예제 #1
0
 def write_parameters(self):
     """Write parameters as `testname.parms/.model`."""
     pyalps.writeParameterFile(self.testname+'.parms', self.inputs['parms'])
     pyalps.writeParameterFile(self.testname+'.model', self.inputs['model'])
예제 #2
0
              'SYMMETRIZATION'      : 1,
              'SWEEPS'              : 10000,
              'BETA'                : 30,
              'THERMALIZATION'      : 500,
              'U'                   : u,
              'J'                   : j,
              't0'                  : 0.5,
              't1'                  : 1
        }
        )

# For more precise calculations we propose to enhance the SWEEPS

#write the input file and run the simulation
for p in parms:
    input_file = pyalps.writeParameterFile('parm_u_'+str(p['U'])+'_j_'+str(p['J']),p)
    res = pyalps.runDMFT(input_file)

listobs = ['0', '2']   # flavor 0 is SYMMETRIZED with 1, flavor 2 is SYMMETRIZED with 3
    
data = pyalps.loadMeasurements(pyalps.getResultFiles(pattern='parm_u_*h5'), respath='/simulation/results/G_tau', what=listobs, verbose=True)
for d in pyalps.flatten(data):
    d.x = d.x*d.props["BETA"]/float(d.props["N"])
    d.y = -d.y
    d.props['label'] = r'$U=$'+str(d.props['U'])+'; flavor='+str(d.props['observable'][len(d.props['observable'])-1])
plt.figure()
plt.yscale('log')
plt.xlabel(r'$\tau$')
plt.ylabel(r'$G_{flavor}(\tau)$')
plt.title('DMFT-05: Orbitally Selective Mott Transition on the Bethe lattice')
pyalps.plot.plot(data)
예제 #3
0
    'CONVERGED': 0.0025,
    'FLAVORS': 2,
    'H': 0,
    'H_INIT': 0.0,
    'MAX_IT': 12,
    'MAX_TIME': 600,
    'MU': 0,
    'N': 1000,
    'NMATSUBARA': 1000,
    'N_MEAS': 10000,
    'N_ORDER': 50,
    'OMEGA_LOOP': 1,
    'SEED': 0,
    'SITES': 1,
    'SOLVER': 'hybridization',
    'SC_WRITE_DELTA': 1,
    'SYMMETRIZATION': 1,
    'U': 3,
    't': 0.707106781186547,
    'SWEEPS': 2500,
    'THERMALIZATION': 500,
    'BETA': 32
})

# For more precise calculations we propose to you to:
#   enhance the MAX_TIME, MAX_IT and lower CONVERGED

#write the input file and run the simulation
input_file = pyalps.writeParameterFile('parm_hyb', parms[0])
res = pyalps.runDMFT(input_file)
예제 #4
0
        'OMEGA_LOOP': 1,
        'SEED': 0,
        'SITES': 1,
        'SOLVER': 'hybridization',
        'SC_WRITE_DELTA': 1,
        'SYMMETRIZATION': 0,
        'U': 3,
        't': 0.707106781186547,
        'SWEEPS': int(10000 * b / 16.),
        'THERMALIZATION': 1000,
        'BETA': b
    })

#write the input file and run the simulation
for p in parms:
    input_file = pyalps.writeParameterFile('parm_beta_' + str(p['BETA']), p)
    res = pyalps.runDMFT(input_file)

listobs = ['0', '1']

data = pyalps.loadMeasurements(pyalps.getResultFiles(pattern='parm_beta_*h5'),
                               respath='/simulation/results/G_tau',
                               what=listobs)
for d in pyalps.flatten(data):
    d.x = d.x * d.props["BETA"] / float(d.props["N"])
    d.props['label'] = r'$\beta=$' + str(d.props['BETA']) + '; flavor=' + str(
        d.props['observable'][len(d.props['observable']) - 1])

plt.figure()
plt.xlabel(r'$\tau$')
plt.ylabel(r'$G_{flavor}(\tau)$')
예제 #5
0
                'N_ORDER' : 50,               # histogram size
                'TWODBS' : 1,     # the Hilbert transformation integral runs in k-space, sets square lattice
                't' : 1,          # the nearest-neighbor hopping
                'tprime' : 0,     # the second nearest-neighbor hopping
                'L' : 64,         # discretization in k-space in the Hilbert transformation
                'GENERAL_FOURIER_TRANSFORMER' : 1,  # Fourier transformer for a general bandstructure
                'EPS_0' : 0,                        # potential shift for the flavor 0
                'EPS_1' : 0,                        # potential shift for the flavor 1
                'EPSSQ_0' : 4,                      # the second moment of the bandstructure for the flavor 0
                'EPSSQ_1' : 4,                      # the second moment of the bandstructure for the flavor 1
            }
        )

#write the input file and run the simulation
for p in parms:
    input_file = pyalps.writeParameterFile('hybrid_TWODBS_beta_'+str(p['BETA'])+'_U_'+str(p['U']),p)
    res = pyalps.runDMFT(input_file)

listobs=['0']  # we look only at flavor=0
    
data = pyalps.loadMeasurements(pyalps.getResultFiles(pattern='hybrid_TWODBS*h5'), respath='/simulation/results/G_tau', what=listobs, verbose=True)
for d in pyalps.flatten(data):
    d.x = d.x*d.props["BETA"]/float(d.props["N"])
    d.props['label'] = r'$\beta=$'+str(d.props['BETA'])
plt.figure()

plt.xlabel(r'$\tau$')
plt.ylabel(r'$G_{flavor=0}(\tau)$')
plt.title('DMFT-08, TWODBS option: Hubbard model on the square lattice')
pyalps.plot.plot(data)
plt.legend()