예제 #1
0
    def assign(self, *args, **kwargs):
        annotate = annotate_tape(kwargs)
        outputs = Enlist(args[0])
        inputs = Enlist(args[1])

        if annotate:
            for i, o in enumerate(outputs):
                if not isinstance(o, OverloadedType):
                    outputs[i] = create_overloaded_object(o)

            for j, i in enumerate(outputs):
                if not isinstance(i, OverloadedType):
                    inputs[j] = create_overloaded_object(i)

            block = FunctionAssignerBlock(self, inputs)
            tape = get_working_tape()
            tape.add_block(block)

        with stop_annotating():
            ret = backend.FunctionAssigner.assign(self, outputs.delist(), inputs.delist(), **kwargs)

        if annotate:
            for output in outputs:
                block.add_output(output.block_variable)
        return ret
예제 #2
0
class LevelSetFunctional(object):
    """Class representing a Lagrangian that depends on a level set

    This class is based of pyadjoint.ReducedFunctional and shares many functionalities.
    The motivation is to calculate shape derivatives when we evolve a level set.

    Args:
        functional (:obj:`OverloadedType`): An instance of an OverloadedType,
            usually :class:`AdjFloat`. This should be the return value of the
            functional you want to reduce.
        controls (list[Control]): A list of Control instances, which you want
            to map to the functional. It is also possible to supply a single Control
            instance instead of a list.
    """
    def __init__(
        self,
        functional,
        controls,
        level_set,
        scale=1.0,
        tape=None,
        eval_cb_pre=lambda *args: None,
        eval_cb_post=lambda *args: None,
        derivative_cb_pre=lambda *args: None,
        derivative_cb_post=lambda *args: None,
        hessian_cb_pre=lambda *args: None,
        hessian_cb_post=lambda *args: None,
    ):
        self.functional = functional
        self.cost_function = self.functional
        self.tape = get_working_tape() if tape is None else tape
        self.controls = Enlist(controls)
        self.level_set = Enlist(level_set)
        self.scale = scale
        self.eval_cb_pre = eval_cb_pre
        self.eval_cb_post = eval_cb_post
        self.derivative_cb_pre = derivative_cb_pre
        self.derivative_cb_post = derivative_cb_post
        self.hessian_cb_pre = hessian_cb_pre
        self.hessian_cb_post = hessian_cb_post

        # TODO Check that the level set is in the tape.
        # Actually, not even pyadjoint checks if the given Control is in the
        # tape.

    def derivative(self, options={}):
        """Returns the derivative of the functional w.r.t. the control.

        Using the adjoint method, the derivative of the functional with
        respect to the control, around the last supplied value of the control,
        is computed and returned.

        Args:
            options (dict): A dictionary of options. To find a list of available options
                have a look at the specific control type.

        Returns:
            OverloadedType: The derivative with respect to the control.
                Should be an instance of the same type as the control.

        """
        # Call callback
        self.derivative_cb_pre(self.level_set)

        derivatives = compute_gradient(
            self.functional,
            self.controls,
            options=options,
            tape=self.tape,
            adj_value=self.scale,
        )

        # Call callback
        self.derivative_cb_post(
            self.functional.block_variable.checkpoint,
            self.level_set.delist(derivatives),
            self.level_set,
        )

        return self.level_set.delist(derivatives)

    @no_annotations
    def hessian(self, m_dot, options={}):
        """Returns the action of the Hessian of the functional w.r.t. the control on a vector m_dot.

        Using the second-order adjoint method, the action of the Hessian of the
        functional with respect to the control, around the last supplied value
        of the control, is computed and returned.

        Args:
            m_dot ([OverloadedType]): The direction in which to compute the
                action of the Hessian.
            options (dict): A dictionary of options. To find a list of
                available options have a look at the specific control type.

        Returns:
            OverloadedType: The action of the Hessian in the direction m_dot.
                Should be an instance of the same type as the control.
        """
        # Call callback
        self.hessian_cb_pre(self.level_set)

        r = compute_hessian(
            self.functional,
            self.controls,
            m_dot,
            options=options,
            tape=self.tape,
        )

        # Call callback
        self.hessian_cb_post(
            self.functional.block_variable.checkpoint,
            self.level_set.delist(r),
            self.level_set,
        )

        return self.level_set.delist(r)

    @no_annotations
    def __call__(self, values):
        """Computes the reduced functional with supplied control value.

        Args:
            values ([OverloadedType]): If you have multiple controls this should be a list of
                new values for each control in the order you listed the controls to the constructor.
                If you have a single control it can either be a list or a single object.
                Each new value should have the same type as the corresponding control.

            If values has a len(ufl_shape) > 0, we are in a Taylor test and we are updating
            self.controls
            If values has ufl_shape = (), it is a level set.

        Returns:
            :obj:`OverloadedType`: The computed value. Typically of instance
                of :class:`AdjFloat`.

        """
        values = Enlist(values)
        if len(values) != len(self.level_set):
            raise ValueError(
                "values should be a list of same length as level sets.")

        # Call callback.
        self.eval_cb_pre(self.level_set.delist(values))

        # TODO Is there a better way to do this?
        if len(values[0].ufl_shape) > 0:
            for i, value in enumerate(values):
                self.controls[i].update(value)
        else:
            for i, value in enumerate(values):
                self.level_set[i].block_variable.checkpoint = value

        self.tape.reset_blocks()
        blocks = self.tape.get_blocks()
        with self.marked_controls():
            with stop_annotating():
                for i in range(len(blocks)):
                    blocks[i].recompute()

        func_value = self.scale * self.functional.block_variable.checkpoint

        # Call callback
        self.eval_cb_post(func_value, self.level_set.delist(values))

        return func_value

    # TODO fix this to avoid deleting the level set
    def optimize_tape(self):
        self.tape.optimize(
            controls=self.controls + self.level_set,
            functionals=[self.functional],
        )

    def marked_controls(self):
        return marked_controls(self)