예제 #1
0
def test_lhd():
    lhd = LatinHypercube(dim=4, num_pts=10)
    X = lhd.generate_points()
    assert isinstance(lhd, ExperimentalDesign)
    assert np.all(X.shape == (10, 4))
    assert lhd.num_pts == 10
    assert lhd.dim == 4
예제 #2
0
def test_lhd():
    lhd = LatinHypercube(dim=4, num_pts=10, criterion='c')
    X = lhd.generate_points()
    assert (isinstance(lhd, ExperimentalDesign))
    assert (np.all(X.shape == (10, 4)))
    assert (lhd.num_pts == 10)
    assert (lhd.dim == 4)
예제 #3
0
def test_lhd_round():
    num_pts = 10
    dim = 3
    lb = np.array([1, 2, 3])
    ub = np.array([3, 4, 5])
    int_var = np.array([1])

    np.random.seed(0)
    lhd = LatinHypercube(dim=dim, num_pts=num_pts)
    X = lhd.generate_points(lb=lb, ub=ub, int_var=int_var)

    assert np.all(np.round(X[:, 1] == X[:, 1]))  # Should be integers
    assert np.all(np.max(X, axis=0) <= ub)
    assert np.all(np.min(X, axis=0) >= lb)
예제 #4
0
    def __init__(self, worker_id, data, response_surface, maxeval, nsamples,
                 exp_design=None, sampling_method=None, extra=None, extra_vals=None):

        # Check stopping criterion
        self.start_time = time.time()
        if maxeval < 0:  # Time budget
            self.maxeval = np.inf
            self.time_budget = np.abs(maxeval)
        else:
            self.maxeval = maxeval
            self.time_budget = np.inf

        # Import problem information
        self.worker_id = worker_id
        self.data = data
        self.fhat = response_surface
        if self.fhat is None:
            self.fhat = RBFInterpolant(kernel=CubicKernel, tail=LinearTail, maxp=maxeval)
        self.fhat.reset()  # Just to be sure!

        self.nsamples = nsamples
        self.extra = extra
        self.extra_vals = extra_vals

        # Default to generate sampling points using Symmetric Latin Hypercube
        self.design = exp_design
        if self.design is None:
            if self.data.dim > 50:
                self.design = LatinHypercube(data.dim, data.dim+1)
            else:
                self.design = SymmetricLatinHypercube(data.dim, 2*(data.dim+1))

        self.xrange = np.asarray(data.xup - data.xlow)

        # algorithm parameters
        self.sigma_min = 0.005
        self.sigma_max = 0.2
        self.sigma_init = 0.2

        self.failtol = max(5, data.dim)
        self.succtol = 3

        self.numeval = 0
        self.status = 0
        self.sigma = 0
        self.resubmitter = RetryStrategy()
        self.xbest = None
        self.fbest = np.inf
        self.fbest_old = None

        # Set up search procedures and initialize
        self.sampling = sampling_method
        if self.sampling is None:
            self.sampling = CandidateDYCORS(data)

        self.check_input()

        # Start with first experimental design
        self.sample_initial()
예제 #5
0
    def optimize(self):
        """Method used to run the Genetic algorithm

        :return: Returns the best individual and its function value
        :rtype: numpy.array, float
        """
        #  Initialize population
        if isinstance(self.start, np.ndarray):
            if self.start.shape[0] != self.nindividuals or \
                    self.start.shape[1] != self.nvariables:
                raise ValueError("Initial population has incorrect size")
            if any(np.min(self.start, axis=0) >= self.lower_boundary) or \
                    any(np.max(self.start, axis=0) <= self.upper_boundary):
                raise ValueError("Initial population is outside the domain")
            population = self.start
        elif self.start == "SLHD":
            exp_des = SymmetricLatinHypercube(
                self.nvariables, self.nindividuals)
            population = self.lower_boundary + exp_des.generate_points() * \
                (self.upper_boundary - self.lower_boundary)
        elif self.start == "LHD":
            exp_des = LatinHypercube(self.nvariables, self.nindividuals)
            population = self.lower_boundary + exp_des.generate_points() * \
                (self.upper_boundary - self.lower_boundary)
        elif self.start == "Random":
            population = self.lower_boundary + np.random.rand(
                self.nindividuals, self.nvariables) *\
                (self.upper_boundary - self.lower_boundary)
        else:
            raise ValueError("Unknown argument for initial population")

        new_population = []
        #  Round positions
        if len(self.integer_variables) > 0:
            new_population = np.copy(population)
            population[:, self.integer_variables] = np.round(
                population[:, self.integer_variables])
            for i in self.integer_variables:
                ind = np.where(population[:, i] < self.lower_boundary[i])
                population[ind, i] += 1
                ind = np.where(population[:, i] > self.upper_boundary[i])
                population[ind, i] -= 1

        #  Evaluate all individuals
        function_values = self.function(population)
        if len(function_values.shape) == 2:
            function_values = np.squeeze(np.asarray(function_values))

        # Save the best individual
        ind = np.argmin(function_values)
        best_individual = np.copy(population[ind, :])
        best_value = function_values[ind]

        if len(self.integer_variables) > 0:
            population = new_population

        # Main loop
        for _ in range(self.ngenerations):
            # Do tournament selection to select the parents
            competitors = np.random.randint(
                0, self.nindividuals,
                (self.nindividuals, self.tournament_size))
            ind = np.argmin(function_values[competitors], axis=1)
            winner_indices = np.zeros(self.nindividuals, dtype=int)
            for i in range(self.tournament_size):  # This loop is short
                winner_indices[np.where(ind == i)] = \
                    competitors[np.where(ind == i), i]

            parent1 = population[
                winner_indices[0:self.nindividuals//2], :]
            parent2 = population[
                winner_indices[self.nindividuals//2:self.nindividuals], :]

            # Averaging Crossover
            cross = np.where(np.random.rand(
                self.nindividuals//2) < self.p_cross)[0]
            nn = len(cross)  # Number of crossovers
            alpha = np.random.rand(nn, 1)

            # Create the new chromosomes
            parent1_new = np.multiply(alpha, parent1[cross, :]) + \
                np.multiply(1 - alpha, parent2[cross, :])
            parent2_new = np.multiply(alpha, parent2[cross, :]) + \
                np.multiply(1 - alpha, parent1[cross, :])
            parent1[cross, :] = parent1_new
            parent2[cross, :] = parent2_new
            population = np.concatenate((parent1, parent2))

            # Apply mutation
            scale_factors = self.sigma * (
                self.upper_boundary - self.lower_boundary)  # Scale
            perturbation = np.random.randn(
                self.nindividuals, self.nvariables)  # Generate perturbations
            perturbation = np.multiply(
                perturbation, scale_factors)  # Scale accordingly
            perturbation = np.multiply(perturbation, (
                np.random.rand(self.nindividuals,
                               self.nvariables) < self.p_mutation))

            population += perturbation  # Add perturbation
            population = np.maximum(np.reshape(
                self.lower_boundary, (1, self.nvariables)), population)
            population = np.minimum(np.reshape(
                self.upper_boundary, (1, self.nvariables)), population)

            # Round chromosomes
            new_population = []
            if len(self.integer_variables) > 0:
                new_population = np.copy(population)
                population = round_vars(population, self.integer_variables,
                                        self.lower_boundary,
                                        self.upper_boundary)

            # Keep the best individual
            population[0, :] = best_individual

            #  Evaluate all individuals
            function_values = self.function(population)
            if len(function_values.shape) == 2:
                function_values = np.squeeze(np.asarray(function_values))

            # Save the best individual
            ind = np.argmin(function_values)
            best_individual = np.copy(population[ind, :])
            best_value = function_values[ind]

            # Use the positions that are not rounded
            if len(self.integer_variables) > 0:
                population = new_population

        return best_individual, best_value
예제 #6
0
    def pysot_cube(objective,
                   n_trials,
                   n_dim,
                   with_count=False,
                   method=None,
                   design=None):
        """ Minimize
        :param objective:
        :param n_trials:
        :param n_dim:
        :param with_count:
        :return:
        """
        logging.getLogger('pySOT').setLevel(logging.ERROR)

        num_threads = 1
        asynchronous = True

        max_evals = n_trials
        gp = GenericProblem(dim=n_dim, objective=objective)

        if design == 'latin':
            exp_design = LatinHypercube(dim=n_dim, num_pts=2 * (n_dim + 1))
        elif design == 'symmetric':
            exp_design = SymmetricLatinHypercube(dim=n_dim,
                                                 num_pts=2 * (n_dim + 1))
        elif design == 'factorial':
            exp_design = TwoFactorial(dim=n_dim)
        else:
            raise ValueError('design should be latin, symmetric or factorial')

        # Create a strategy and a controller
        #  SRBFStrategy, EIStrategy, DYCORSStrategy,RandomStrategy, LCBStrategy
        controller = ThreadController()
        if method.lower() == 'srbf':
            surrogate = RBFInterpolant(dim=n_dim,
                                       lb=np.array([0.0] * n_dim),
                                       ub=np.array([1.0] * n_dim),
                                       kernel=CubicKernel(),
                                       tail=LinearTail(n_dim))
            controller.strategy = SRBFStrategy(max_evals=max_evals,
                                               opt_prob=gp,
                                               exp_design=exp_design,
                                               surrogate=surrogate,
                                               asynchronous=asynchronous)
        elif method.lower() == 'ei':
            surrogate = GPRegressor(dim=n_dim,
                                    lb=np.array([0.0] * n_dim),
                                    ub=np.array([1.0] * n_dim))
            controller.strategy = EIStrategy(max_evals=max_evals,
                                             opt_prob=gp,
                                             exp_design=exp_design,
                                             surrogate=surrogate,
                                             asynchronous=asynchronous)
        elif method.lower() == 'dycors':
            surrogate = RBFInterpolant(dim=n_dim,
                                       lb=np.array([0.0] * n_dim),
                                       ub=np.array([1.0] * n_dim),
                                       kernel=CubicKernel(),
                                       tail=LinearTail(n_dim))
            controller.strategy = DYCORSStrategy(max_evals=max_evals,
                                                 opt_prob=gp,
                                                 exp_design=exp_design,
                                                 surrogate=surrogate,
                                                 asynchronous=asynchronous)
        elif method.lower() == 'lcb':
            surrogate = GPRegressor(dim=n_dim,
                                    lb=np.array([0.0] * n_dim),
                                    ub=np.array([1.0] * n_dim))
            controller.strategy = LCBStrategy(max_evals=max_evals,
                                              opt_prob=gp,
                                              exp_design=exp_design,
                                              surrogate=surrogate,
                                              asynchronous=asynchronous)
        elif method.lower() == 'random':
            controller.strategy = RandomStrategy(max_evals=max_evals,
                                                 opt_prob=gp)
        else:
            raise ValueError("Didn't recognize method passed to pysot")

        # Launch the threads and give them access to the objective function
        for _ in range(num_threads):
            worker = BasicWorkerThread(controller, gp.eval)
            controller.launch_worker(worker)

        # Run the optimization strategy
        result = controller.run()
        best_x = result.params[0].tolist()
        return (result.value, best_x,
                gp.feval_count) if with_count else (result.value, best_x)
예제 #7
0
    def __init__(self,
                 worker_id,
                 data,
                 response_surface,
                 maxeval,
                 nsamples,
                 exp_design=None,
                 sampling_method=None,
                 archiving_method=None,
                 extra=None,
                 extra_vals=None,
                 store_sim=False):

        # Check stopping criterion
        self.start_time = time.time()
        if maxeval < 0:  # Time budget
            self.maxeval = np.inf
            self.time_budget = np.abs(maxeval)
        else:
            self.maxeval = maxeval
            self.time_budget = np.inf

        # Import problem information
        self.worker_id = worker_id
        self.data = data
        self.fhat = []
        if response_surface is None:
            for i in range(self.data.nobj):
                self.fhat.append(
                    RBFInterpolant(kernel=CubicKernel,
                                   tail=LinearTail,
                                   maxp=maxeval))  #MOPLS ONLY
        else:
            for i in range(self.data.nobj):
                response_surface.reset()  # Just to be sure!
                self.fhat.append(deepcopy(response_surface))  #MOPLS ONLY

        self.ncenters = nsamples
        self.nsamples = 1
        self.numinit = None
        self.extra = extra
        self.extra_vals = extra_vals
        self.store_sim = store_sim

        # Default to generate sampling points using Symmetric Latin Hypercube
        self.design = exp_design
        if self.design is None:
            if self.data.dim > 50:
                self.design = LatinHypercube(data.dim, data.dim + 1)
            else:
                self.design = SymmetricLatinHypercube(data.dim,
                                                      2 * (data.dim + 1))

        self.xrange = np.asarray(data.xup - data.xlow)

        # algorithm parameters
        self.sigma_min = 0.005
        self.sigma_max = 0.2
        self.sigma_init = 0.2

        self.failtol = max(5, data.dim)
        self.failcount = 0
        self.contol = 5
        self.numeval = 0
        self.status = 0
        self.sigma = 0
        self.resubmitter = RetryStrategy()
        self.xbest = None
        self.fbest = None
        self.fbest_old = None
        self.improvement_prev = 1

        # population of centers and long-term archive
        self.nd_archives = []
        self.new_pop = []
        self.sim_res = []
        if archiving_method is None:
            self.memory_archive = NonDominatedArchive(200)
        else:
            self.memory_archive = archiving_method
        self.evals = []
        self.maxfit = min(200, 20 * self.data.dim)
        self.d_thresh = 1.0

        # Set up search procedures and initialize
        self.sampling = sampling_method
        if self.sampling is None:
            self.sampling = EvolutionaryAlgorithm(data)

        self.check_input()

        # Start with first experimental design
        self.sample_initial()
예제 #8
0
파일: pysot.py 프로젝트: evhub/bbopt
    def setup_backend(
        self,
        params,
        strategy="SRBF",
        surrogate="RBF",
        design=None,
    ):
        self.opt_problem = BBoptOptimizationProblem(params)

        design_kwargs = dict(dim=self.opt_problem.dim)
        _coconut_case_match_to_1 = design
        _coconut_case_match_check_1 = False
        if _coconut_case_match_to_1 is None:
            _coconut_case_match_check_1 = True
        if _coconut_case_match_check_1:
            self.exp_design = EmptyExperimentalDesign(**design_kwargs)
        if not _coconut_case_match_check_1:
            if _coconut_case_match_to_1 == "latin_hypercube":
                _coconut_case_match_check_1 = True
            if _coconut_case_match_check_1:
                self.exp_design = LatinHypercube(num_pts=2 *
                                                 (self.opt_problem.dim + 1),
                                                 **design_kwargs)
        if not _coconut_case_match_check_1:
            if _coconut_case_match_to_1 == "symmetric_latin_hypercube":
                _coconut_case_match_check_1 = True
            if _coconut_case_match_check_1:
                self.exp_design = SymmetricLatinHypercube(
                    num_pts=2 * (self.opt_problem.dim + 1), **design_kwargs)
        if not _coconut_case_match_check_1:
            if _coconut_case_match_to_1 == "two_factorial":
                _coconut_case_match_check_1 = True
            if _coconut_case_match_check_1:
                self.exp_design = TwoFactorial(**design_kwargs)
        if not _coconut_case_match_check_1:
            _coconut_match_set_name_design_cls = _coconut_sentinel
            _coconut_match_set_name_design_cls = _coconut_case_match_to_1
            _coconut_case_match_check_1 = True
            if _coconut_case_match_check_1:
                if _coconut_match_set_name_design_cls is not _coconut_sentinel:
                    design_cls = _coconut_case_match_to_1
            if _coconut_case_match_check_1 and not (callable(design_cls)):
                _coconut_case_match_check_1 = False
            if _coconut_case_match_check_1:
                self.exp_design = design_cls(**design_kwargs)
        if not _coconut_case_match_check_1:
            raise TypeError(
                "unknown experimental design {_coconut_format_0!r}".format(
                    _coconut_format_0=(design)))

        surrogate_kwargs = dict(dim=self.opt_problem.dim,
                                lb=self.opt_problem.lb,
                                ub=self.opt_problem.ub)
        _coconut_case_match_to_2 = surrogate
        _coconut_case_match_check_2 = False
        if _coconut_case_match_to_2 == "RBF":
            _coconut_case_match_check_2 = True
        if _coconut_case_match_check_2:
            self.surrogate = RBFInterpolant(
                kernel=LinearKernel() if design is None else CubicKernel(),
                tail=ConstantTail(self.opt_problem.dim)
                if design is None else LinearTail(self.opt_problem.dim),
                **surrogate_kwargs)
        if not _coconut_case_match_check_2:
            if _coconut_case_match_to_2 == "GP":
                _coconut_case_match_check_2 = True
            if _coconut_case_match_check_2:
                self.surrogate = GPRegressor(**surrogate_kwargs)
        if not _coconut_case_match_check_2:
            _coconut_match_set_name_surrogate_cls = _coconut_sentinel
            _coconut_match_set_name_surrogate_cls = _coconut_case_match_to_2
            _coconut_case_match_check_2 = True
            if _coconut_case_match_check_2:
                if _coconut_match_set_name_surrogate_cls is not _coconut_sentinel:
                    surrogate_cls = _coconut_case_match_to_2
            if _coconut_case_match_check_2 and not (callable(surrogate_cls)):
                _coconut_case_match_check_2 = False
            if _coconut_case_match_check_2:
                self.surrogate = surrogate_cls(**surrogate_kwargs)
        if not _coconut_case_match_check_2:
            raise TypeError("unknown surrogate {_coconut_format_0!r}".format(
                _coconut_format_0=(surrogate)))

        strategy_kwargs = dict(max_evals=sys.maxsize,
                               opt_prob=self.opt_problem,
                               exp_design=self.exp_design,
                               surrogate=self.surrogate,
                               asynchronous=True,
                               batch_size=1)
        _coconut_case_match_to_3 = strategy
        _coconut_case_match_check_3 = False
        if _coconut_case_match_to_3 == "SRBF":
            _coconut_case_match_check_3 = True
        if _coconut_case_match_check_3:
            self.strategy = SRBFStrategy(**strategy_kwargs)
        if not _coconut_case_match_check_3:
            if _coconut_case_match_to_3 == "EI":
                _coconut_case_match_check_3 = True
            if _coconut_case_match_check_3:
                self.strategy = EIStrategy(**strategy_kwargs)
        if not _coconut_case_match_check_3:
            if _coconut_case_match_to_3 == "DYCORS":
                _coconut_case_match_check_3 = True
            if _coconut_case_match_check_3:
                self.strategy = DYCORSStrategy(**strategy_kwargs)
        if not _coconut_case_match_check_3:
            if _coconut_case_match_to_3 == "LCB":
                _coconut_case_match_check_3 = True
            if _coconut_case_match_check_3:
                self.strategy = LCBStrategy(**strategy_kwargs)
        if not _coconut_case_match_check_3:
            _coconut_match_set_name_strategy_cls = _coconut_sentinel
            _coconut_match_set_name_strategy_cls = _coconut_case_match_to_3
            _coconut_case_match_check_3 = True
            if _coconut_case_match_check_3:
                if _coconut_match_set_name_strategy_cls is not _coconut_sentinel:
                    strategy_cls = _coconut_case_match_to_3
            if _coconut_case_match_check_3 and not (callable(strategy_cls)):
                _coconut_case_match_check_3 = False
            if _coconut_case_match_check_3:
                self.strategy = strategy_cls(**strategy_kwargs)
        if not _coconut_case_match_check_3:
            raise TypeError("unknown strategy {_coconut_format_0!r}".format(
                _coconut_format_0=(strategy)))