eff = 0.65 eres = isot.Qbb * 0.003 bkg = 1.0E-3 / (units.keV * units.kg * units.year) mass = 429. * units.kg expo = 2200. * units.kg * units.year nmes = ["ISM", "IBM2"] cnmes = ["blue", "red"] ######################################## ### Create a confidence-limit calculator. ### We use in this case the Feldman-Cousins memoizer. fcm = conflimits.FCMemoizer(0.9) fcm.ReadTableAverageUpperLimits(DATA_PATH + 'FC90.dat') exp = experiment.Experiment(name, isotope.Se82, eff, eres, bkg, mass) i = 0 XA = [[3e+2, 1e+4, 2, 200], [3e+2, 1e+4, 2, 80]] for nme in nmes: isotope.SelectNMESet(nmeset.nmedb[nme]) MBB = [] MT = arange(10, 10010, 10.) MBB = [ exp.sensitivity(mt * units.kg * units.year, fcm) / units.meV for mt in MT ] color = cnmes[i] linestyle = 'solid'
sys.path.append(FILE_PATH + '/..') from pybbsens import units from pybbsens import isotope from pybbsens import experiment from pybbsens import conflimits from pybbsens import nmeset name = "GERDAII" isot = isotope.Ge76 eff = 0.62 eres = isot.Qbb * 0.0015 bkg = 1.0E-3 / (units.keV * units.kg * units.year) mass = 50. * units.kg expo = 200. * units.kg * units.year GERDA = experiment.Experiment(name, isotope.Ge76, eff, eres, bkg, mass) FCM = conflimits.FCMemoizer(0.9) FCM.ReadTableAverageUpperLimits(DATA_PATH + 'FC90.dat') nmes = ["ISM", "IBM2", "QRPA_Tu", "QRPA_Jy", "EDF"] for nme in nmes: print "NME = ", nme isotope.SelectNMESet(nmeset.nmedb[nme]) mbb = GERDA.sensitivity(expo, FCM) print "mbb (meV) =", mbb / units.meV hl = isot.half_life(mbb) print "Tonu (year) =", hl / units.year
eff = 0.55 eres = isot.Qbb * 0.06 bkg = 1.0E-4 / (units.keV * units.kg * units.year) mass = 429. * units.kg expo = 2200. * units.kg * units.year nmes = ["ISM", "IBM2"] cnmes = ["blue", "red"] ######################################## ### Create a confidence-limit calculator. ### We use in this case the Feldman-Cousins memoizer. fcm = conflimits.FCMemoizer(0.9) fcm.ReadTableAverageUpperLimits(DATA_PATH + 'FC90.dat') exp = experiment.Experiment(name, isotope.Xe136, eff, eres, bkg, mass) i = 0 for nme in nmes: isotope.SelectNMESet(nmeset.nmedb[nme]) MBB = [] MT = arange(10, 10010, 10.) MBB = [ exp.sensitivity(mt * units.kg * units.year, fcm) / units.meV for mt in MT ] color = cnmes[i] i += 1 linestyle = 'solid'
### Choose dummy values. eff = .3 res = 1. * units.keV mass = 0. ### Background counts in ROI per unit of exposure bkg_in_ROI = [x / (units.kg * units.year) for x in [0.1, 0.01, 0.001, 0.]] ######################################## ### Create a confidence-limit calculator. ### We use in this case the Feldman-Cousins memoizer. fcm = conflimits.FCMemoizer(0.9) fcm.ReadTableAverageUpperLimits(DATA_PATH + 'FC90.dat') ######################################## ### Loop now over the different cases, calculating the sensitivity for b in bkg_in_ROI: filename = 'XeExp_' + str(b * (units.kg * units.year)) + '.txt' writer = csv.writer(open(filename, 'w')) exp = experiment.Experiment("XeExp", isotope.Xe136, eff, res, b / res, mass) for exposure in arange(10., 10010., 10.): exposure = exposure * units.kg * units.year mbb = exp.sensitivity(exposure, fcm) / units.meV exposure = exposure / (units.kg * units.year) writer.writerow([exposure, mbb])
sys.path.append(FILE_PATH + '/..') from pybbsens import units from pybbsens import isotope from pybbsens import experiment from pybbsens import conflimits from pybbsens import nmeset name = "CUORE" isot = isotope.Te130 eff = 0.87 eres = isot.Qbb * 0.002 bkg = 4.0E-2 / (units.keV * units.kg * units.year) mass = 206. * units.kg expo = 1000. * units.kg * units.year CUORE = experiment.Experiment(name, isotope.Te130, eff, eres, bkg, mass) FCM = conflimits.FCMemoizer(0.9) FCM.ReadTableAverageUpperLimits(DATA_PATH + 'FC90.dat') nmes = ["ISM", "IBM2", "QRPA_Tu", "QRPA_Jy", "EDF"] for nme in nmes: print "NME = ", nme isotope.SelectNMESet(nmeset.nmedb[nme]) mbb = CUORE.sensitivity(expo, FCM) print "mbb (meV) =", mbb / units.meV hl = isot.half_life(mbb) print "Tonu (year) =", hl / units.year