def write_parameters(self): """Write parameters as `testname.parms/.model`.""" pyalps.writeParameterFile(self.testname+'.parms', self.inputs['parms']) pyalps.writeParameterFile(self.testname+'.model', self.inputs['model'])
'SYMMETRIZATION' : 1, 'SWEEPS' : 10000, 'BETA' : 30, 'THERMALIZATION' : 500, 'U' : u, 'J' : j, 't0' : 0.5, 't1' : 1 } ) # For more precise calculations we propose to enhance the SWEEPS #write the input file and run the simulation for p in parms: input_file = pyalps.writeParameterFile('parm_u_'+str(p['U'])+'_j_'+str(p['J']),p) res = pyalps.runDMFT(input_file) listobs = ['0', '2'] # flavor 0 is SYMMETRIZED with 1, flavor 2 is SYMMETRIZED with 3 data = pyalps.loadMeasurements(pyalps.getResultFiles(pattern='parm_u_*h5'), respath='/simulation/results/G_tau', what=listobs, verbose=True) for d in pyalps.flatten(data): d.x = d.x*d.props["BETA"]/float(d.props["N"]) d.y = -d.y d.props['label'] = r'$U=$'+str(d.props['U'])+'; flavor='+str(d.props['observable'][len(d.props['observable'])-1]) plt.figure() plt.yscale('log') plt.xlabel(r'$\tau$') plt.ylabel(r'$G_{flavor}(\tau)$') plt.title('DMFT-05: Orbitally Selective Mott Transition on the Bethe lattice') pyalps.plot.plot(data)
'CONVERGED': 0.0025, 'FLAVORS': 2, 'H': 0, 'H_INIT': 0.0, 'MAX_IT': 12, 'MAX_TIME': 600, 'MU': 0, 'N': 1000, 'NMATSUBARA': 1000, 'N_MEAS': 10000, 'N_ORDER': 50, 'OMEGA_LOOP': 1, 'SEED': 0, 'SITES': 1, 'SOLVER': 'hybridization', 'SC_WRITE_DELTA': 1, 'SYMMETRIZATION': 1, 'U': 3, 't': 0.707106781186547, 'SWEEPS': 2500, 'THERMALIZATION': 500, 'BETA': 32 }) # For more precise calculations we propose to you to: # enhance the MAX_TIME, MAX_IT and lower CONVERGED #write the input file and run the simulation input_file = pyalps.writeParameterFile('parm_hyb', parms[0]) res = pyalps.runDMFT(input_file)
'OMEGA_LOOP': 1, 'SEED': 0, 'SITES': 1, 'SOLVER': 'hybridization', 'SC_WRITE_DELTA': 1, 'SYMMETRIZATION': 0, 'U': 3, 't': 0.707106781186547, 'SWEEPS': int(10000 * b / 16.), 'THERMALIZATION': 1000, 'BETA': b }) #write the input file and run the simulation for p in parms: input_file = pyalps.writeParameterFile('parm_beta_' + str(p['BETA']), p) res = pyalps.runDMFT(input_file) listobs = ['0', '1'] data = pyalps.loadMeasurements(pyalps.getResultFiles(pattern='parm_beta_*h5'), respath='/simulation/results/G_tau', what=listobs) for d in pyalps.flatten(data): d.x = d.x * d.props["BETA"] / float(d.props["N"]) d.props['label'] = r'$\beta=$' + str(d.props['BETA']) + '; flavor=' + str( d.props['observable'][len(d.props['observable']) - 1]) plt.figure() plt.xlabel(r'$\tau$') plt.ylabel(r'$G_{flavor}(\tau)$')
'N_ORDER' : 50, # histogram size 'TWODBS' : 1, # the Hilbert transformation integral runs in k-space, sets square lattice 't' : 1, # the nearest-neighbor hopping 'tprime' : 0, # the second nearest-neighbor hopping 'L' : 64, # discretization in k-space in the Hilbert transformation 'GENERAL_FOURIER_TRANSFORMER' : 1, # Fourier transformer for a general bandstructure 'EPS_0' : 0, # potential shift for the flavor 0 'EPS_1' : 0, # potential shift for the flavor 1 'EPSSQ_0' : 4, # the second moment of the bandstructure for the flavor 0 'EPSSQ_1' : 4, # the second moment of the bandstructure for the flavor 1 } ) #write the input file and run the simulation for p in parms: input_file = pyalps.writeParameterFile('hybrid_TWODBS_beta_'+str(p['BETA'])+'_U_'+str(p['U']),p) res = pyalps.runDMFT(input_file) listobs=['0'] # we look only at flavor=0 data = pyalps.loadMeasurements(pyalps.getResultFiles(pattern='hybrid_TWODBS*h5'), respath='/simulation/results/G_tau', what=listobs, verbose=True) for d in pyalps.flatten(data): d.x = d.x*d.props["BETA"]/float(d.props["N"]) d.props['label'] = r'$\beta=$'+str(d.props['BETA']) plt.figure() plt.xlabel(r'$\tau$') plt.ylabel(r'$G_{flavor=0}(\tau)$') plt.title('DMFT-08, TWODBS option: Hubbard model on the square lattice') pyalps.plot.plot(data) plt.legend()