
        """
        Routine to compute the starting values for the particles

        Returns:
            particle set filled with initial data
        """

        u0 = self.u0
        N = self.nparts

        u = particles(N)

        if u0[2][0] is not 1 or u0[3][0] is not 1:
            print('Error: so far only q = m = 1 is implemented (I think)')
            exit()

        # set first particle to u0
        u.pos.values[0] = u0[0][0]
        u.pos.values[1] = u0[0][1]
        u.pos.values[2] = u0[0][2]
        u.vel.values[0] = u0[1][0]
        u.vel.values[1] = u0[1][1]
        u.vel.values[2] = u0[1][2]

        u.q[0] = u0[2][0]
        u.m[0] = u0[3][0]

        # initialize random seed
        np.random.seed(N)

        comx = u.pos.values[0]
        comy = u.pos.values[1]
        comz = u.pos.values[2]

        for n in range(1, N):

            # draw 3 random variables in [-1,1] to shift positions
            r = 2 * np.random.random_sample(3) - 1
            u.pos.values[3 * n] = r[0] + u0[0][0]
            u.pos.values[3 * n + 1] = r[1] + u0[0][1]
            u.pos.values[3 * n + 2] = r[2] + u0[0][2]

            # draw 3 random variables in [-5,5] to shift velocities
            r = 10 * np.random.random_sample(3) - 5
            u.vel.values[3 * n] = r[0] + u0[1][0]
            u.vel.values[3 * n + 1] = r[1] + u0[1][1]
            u.vel.values[3 * n + 2] = r[2] + u0[1][2]

            u.q[n] = u0[2][0]
            u.m[n] = u0[3][0]

            # gather positions to check center
            comx += u.pos.values[3 * n]
            comy += u.pos.values[3 * n + 1]
            comz += u.pos.values[3 * n + 2]

        print('Center of positions:', comx / N, comy / N, comz / N)

        return u
예제 #3
0
    def u_exact(self, t):
        """
        Routine to compute the exact trajectory at time t (only for single-particle setup)

        Args:
            t: current time
        Returns:
            particle type containing the exact position and velocity
        """

        # some abbreviations
        wE = self.omega_E
        wB = self.omega_B
        N = self.nparts
        u0 = self.u0

        assert N == 1

        u = particles(1)

        wbar = np.sqrt(2) * wE

        # position and velocity in z direction is easy to compute
        u.pos.values[2] = u0[0][2] * np.cos(
            wbar * t) + u0[1][2] / wbar * np.sin(wbar * t)
        u.vel.values[2] = -u0[0][2] * wbar * np.sin(
            wbar * t) + u0[1][2] * np.cos(wbar * t)

        # define temp. variables to compute complex position
        Op = 1 / 2 * (wB + np.sqrt(wB**2 - 4 * wE**2))
        Om = 1 / 2 * (wB - np.sqrt(wB**2 - 4 * wE**2))
        Rm = (Op * u0[0][0] + u0[1][1]) / (Op - Om)
        Rp = u0[0][0] - Rm
        Im = (Op * u0[0][1] - u0[1][0]) / (Op - Om)
        Ip = u0[0][1] - Im

        # compute position in complex notation
        w = np.complex(Rp, Ip) * np.exp(-np.complex(0, Op * t)) + np.complex(
            Rm, Im) * np.exp(-np.complex(0, Om * t))
        # compute velocity as time derivative of the position
        dw = -1j * Op * np.complex(
            Rp, Ip) * np.exp(-np.complex(0, Op * t)) - 1j * Om * np.complex(
                Rm, Im) * np.exp(-np.complex(0, Om * t))

        # get the appropriate real and imaginary parts
        u.pos.values[0] = w.real
        u.vel.values[0] = dw.real
        u.pos.values[1] = w.imag
        u.vel.values[1] = dw.imag

        return u
예제 #4
0
파일: ProblemClass.py 프로젝트: kidaa/pySDC
    def u_exact(self,t):
        """
        Routine to compute the exact trajectory at time t

        Args:
            t: current time
        Returns:
            particle type containing the exact position and velocity
        """

        u0 = self.u0
        # some abbreviations
        u = particles(1)

        # # we need a Newton iteration to get x, the rest will follow...
        # x1 = 0
        #
        # Fx = x1 - 1/4*self.a0**2*(t-x1 + 1/2*(2*self.delta**2-1)*np.sin(2*t-2*x1))
        # dFx = 1 + 1/4*self.a0**2*(1 + (2*self.delta**2-1)*np.cos(2*t-2*x1))
        #
        # res = abs(Fx)
        # while res > 1E-12:
        #     print(res)
        #     x1 -= Fx/dFx
        #     Fx = x1 - 1/4*self.a0**2*(t-x1 + 1/2*(2*self.delta**2-1)*np.sin(2*t-2*x1))
        #     dFx = 1 + 1/4*self.a0**2*(1 + (2*self.delta**2-1)*np.cos(2*t-2*x1))
        #     res = abs(Fx)
        #
        # Phi = t-x1
        #
        # u.pos.values[0] = 1/4*self.a0**2*(Phi + 1/2*(2*self.delta**2-1)*np.sin(2*Phi))
        # u.pos.values[1] = self.delta*self.a0*np.sin(Phi)
        # u.pos.values[2] = -(1-self.delta**2)**(1/2)*self.a0*np.cos(Phi)
        #
        # u.vel.values[0] = 0
        # u.vel.values[1] = 0
        # u.vel.values[2] = 0

        u.pos.values[0] = u0[0][0]
        u.pos.values[1] = u0[0][1]
        u.pos.values[2] = u0[0][2]

        u.vel.values[0] = u0[1][0]
        u.vel.values[1] = u0[1][1]
        u.vel.values[2] = u0[1][2]

        u.q[:] = u0[2][0]
        u.m[:] = u0[3][0]

        return u
예제 #5
0
    def u_exact(self, t):
        """
        Routine to compute the exact trajectory at time t

        Args:
            t: current time
        Returns:
            particle type containing the exact position and velocity
        """

        u0 = self.u0
        # some abbreviations
        u = particles(1)

        # # we need a Newton iteration to get x, the rest will follow...
        # x1 = 0
        #
        # Fx = x1 - 1/4*self.a0**2*(t-x1 + 1/2*(2*self.delta**2-1)*np.sin(2*t-2*x1))
        # dFx = 1 + 1/4*self.a0**2*(1 + (2*self.delta**2-1)*np.cos(2*t-2*x1))
        #
        # res = abs(Fx)
        # while res > 1E-12:
        #     print(res)
        #     x1 -= Fx/dFx
        #     Fx = x1 - 1/4*self.a0**2*(t-x1 + 1/2*(2*self.delta**2-1)*np.sin(2*t-2*x1))
        #     dFx = 1 + 1/4*self.a0**2*(1 + (2*self.delta**2-1)*np.cos(2*t-2*x1))
        #     res = abs(Fx)
        #
        # Phi = t-x1
        #
        # u.pos.values[0] = 1/4*self.a0**2*(Phi + 1/2*(2*self.delta**2-1)*np.sin(2*Phi))
        # u.pos.values[1] = self.delta*self.a0*np.sin(Phi)
        # u.pos.values[2] = -(1-self.delta**2)**(1/2)*self.a0*np.cos(Phi)
        #
        # u.vel.values[0] = 0
        # u.vel.values[1] = 0
        # u.vel.values[2] = 0

        u.pos.values[0] = u0[0][0]
        u.pos.values[1] = u0[0][1]
        u.pos.values[2] = u0[0][2]

        u.vel.values[0] = u0[1][0]
        u.vel.values[1] = u0[1][1]
        u.vel.values[2] = u0[1][2]

        u.q[:] = u0[2][0]
        u.m[:] = u0[3][0]

        return u
예제 #6
0
    def prolong_space(self, G):
        """
        Dummy prolongation routine

        Args:
            G: the coarse level data (easier to access than via the coarse attribute)
        """

        if isinstance(G, particles):
            F = particles(G)
        elif isinstance(G, fields):
            F = fields(G)
        else:
            print('Transfer error')
            exit()
        return F
예제 #7
0
    def prolong_space(self,G):
        """
        Dummy prolongation routine

        Args:
            G: the coarse level data (easier to access than via the coarse attribute)
        """

        if isinstance(G,particles):
            F = particles(G)
        elif isinstance(G,fields):
            F = fields(G)
        else:
            print('Transfer error')
            exit()
        return F
예제 #8
0
    def restrict_space(self, F):
        """
        Dummy restriction routine

        Args:
            F: the fine level data (easier to access than via the fine attribute)

        """

        if isinstance(F, particles):
            G = particles(F)
        elif isinstance(F, fields):
            G = fields(F)
        else:
            print('Transfer error')
            exit()
        return G
예제 #9
0
    def restrict_space(self,F):
        """
        Dummy restriction routine

        Args:
            F: the fine level data (easier to access than via the fine attribute)

        """

        if isinstance(F,particles):
            G = particles(F)
        elif isinstance(F,fields):
            G = fields(F)
        else:
            print('Transfer error')
            exit()
        return G
예제 #10
0
파일: ProblemClass.py 프로젝트: kidaa/pySDC
    def u_exact(self,t):
        """
        Routine to compute the exact trajectory at time t (only for single-particle setup)

        Args:
            t: current time
        Returns:
            particle type containing the exact position and velocity
        """

        # some abbreviations
        wE = self.omega_E
        wB = self.omega_B
        N = self.nparts
        u0 = self.u0

        assert N == 1

        u = particles(1)

        wbar = np.sqrt(2)*wE

        # position and velocity in z direction is easy to compute
        u.pos.values[2] = u0[0][2]*np.cos(wbar*t) + u0[1][2]/wbar*np.sin(wbar*t)
        u.vel.values[2] = -u0[0][2]*wbar*np.sin(wbar*t) + u0[1][2]*np.cos(wbar*t)

        # define temp. variables to compute complex position
        Op = 1/2*(wB + np.sqrt(wB**2-4*wE**2))
        Om = 1/2*(wB - np.sqrt(wB**2-4*wE**2))
        Rm = (Op*u0[0][0]+u0[1][1])/(Op-Om)
        Rp = u0[0][0] - Rm
        Im = (Op*u0[0][1]-u0[1][0])/(Op-Om)
        Ip = u0[0][1] - Im

        # compute position in complex notation
        w = np.complex(Rp,Ip)*np.exp(-np.complex(0,Op*t)) + np.complex(Rm,Im)*np.exp(-np.complex(0,Om*t))
        # compute velocity as time derivative of the position
        dw = -1j*Op*np.complex(Rp,Ip)*np.exp(-np.complex(0,Op*t)) - 1j*Om*np.complex(Rm,Im)*np.exp(-np.complex(0,Om*t))

        # get the appropriate real and imaginary parts
        u.pos.values[0] = w.real
        u.vel.values[0] = dw.real
        u.pos.values[1] = w.imag
        u.vel.values[1] = dw.imag

        return u
예제 #11
0
def check_datatypes_particles(init):
    from pySDC.datatype_classes.particles import particles
    from pySDC.datatype_classes.particles import acceleration


    p1 = particles(init)
    p2 = particles(p1)
    p5 = particles(init)

    p1.pos.values[:] = 1.0
    p2.pos.values[:] = 2.0
    p1.vel.values[:] = 10.0
    p2.vel.values[:] = 20.0

    p3 = p1 + p2
    p4 = p1 - p2

    p5.pos = 0.1*p1.vel
    p6 = p1

    p7 = abs(p1)

    a1 = acceleration(init)
    a2 = acceleration(a1)
    p8 = particles(p1)

    a1.values[:] = 100.0
    a2.values[:] = 200.0

    a3 = a1 + a2

    p8.vel = 0.1*a1
    p8.pos = 0.1*(0.1*a1)

    assert isinstance(p3,type(p1))
    assert isinstance(p4,type(p1))
    assert isinstance(p5.pos,type(p1.pos))
    assert isinstance(p6,type(p1))
    assert isinstance(p7,float)
    assert isinstance(a2,type(a1))
    assert isinstance(p8.pos,type(p1.pos))
    assert isinstance(p8.vel,type(p1.vel))
    assert isinstance(0.1*0.1*a1,type(p1.vel))

    assert p2 is not p1
    assert p3 is not p1
    assert p4 is not p1
    assert p5 is not p1
    assert p6 is p1
    assert a2 is not a1
    assert a3 is not a1

    assert np.shape(p3.pos.values) == np.shape(p1.pos.values)
    assert np.shape(p4.pos.values) == np.shape(p1.pos.values)
    assert np.shape(p3.vel.values) == np.shape(p1.vel.values)
    assert np.shape(p4.vel.values) == np.shape(p1.vel.values)
    assert np.shape(a2.values) == np.shape(a1.values)

    assert np.all(p3.pos.values==3.0)
    assert np.all(p4.pos.values==-1.0)
    assert np.all(p3.vel.values==30.0)
    assert np.all(p4.vel.values==-10.0)
    assert np.all(p5.pos.values==1.0)
    assert p7 >= 0
    assert np.all(p8.pos.values==1.0)
    assert np.all(p8.vel.values==10.0)
    assert np.all(a3.values==300.0)