예제 #1
0
 def test_not_numpy_or_dask_array_main(self):
     translator = ArrayTranslator()
     with self.assertRaises(TypeError):
         delete_existing_file(file_path)
         _ = translator.translate(file_path, 'Blah', {'This is not a dataset': True}, 'quant', 'unit',
                                  Dimension('Position_Dim', 'au', 5),
                                  Dimension('Spec_Dim', 'au', 3))
예제 #2
0
 def test_objects(self):
     translator = ArrayTranslator()
     with self.assertRaises(TypeError):
         delete_existing_file(file_path)
         _ = translator.translate(file_path, 'Blah', np.random.rand(5, 13), 'quant', 'unit',
                                  Dimension('Dim_1', 'au', 5),
                                  ['blah',
                                   Dimension('Dim_2', 'au', 4)])
예제 #3
0
 def test_object_single(self):
     translator = ArrayTranslator()
     with self.assertRaises(TypeError):
         delete_existing_file(file_path)
         _ = translator.translate(file_path, 'Blah', np.random.rand(5, 13), 'quant', 'unit',
                                  'my_string_Dimension',
                                  [Dimension('Spec_Dim', 'au', 3),
                                   Dimension('Dim_2', 'au', 4)])
예제 #4
0
 def test_spec(self):
     translator = ArrayTranslator()
     with self.assertRaises(ValueError):
         delete_existing_file(file_path)
         _ = translator.translate(file_path, 'Blah', np.random.rand(5, 13), 'quant', 'unit',
                                  Dimension('Dim_1', 'au', 5),
                                  [Dimension('Spec_Dim', 'au', 3),
                                   Dimension('Dim_2', 'au', 4)])
예제 #5
0
 def test_empty_name(self):
     translator = ArrayTranslator()
     with self.assertRaises(ValueError):
         delete_existing_file(file_path)
         _ = translator.translate(file_path, 'Blah', np.random.rand(5, 3), 'quant', 'unit',
                                  Dimension('Position_Dim', 'au', 5),
                                  Dimension('Spec_Dim', 'au', 3),
                                  extra_dsets={' ': [1, 2, 3]})
예제 #6
0
 def test_not_arrays(self):
     translator = ArrayTranslator()
     with self.assertRaises(TypeError):
         delete_existing_file(file_path)
         _ = translator.translate(file_path, 'Blah', np.random.rand(5, 3), 'quant', 'unit',
                                  Dimension('Position_Dim', 'au', 5),
                                  Dimension('Spec_Dim', 'au', 3),
                                  extra_dsets={'Blah_other': 'I am not an array'})
예제 #7
0
 def test_position(self):
     translator = ArrayTranslator()
     with self.assertRaises(ValueError):
         delete_existing_file(file_path)
         _ = translator.translate(file_path, 'Blah', np.random.rand(15, 3), 'quant', 'unit',
                                  [write_utils.Dimension('Dim_1', 'au', 5),
                                   write_utils.Dimension('Dim_2', 'au', 4)],
                                  write_utils.Dimension('Spec_Dim', 'au', 3))
예제 #8
0
 def test_not_dicts(self):
     translator = ArrayTranslator()
     with self.assertRaises(TypeError):
         delete_existing_file(file_path)
         _ = translator.translate(file_path, 'Blah', np.random.rand(5, 3), 'quant', 'unit',
                                  write_utils.Dimension('Position_Dim', 'au', 5),
                                  write_utils.Dimension('Spec_Dim', 'au', 3),
                                  extra_dsets=np.arange(4))
예제 #9
0
 def test_reserved_names(self):
     translator = ArrayTranslator()
     with self.assertRaises(KeyError):
         delete_existing_file(file_path)
         _ = translator.translate(file_path, 'Blah', np.random.rand(5, 3), 'quant', 'unit',
                                  Dimension('Position_Dim', 'au', 5),
                                  Dimension('Spec_Dim', 'au', 3),
                                  extra_dsets={'Spectroscopic_Indices': np.arange(4),
                                               'Blah_other': np.arange(15)})
예제 #10
0
    def test_main_dset_1D(self):
        translator = ArrayTranslator()
        with self.assertRaises(ValueError):
            delete_existing_file(file_path)
            _ = translator.translate(file_path, 'Blah', np.arange(4), 'quant', 'unit',
                                     Dimension('Position_Dim', 'au', 5),
                                     Dimension('Spec_Dim', 'au', 3))

        with self.assertRaises(ValueError):
            delete_existing_file(file_path)
            _ = translator.translate(file_path, 'Blah', da.from_array(np.arange(4), chunks=(4)), 'quant', 'unit',
                                     Dimension('Position_Dim', 'au', 5),
                                     Dimension('Spec_Dim', 'au', 3))
예제 #11
0
    def test_not_strings(self):
        translator = ArrayTranslator()
        with self.assertRaises(TypeError):
            delete_existing_file(file_path)
            _ = translator.translate(file_path, 1.2345, np.random.rand(5, 3), 'quant', 'unit',
                                     Dimension('Position_Dim', 'au', 5),
                                     Dimension('Spec_Dim', 'au', 3))

        with self.assertRaises(TypeError):
            delete_existing_file(file_path)
            _ = translator.translate(file_path, 'Blah', np.random.rand(5, 3), {'quant': 1}, 'unit',
                                     Dimension('Position_Dim', 'au', 5),
                                     Dimension('Spec_Dim', 'au', 3))

        with self.assertRaises(TypeError):
            delete_existing_file(file_path)
            _ = translator.translate(file_path, 'Blah', np.random.rand(5, 3), 'quant', ['unit'],
                                     Dimension('Position_Dim', 'au', 5),
                                     Dimension('Spec_Dim', 'au', 3))
예제 #12
0
    def base_translation_tester(self, main_dset_as_dask=False, extra_dsets_type='numpy', use_parm_dict=True):
        data_name = 'My_Awesome_Measurement'

        if use_parm_dict:
            attrs = {'att_1': 'string_val',
                     'att_2': 1.2345,
                     'att_3': [1, 2, 3, 4],
                     'att_4': ['str_1', 'str_2', 'str_3']}
        else:
            attrs = None

        extra_dsets = {}
        if extra_dsets_type is not None:
            ref_dsets = {'dset_1': np.random.rand(5), 'dset_2': np.arange(25)}
            if extra_dsets_type == 'numpy':
                extra_dsets = ref_dsets
            elif extra_dsets_type == 'dask':
                for key, val in ref_dsets.items():
                    extra_dsets.update({key: da.from_array(val, chunks=val.shape)})
            else:
                extra_dsets_type = None

        delete_existing_file(file_path)

        main_data = np.random.rand(15, 14)
        if main_dset_as_dask:
            main_data = da.from_array(main_data, chunks=main_data.shape)
        quantity = 'Current'
        units = 'nA'

        pos_sizes = [5, 3]
        pos_names = ['X', 'Y']
        pos_units = ['nm', 'um']
        pos_dims = []
        for name, unit, length in zip(pos_names, pos_units, pos_sizes):
            pos_dims.append(Dimension(name, unit, np.arange(length)))
        pos_data = np.vstack((np.tile(np.arange(5), 3),
                              np.repeat(np.arange(3), 5))).T

        spec_sizes = [7, 2]
        spec_names = ['Bias', 'Cycle']
        spec_units = ['V', '']
        spec_dims = []
        for name, unit, length in zip(spec_names, spec_units, spec_sizes):
            spec_dims.append(Dimension(name, unit, np.arange(length)))

        spec_data = np.vstack((np.tile(np.arange(7), 2),
                               np.repeat(np.arange(2), 7)))

        translator = ArrayTranslator()
        _ = translator.translate(file_path, data_name, main_data, quantity, units, pos_dims, spec_dims, parm_dict=attrs,
                                 extra_dsets=extra_dsets)

        with h5py.File(file_path, mode='r') as h5_f:
            # we are not interested in most of the attributes under root besides two:
            self.assertEqual(data_name, hdf_utils.get_attr(h5_f, 'data_type'))
            # self.assertEqual('NumpyTranslator', hdf_utils.get_attr(h5_f, 'translator'))

            # First level should have absolutely nothing besides one group
            self.assertEqual(len(h5_f.items()), 1)
            self.assertTrue('Measurement_000' in h5_f.keys())
            h5_meas_grp = h5_f['Measurement_000']
            self.assertIsInstance(h5_meas_grp, h5py.Group)

            # check the attributes under this group
            # self.assertEqual(len(h5_meas_grp.attrs), len(attrs))
            if use_parm_dict:
                for key, expected_val in attrs.items():
                    self.assertTrue(np.all(hdf_utils.get_attr(h5_meas_grp, key) == expected_val))

            # Again, this group should only have one group - Channel_000
            self.assertEqual(len(h5_meas_grp.items()), 1)
            self.assertTrue('Channel_000' in h5_meas_grp.keys())
            h5_chan_grp = h5_meas_grp['Channel_000']
            self.assertIsInstance(h5_chan_grp, h5py.Group)

            # This channel group is not expected to have any (custom) attributes but it will contain the main dataset
            self.assertEqual(len(h5_chan_grp.items()), 5 + len(extra_dsets))
            for dset_name in ['Raw_Data', 'Position_Indices', 'Position_Values', 'Spectroscopic_Indices',
                              'Spectroscopic_Values']:
                self.assertTrue(dset_name in h5_chan_grp.keys())
                h5_dset = h5_chan_grp[dset_name]
                self.assertIsInstance(h5_dset, h5py.Dataset)

            usid_main = USIDataset(h5_chan_grp['Raw_Data'])

            self.assertIsInstance(usid_main, USIDataset)
            self.assertEqual(usid_main.name.split('/')[-1], 'Raw_Data')
            self.assertEqual(usid_main.parent, h5_chan_grp)
            self.assertTrue(np.allclose(main_data, usid_main[()]))

            validate_aux_dset_pair(self, h5_chan_grp, usid_main.h5_pos_inds, usid_main.h5_pos_vals, pos_names, pos_units,
                                          pos_data, h5_main=usid_main, is_spectral=False)

            validate_aux_dset_pair(self, h5_chan_grp, usid_main.h5_spec_inds, usid_main.h5_spec_vals, spec_names,
                                          spec_units,
                                          spec_data, h5_main=usid_main, is_spectral=True)

            # Now validate each of the extra datasets:
            if extra_dsets_type is not None:
                for key, val in extra_dsets.items():
                    self.assertTrue(key in h5_chan_grp.keys())
                    h5_dset = h5_chan_grp[key]
                    self.assertIsInstance(h5_dset, h5py.Dataset)
                    if extra_dsets_type == 'dask':
                        val = val.compute()
                    self.assertTrue(np.allclose(val, h5_dset[()]))

        os.remove(file_path)