예제 #1
0
eff = 0.65
eres = isot.Qbb * 0.003
bkg = 1.0E-3 / (units.keV * units.kg * units.year)
mass = 429. * units.kg
expo = 2200. * units.kg * units.year

nmes = ["ISM", "IBM2"]
cnmes = ["blue", "red"]

########################################
### Create a confidence-limit calculator.
### We use in this case the Feldman-Cousins memoizer.
fcm = conflimits.FCMemoizer(0.9)
fcm.ReadTableAverageUpperLimits(DATA_PATH + 'FC90.dat')

exp = experiment.Experiment(name, isotope.Se82, eff, eres, bkg, mass)

i = 0
XA = [[3e+2, 1e+4, 2, 200], [3e+2, 1e+4, 2, 80]]
for nme in nmes:

    isotope.SelectNMESet(nmeset.nmedb[nme])
    MBB = []
    MT = arange(10, 10010, 10.)
    MBB = [
        exp.sensitivity(mt * units.kg * units.year, fcm) / units.meV
        for mt in MT
    ]

    color = cnmes[i]
    linestyle = 'solid'
예제 #2
0
sys.path.append(FILE_PATH + '/..')

from pybbsens import units
from pybbsens import isotope
from pybbsens import experiment
from pybbsens import conflimits
from pybbsens import nmeset

name = "GERDAII"
isot = isotope.Ge76
eff = 0.62
eres = isot.Qbb * 0.0015
bkg = 1.0E-3 / (units.keV * units.kg * units.year)
mass = 50. * units.kg
expo = 200. * units.kg * units.year

GERDA = experiment.Experiment(name, isotope.Ge76, eff, eres, bkg, mass)

FCM = conflimits.FCMemoizer(0.9)
FCM.ReadTableAverageUpperLimits(DATA_PATH + 'FC90.dat')

nmes = ["ISM", "IBM2", "QRPA_Tu", "QRPA_Jy", "EDF"]
for nme in nmes:
    print "NME = ", nme
    isotope.SelectNMESet(nmeset.nmedb[nme])

    mbb = GERDA.sensitivity(expo, FCM)
    print "mbb (meV) =", mbb / units.meV
    hl = isot.half_life(mbb)
    print "Tonu (year) =", hl / units.year
예제 #3
0
eff = 0.55
eres = isot.Qbb * 0.06
bkg = 1.0E-4 / (units.keV * units.kg * units.year)
mass = 429. * units.kg
expo = 2200. * units.kg * units.year

nmes = ["ISM", "IBM2"]
cnmes = ["blue", "red"]

########################################
### Create a confidence-limit calculator.
### We use in this case the Feldman-Cousins memoizer.
fcm = conflimits.FCMemoizer(0.9)
fcm.ReadTableAverageUpperLimits(DATA_PATH + 'FC90.dat')

exp = experiment.Experiment(name, isotope.Xe136, eff, eres, bkg, mass)

i = 0
for nme in nmes:

    isotope.SelectNMESet(nmeset.nmedb[nme])
    MBB = []
    MT = arange(10, 10010, 10.)
    MBB = [
        exp.sensitivity(mt * units.kg * units.year, fcm) / units.meV
        for mt in MT
    ]

    color = cnmes[i]
    i += 1
    linestyle = 'solid'
예제 #4
0
### Choose dummy values.
eff = .3
res = 1. * units.keV
mass = 0.

### Background counts in ROI per unit of exposure
bkg_in_ROI = [x / (units.kg * units.year) for x in [0.1, 0.01, 0.001, 0.]]

########################################
### Create a confidence-limit calculator.
### We use in this case the Feldman-Cousins memoizer.
fcm = conflimits.FCMemoizer(0.9)
fcm.ReadTableAverageUpperLimits(DATA_PATH + 'FC90.dat')

########################################
### Loop now over the different cases, calculating the sensitivity

for b in bkg_in_ROI:

    filename = 'XeExp_' + str(b * (units.kg * units.year)) + '.txt'
    writer = csv.writer(open(filename, 'w'))

    exp = experiment.Experiment("XeExp", isotope.Xe136, eff, res, b / res,
                                mass)

    for exposure in arange(10., 10010., 10.):
        exposure = exposure * units.kg * units.year
        mbb = exp.sensitivity(exposure, fcm) / units.meV
        exposure = exposure / (units.kg * units.year)
        writer.writerow([exposure, mbb])
예제 #5
0
파일: CUORE.py 프로젝트: drailin/pybbsens
sys.path.append(FILE_PATH + '/..')

from pybbsens import units
from pybbsens import isotope
from pybbsens import experiment
from pybbsens import conflimits
from pybbsens import nmeset

name = "CUORE"
isot = isotope.Te130
eff = 0.87
eres = isot.Qbb * 0.002
bkg = 4.0E-2 / (units.keV * units.kg * units.year)
mass = 206. * units.kg
expo = 1000. * units.kg * units.year

CUORE = experiment.Experiment(name, isotope.Te130, eff, eres, bkg, mass)

FCM = conflimits.FCMemoizer(0.9)
FCM.ReadTableAverageUpperLimits(DATA_PATH + 'FC90.dat')

nmes = ["ISM", "IBM2", "QRPA_Tu", "QRPA_Jy", "EDF"]
for nme in nmes:
    print "NME = ", nme
    isotope.SelectNMESet(nmeset.nmedb[nme])

    mbb = CUORE.sensitivity(expo, FCM)
    print "mbb (meV) =", mbb / units.meV
    hl = isot.half_life(mbb)
    print "Tonu (year) =", hl / units.year