def test_not_numpy_or_dask_array_main(self): translator = ArrayTranslator() with self.assertRaises(TypeError): delete_existing_file(file_path) _ = translator.translate(file_path, 'Blah', {'This is not a dataset': True}, 'quant', 'unit', Dimension('Position_Dim', 'au', 5), Dimension('Spec_Dim', 'au', 3))
def test_objects(self): translator = ArrayTranslator() with self.assertRaises(TypeError): delete_existing_file(file_path) _ = translator.translate(file_path, 'Blah', np.random.rand(5, 13), 'quant', 'unit', Dimension('Dim_1', 'au', 5), ['blah', Dimension('Dim_2', 'au', 4)])
def test_object_single(self): translator = ArrayTranslator() with self.assertRaises(TypeError): delete_existing_file(file_path) _ = translator.translate(file_path, 'Blah', np.random.rand(5, 13), 'quant', 'unit', 'my_string_Dimension', [Dimension('Spec_Dim', 'au', 3), Dimension('Dim_2', 'au', 4)])
def test_spec(self): translator = ArrayTranslator() with self.assertRaises(ValueError): delete_existing_file(file_path) _ = translator.translate(file_path, 'Blah', np.random.rand(5, 13), 'quant', 'unit', Dimension('Dim_1', 'au', 5), [Dimension('Spec_Dim', 'au', 3), Dimension('Dim_2', 'au', 4)])
def test_empty_name(self): translator = ArrayTranslator() with self.assertRaises(ValueError): delete_existing_file(file_path) _ = translator.translate(file_path, 'Blah', np.random.rand(5, 3), 'quant', 'unit', Dimension('Position_Dim', 'au', 5), Dimension('Spec_Dim', 'au', 3), extra_dsets={' ': [1, 2, 3]})
def test_not_arrays(self): translator = ArrayTranslator() with self.assertRaises(TypeError): delete_existing_file(file_path) _ = translator.translate(file_path, 'Blah', np.random.rand(5, 3), 'quant', 'unit', Dimension('Position_Dim', 'au', 5), Dimension('Spec_Dim', 'au', 3), extra_dsets={'Blah_other': 'I am not an array'})
def test_position(self): translator = ArrayTranslator() with self.assertRaises(ValueError): delete_existing_file(file_path) _ = translator.translate(file_path, 'Blah', np.random.rand(15, 3), 'quant', 'unit', [write_utils.Dimension('Dim_1', 'au', 5), write_utils.Dimension('Dim_2', 'au', 4)], write_utils.Dimension('Spec_Dim', 'au', 3))
def test_not_dicts(self): translator = ArrayTranslator() with self.assertRaises(TypeError): delete_existing_file(file_path) _ = translator.translate(file_path, 'Blah', np.random.rand(5, 3), 'quant', 'unit', write_utils.Dimension('Position_Dim', 'au', 5), write_utils.Dimension('Spec_Dim', 'au', 3), extra_dsets=np.arange(4))
def test_reserved_names(self): translator = ArrayTranslator() with self.assertRaises(KeyError): delete_existing_file(file_path) _ = translator.translate(file_path, 'Blah', np.random.rand(5, 3), 'quant', 'unit', Dimension('Position_Dim', 'au', 5), Dimension('Spec_Dim', 'au', 3), extra_dsets={'Spectroscopic_Indices': np.arange(4), 'Blah_other': np.arange(15)})
def test_main_dset_1D(self): translator = ArrayTranslator() with self.assertRaises(ValueError): delete_existing_file(file_path) _ = translator.translate(file_path, 'Blah', np.arange(4), 'quant', 'unit', Dimension('Position_Dim', 'au', 5), Dimension('Spec_Dim', 'au', 3)) with self.assertRaises(ValueError): delete_existing_file(file_path) _ = translator.translate(file_path, 'Blah', da.from_array(np.arange(4), chunks=(4)), 'quant', 'unit', Dimension('Position_Dim', 'au', 5), Dimension('Spec_Dim', 'au', 3))
def test_not_strings(self): translator = ArrayTranslator() with self.assertRaises(TypeError): delete_existing_file(file_path) _ = translator.translate(file_path, 1.2345, np.random.rand(5, 3), 'quant', 'unit', Dimension('Position_Dim', 'au', 5), Dimension('Spec_Dim', 'au', 3)) with self.assertRaises(TypeError): delete_existing_file(file_path) _ = translator.translate(file_path, 'Blah', np.random.rand(5, 3), {'quant': 1}, 'unit', Dimension('Position_Dim', 'au', 5), Dimension('Spec_Dim', 'au', 3)) with self.assertRaises(TypeError): delete_existing_file(file_path) _ = translator.translate(file_path, 'Blah', np.random.rand(5, 3), 'quant', ['unit'], Dimension('Position_Dim', 'au', 5), Dimension('Spec_Dim', 'au', 3))
def base_translation_tester(self, main_dset_as_dask=False, extra_dsets_type='numpy', use_parm_dict=True): data_name = 'My_Awesome_Measurement' if use_parm_dict: attrs = {'att_1': 'string_val', 'att_2': 1.2345, 'att_3': [1, 2, 3, 4], 'att_4': ['str_1', 'str_2', 'str_3']} else: attrs = None extra_dsets = {} if extra_dsets_type is not None: ref_dsets = {'dset_1': np.random.rand(5), 'dset_2': np.arange(25)} if extra_dsets_type == 'numpy': extra_dsets = ref_dsets elif extra_dsets_type == 'dask': for key, val in ref_dsets.items(): extra_dsets.update({key: da.from_array(val, chunks=val.shape)}) else: extra_dsets_type = None delete_existing_file(file_path) main_data = np.random.rand(15, 14) if main_dset_as_dask: main_data = da.from_array(main_data, chunks=main_data.shape) quantity = 'Current' units = 'nA' pos_sizes = [5, 3] pos_names = ['X', 'Y'] pos_units = ['nm', 'um'] pos_dims = [] for name, unit, length in zip(pos_names, pos_units, pos_sizes): pos_dims.append(Dimension(name, unit, np.arange(length))) pos_data = np.vstack((np.tile(np.arange(5), 3), np.repeat(np.arange(3), 5))).T spec_sizes = [7, 2] spec_names = ['Bias', 'Cycle'] spec_units = ['V', ''] spec_dims = [] for name, unit, length in zip(spec_names, spec_units, spec_sizes): spec_dims.append(Dimension(name, unit, np.arange(length))) spec_data = np.vstack((np.tile(np.arange(7), 2), np.repeat(np.arange(2), 7))) translator = ArrayTranslator() _ = translator.translate(file_path, data_name, main_data, quantity, units, pos_dims, spec_dims, parm_dict=attrs, extra_dsets=extra_dsets) with h5py.File(file_path, mode='r') as h5_f: # we are not interested in most of the attributes under root besides two: self.assertEqual(data_name, hdf_utils.get_attr(h5_f, 'data_type')) # self.assertEqual('NumpyTranslator', hdf_utils.get_attr(h5_f, 'translator')) # First level should have absolutely nothing besides one group self.assertEqual(len(h5_f.items()), 1) self.assertTrue('Measurement_000' in h5_f.keys()) h5_meas_grp = h5_f['Measurement_000'] self.assertIsInstance(h5_meas_grp, h5py.Group) # check the attributes under this group # self.assertEqual(len(h5_meas_grp.attrs), len(attrs)) if use_parm_dict: for key, expected_val in attrs.items(): self.assertTrue(np.all(hdf_utils.get_attr(h5_meas_grp, key) == expected_val)) # Again, this group should only have one group - Channel_000 self.assertEqual(len(h5_meas_grp.items()), 1) self.assertTrue('Channel_000' in h5_meas_grp.keys()) h5_chan_grp = h5_meas_grp['Channel_000'] self.assertIsInstance(h5_chan_grp, h5py.Group) # This channel group is not expected to have any (custom) attributes but it will contain the main dataset self.assertEqual(len(h5_chan_grp.items()), 5 + len(extra_dsets)) for dset_name in ['Raw_Data', 'Position_Indices', 'Position_Values', 'Spectroscopic_Indices', 'Spectroscopic_Values']: self.assertTrue(dset_name in h5_chan_grp.keys()) h5_dset = h5_chan_grp[dset_name] self.assertIsInstance(h5_dset, h5py.Dataset) usid_main = USIDataset(h5_chan_grp['Raw_Data']) self.assertIsInstance(usid_main, USIDataset) self.assertEqual(usid_main.name.split('/')[-1], 'Raw_Data') self.assertEqual(usid_main.parent, h5_chan_grp) self.assertTrue(np.allclose(main_data, usid_main[()])) validate_aux_dset_pair(self, h5_chan_grp, usid_main.h5_pos_inds, usid_main.h5_pos_vals, pos_names, pos_units, pos_data, h5_main=usid_main, is_spectral=False) validate_aux_dset_pair(self, h5_chan_grp, usid_main.h5_spec_inds, usid_main.h5_spec_vals, spec_names, spec_units, spec_data, h5_main=usid_main, is_spectral=True) # Now validate each of the extra datasets: if extra_dsets_type is not None: for key, val in extra_dsets.items(): self.assertTrue(key in h5_chan_grp.keys()) h5_dset = h5_chan_grp[key] self.assertIsInstance(h5_dset, h5py.Dataset) if extra_dsets_type == 'dask': val = val.compute() self.assertTrue(np.allclose(val, h5_dset[()])) os.remove(file_path)