def test_point(): # Subset of tests/cxx/isce3/geometry/geometry/geometry.cpp fn = os.path.join(iscetest.data, "envisat.h5") slc = SLC(hdf5file=fn) orbit = slc.getOrbit() subband = "A" doplut = slc.getDopplerCentroid(frequency=subband) grid = slc.getRadarGrid(frequency=subband) # First row of input_data.txt dt = isce.core.DateTime("2003-02-26T17:55:22.976222") r = 826988.6900674499 h = 1777. dem = isce.geometry.DEMInterpolator(h) t = (dt - orbit.reference_epoch).total_seconds() dop = doplut.eval(t, r) wvl = grid.wavelength # native doppler, expect first row of output_data.txt llh = isce.geometry.rdr2geo(t, r, orbit, grid.lookside, dop, wvl, dem) assert np.isclose(np.degrees(llh[0]), -115.44101120961082) assert np.isclose(np.degrees(llh[1]), 35.28794014757191) assert np.isclose(llh[2], 1777.) # zero doppler, expect first row of output_data_zerodop.txt llh = isce.geometry.rdr2geo(t, r, orbit, grid.lookside, 0.0, dem=dem) assert np.isclose(np.degrees(llh[0]), -115.43883834023249) assert np.isclose(np.degrees(llh[1]), 35.29610867314526) assert np.isclose(llh[2], 1776.9999999993)
def run(cfg): ''' run rdr2geo ''' # pull parameters from cfg input_hdf5 = cfg['InputFileGroup']['InputFilePath'] dem_file = cfg['DynamicAncillaryFileGroup']['DEMFile'] scratch_path = pathlib.Path(cfg['ProductPathGroup']['ScratchPath']) freq_pols = cfg['processing']['input_subset']['list_of_frequencies'] # get params from SLC slc = SLC(hdf5file=input_hdf5) orbit = slc.getOrbit() # set defaults shared by both frequencies dem_raster = isce3.io.Raster(dem_file) epsg = dem_raster.get_epsg() proj = isce3.core.make_projection(epsg) ellipsoid = proj.ellipsoid # NISAR RSLC products are always zero doppler grid_doppler = isce3.core.LUT2d() info_channel = journal.info("rdr2geo.run") info_channel.log("starting geocode SLC") # check if gpu ok to use use_gpu = gpu_check.use_gpu(cfg['worker']['gpu_enabled'], cfg['worker']['gpu_id']) if use_gpu: # Set the current CUDA device. device = isce3.cuda.core.Device(cfg['worker']['gpu_id']) isce3.cuda.core.set_device(device) t_all = time.time() for freq in freq_pols.keys(): # get frequency specific parameters radargrid = slc.getRadarGrid(freq) # create seperate directory within scratch dir for rdr2geo run rdr2geo_scratch_path = scratch_path / 'rdr2geo' / f'freq{freq}' rdr2geo_scratch_path.mkdir(parents=True, exist_ok=True) # init CPU or CUDA object accordingly if use_gpu: Rdr2Geo = isce3.cuda.geometry.Rdr2Geo else: Rdr2Geo = isce3.geometry.Rdr2Geo rdr2geo_obj = Rdr2Geo(radargrid, orbit, ellipsoid, grid_doppler) # run rdr2geo_obj.topo(dem_raster, str(rdr2geo_scratch_path)) t_all_elapsed = time.time() - t_all info_channel.log(f"successfully ran rdr2geo in {t_all_elapsed:.3f} seconds")
def common_crossmul_obj(): ''' instantiate and return common crossmul object for both run tests ''' # make SLC object and extract parameters slc_obj = SLC(hdf5file=os.path.join(iscetest.data, 'envisat.h5')) dopp = isce.core.LUT1d(slc_obj.getDopplerCentroid()) prf = slc_obj.getRadarGrid().prf crossmul = isce.signal.Crossmul() crossmul.set_dopplers(dopp, dopp) crossmul.set_az_filter(prf, 2000.0, 0.25) return crossmul
def run(cfg): ''' run geo2rdr ''' # Pull parameters from cfg dict sec_hdf5 = cfg['InputFileGroup']['SecondaryFilePath'] dem_file = cfg['DynamicAncillaryFileGroup']['DEMFile'] scratch_path = pathlib.Path(cfg['ProductPathGroup']['ScratchPath']) freq_pols = cfg['processing']['input_subset']['list_of_frequencies'] # Get geo2rdr params geo2rdr_in = cfg['processing']['geo2rdr'] # Get parameters from SLC slc = SLC(hdf5file=sec_hdf5) orbit = slc.getOrbit() # Set ellipsoid based on DEM epsg dem_raster = isce3.io.Raster(dem_file) epsg = dem_raster.get_epsg() proj = isce3.core.make_projection(epsg) ellipsoid = proj.ellipsoid # NISAR RSLC products are always zero doppler doppler_grid = isce3.core.LUT2d() info_channel = journal.info('geo2rdr.run') info_channel.log("starting geo2rdr") # check if gpu use if required use_gpu = gpu_check.use_gpu(cfg['worker']['gpu_enabled'], cfg['worker']['gpu_id']) if use_gpu: # set CUDA device device = isce3.cuda.core.Device(cfg['worker']['gpu_id']) isce3.cuda.core.set_device(device) t_all = time.time() for freq in freq_pols.keys(): # Get parameters specific for that frequency radar_grid = slc.getRadarGrid(frequency=freq) # Create geo2rdr directory geo2rdr_scratch_path = scratch_path / 'geo2rdr' / f'freq{freq}' geo2rdr_scratch_path.mkdir(parents=True, exist_ok=True) # Initialize CPU or GPU geo2rdr object accordingly if use_gpu: Geo2Rdr = isce3.cuda.geometry.Geo2Rdr else: Geo2Rdr = isce3.geometry.Geo2Rdr geo2rdr_obj = Geo2Rdr(radar_grid, orbit, ellipsoid, doppler_grid, threshold=geo2rdr_in['threshold'], numiter=geo2rdr_in['maxiter']) # Opem Topo Raster topo_path = pathlib.Path(cfg['processing']['geo2rdr']['topo_path']) rdr2geo_topo_path = topo_path / 'rdr2geo' / f'freq{freq}' / 'topo.vrt' topo_raster = isce3.io.Raster(str(rdr2geo_topo_path)) # Run geo2rdr geo2rdr_obj.geo2rdr(topo_raster, str(geo2rdr_scratch_path)) t_all_elapsed = time.time() - t_all info_channel.log( f"Successfully ran geo2rdr in {t_all_elapsed:.3f} seconds")
def create(cfg, frequency): ''' For production we only fix epsgcode and snap value and will rely on the rslc product metadta to compute the bounding box of the geocoded products there is a place holder in SLC product for compute Bounding box when that method is populated we should be able to simply say bbox = self.slc_obj.computeBoundingBox(epsg=state.epsg) for now let's rely on the run config input ''' error_channel = journal.error('geogrid.create') # unpack and init geocode_dict = cfg['processing']['geocode'] input_hdf5 = cfg['InputFileGroup']['InputFilePath'] dem_file = cfg['DynamicAncillaryFileGroup']['DEMFile'] slc = SLC(hdf5file=input_hdf5) # unpack and check cfg dict values. default values set to trigger inside fix(...) epsg = geocode_dict['outputEPSG'] start_x = geocode_dict['top_left']['x_abs'] start_y = geocode_dict['top_left']['y_abs'] spacing_x = geocode_dict['output_posting'][frequency]['x_posting'] spacing_y = geocode_dict['output_posting'][frequency]['y_posting'] end_x = geocode_dict['bottom_right']['x_abs'] end_y = geocode_dict['bottom_right']['y_abs'] assert epsg is not None assert 1024 <= epsg <= 32767 if spacing_y is not None: # spacing_y from runconfig should be positive valued assert spacing_y > 0.0 spacing_y = -1.0 * spacing_y # init geogrid if None in [start_x, start_y, spacing_x, spacing_y, epsg, end_x, end_y]: dem_raster = isce.io.Raster(dem_file) # copy X spacing from DEM if spacing_x is None: spacing_x = dem_raster.dx # DEM X spacing should be positive if spacing_x <= 0: err_str = f'Expected positive pixel spacing in the X/longitude direction' err_str += f' for DEM {dem_file}. Actual value: {spacing_x}.' error_channel.log(err_str) raise ValueError(err_str) # copy Y spacing from DEM if spacing_y is None: spacing_y = dem_raster.dy # DEM Y spacing should be negative if spacing_y >= 0: err_str = f'Expected negative pixel spacing in the Y/latitude direction' err_str += f' for DEM {dem_file}. Actual value: {spacing_y}.' error_channel.log(err_str) raise ValueError(err_str) # extract other geogrid params from radar grid and orbit constructed bounding box geogrid = isce.product.bbox_to_geogrid( slc.getRadarGrid(frequency), slc.getOrbit(), slc.getDopplerCentroid(frequency=frequency), spacing_x, spacing_y, epsg) # restore runconfig start_x (if provided) if start_x is not None: end_x_from_function = geogrid.start_x + geogrid.spacing_x * geogrid.width geogrid.start_x = start_x geogrid.width = int( np.ceil((end_x_from_function - start_x) / geogrid.spacing_x)) # restore runconfig end_x (if provided) if end_x is not None: geogrid.width = int( np.ceil((end_x - geogrid.start_x) / geogrid.spacing_x)) # restore runconfig start_y (if provided) if start_y is not None: end_y_from_function = geogrid.start_y + geogrid.spacing_y * geogrid.length geogrid.start_y = start_y geogrid.length = int( np.ceil((end_y_from_function - start_y) / geogrid.spacing_y)) # restore runconfig end_y (if provided) if end_y is not None: geogrid.length = int( np.ceil((end_y - geogrid.start_y) / geogrid.spacing_y)) else: if spacing_x == 0.0 or spacing_y == 0.0: err_str = 'spacing_x or spacing_y cannot be 0.0' error_channel.log(err_str) raise ValueError(err_str) width = _grid_size(end_x, start_x, spacing_x) length = _grid_size(end_y, start_y, -1.0 * spacing_y) # build from probably good user values geogrid = isce.product.GeoGridParameters(start_x, start_y, spacing_x, spacing_y, width, length, epsg) # recheck x+y end points before snap and length+width calculation end_pt = lambda start, sz, spacing: start + spacing * sz if end_x is None: end_x = end_pt(geogrid.start_x, geogrid.spacing_x, geogrid.width) if end_y is None: end_y = end_pt(geogrid.start_y, geogrid.spacing_y, geogrid.length) # snap all the things x_snap = geocode_dict['x_snap'] y_snap = geocode_dict['y_snap'] if x_snap is not None or y_snap is not None: # check snap values before proceeding if x_snap <= 0 or y_snap <= 0: err_str = 'Snap values must be > 0.' error_channel.log(err_str) raise ValueError(err_str) if x_snap % spacing_x != 0.0 or y_snap % spacing_y != 0: err_str = 'Snap values must be exact multiples of spacings. i.e. snap % spacing == 0.0' error_channel.log(err_str) raise ValueError(err_str) snap_coord = lambda val, snap, round_func: round_func( float(val) / snap) * snap geogrid.start_x = snap_coord(geogrid.start_x, x_snap, np.floor) geogrid.start_y = snap_coord(geogrid.start_y, y_snap, np.ceil) end_x = snap_coord(end_x, x_snap, np.ceil) end_y = snap_coord(end_y, y_snap, np.floor) geogrid.length = _grid_size(end_y, geogrid.start_y, geogrid.spacing_y) geogrid.width = _grid_size(end_x, geogrid.start_x, geogrid.spacing_x) return geogrid
def test_rtc(): # Open HDF5 file and create radar grid parameter print('iscetest.data:', iscetest.data) h5_path = os.path.join(iscetest.data, 'envisat.h5') slc_obj = SLC(hdf5file=h5_path) frequency = 'A' radar_grid_sl = slc_obj.getRadarGrid(frequency) # Open DEM raster dem_file = os.path.join(iscetest.data, 'srtm_cropped.tif') dem_obj = isce3.io.Raster(dem_file) # Crop original radar grid parameter radar_grid_cropped = \ radar_grid_sl.offset_and_resize(30, 135, 128, 128) # Multi-look original radar grid parameter nlooks_az = 5 nlooks_rg = 5 radar_grid_ml = \ radar_grid_sl.multilook(nlooks_az, nlooks_rg) # Create orbit and Doppler LUT orbit = slc_obj.getOrbit() doppler = slc_obj.getDopplerCentroid() doppler.bounds_error = False # doppler = isce3.core.LUT2d() # list input parameters inputRadiometry = isce3.geometry.RtcInputRadiometry.BETA_NAUGHT rtc_area_mode = isce3.geometry.RtcAreaMode.AREA_FACTOR for radar_grid_str in radar_grid_str_list: # Open DEM raster if (radar_grid_str == 'cropped'): radar_grid = radar_grid_cropped else: radar_grid = radar_grid_ml for rtc_algorithm in rtc_algorithm_list: geogrid_upsampling = 1 # test removed because it requires high geogrid upsampling (too # slow) if (rtc_algorithm == isce3.geometry.RtcAlgorithm.RTC_DAVID_SMALL and radar_grid_str == 'cropped'): continue elif (rtc_algorithm == isce3.geometry.RtcAlgorithm.RTC_DAVID_SMALL ): filename = './rtc_david_small_' + radar_grid_str + '.bin' else: filename = './rtc_area_proj_' + radar_grid_str + '.bin' print('generating file:', filename) # Create output raster out_raster = isce3.io.Raster(filename, radar_grid.width, radar_grid.length, 1, gdal.GDT_Float32, 'ENVI') # Call RTC isce3.geometry.facet_rtc(radar_grid, orbit, doppler, dem_obj, out_raster, inputRadiometry, rtc_area_mode, rtc_algorithm, geogrid_upsampling) del out_raster # check results for radar_grid_str in radar_grid_str_list: for rtc_algorithm in rtc_algorithm_list: # test removed because it requires high geogrid upsampling (too # slow) if (rtc_algorithm == isce3.geometry.RtcAlgorithm.RTC_DAVID_SMALL and radar_grid_str == 'cropped'): continue elif (rtc_algorithm == isce3.geometry.RtcAlgorithm.RTC_DAVID_SMALL ): max_rmse = 0.7 filename = './rtc_david_small_' + radar_grid_str + '.bin' else: max_rmse = 0.1 filename = './rtc_area_proj_' + radar_grid_str + '.bin' print('evaluating file:', os.path.abspath(filename)) # Open computed integrated-area raster test_gdal_dataset = gdal.Open(filename) # Open reference raster ref_filename = os.path.join(iscetest.data, 'rtc/rtc_' + radar_grid_str + '.bin') ref_gdal_dataset = gdal.Open(ref_filename) print('reference file:', ref_filename) assert ( test_gdal_dataset.RasterXSize == ref_gdal_dataset.RasterXSize) assert ( test_gdal_dataset.RasterYSize == ref_gdal_dataset.RasterYSize) square_sum = 0.0 # sum of square difference n_nan = 0 # number of NaN pixels n_npos = 0 # number of non-positive pixels # read test and ref arrays test_array = test_gdal_dataset.GetRasterBand(1).ReadAsArray() ref_array = ref_gdal_dataset.GetRasterBand(1).ReadAsArray() n_valid = 0 # iterates over rows (i) and columns (j) for i in range(ref_gdal_dataset.RasterYSize): for j in range(ref_gdal_dataset.RasterXSize): # if nan, increment n_nan if (np.isnan(test_array[i, j]) or np.isnan(ref_array[i, j])): n_nan = n_nan + 1 continue # if n_npos, incremennt n_npos if (ref_array[i, j] <= 0 or test_array[i, j] <= 0): n_npos = n_npos + 1 continue # otherwise, increment n_valid n_valid = n_valid + 1 square_sum += (test_array[i, j] - ref_array[i, j])**2 print(' ----------------') print(' # total:', n_valid + n_nan + n_npos) print(' ----------------') print(' # valid:', n_valid) print(' # NaNs:', n_nan) print(' # non-positive:', n_npos) print(' ----------------') assert (n_valid != 0) # Compute average over entire image rmse = np.sqrt(square_sum / n_valid) print(' RMSE =', rmse) print(' ----------------') # Enforce bound on average pixel-error assert (rmse < max_rmse) # Enforce bound on number of ignored pixels assert (n_nan < 1e-4 * ref_gdal_dataset.RasterXSize * ref_gdal_dataset.RasterYSize) assert (n_npos < 1e-4 * ref_gdal_dataset.RasterXSize * ref_gdal_dataset.RasterYSize)
def run(cfg): ''' run geocodeSlc according to parameters in cfg dict ''' # pull parameters from cfg input_hdf5 = cfg['InputFileGroup']['InputFilePath'] output_hdf5 = cfg['ProductPathGroup']['SASOutputFile'] freq_pols = cfg['processing']['input_subset']['list_of_frequencies'] geogrids = cfg['processing']['geocode']['geogrids'] dem_file = cfg['DynamicAncillaryFileGroup']['DEMFile'] threshold_geo2rdr = cfg['processing']['geo2rdr']['threshold'] iteration_geo2rdr = cfg['processing']['geo2rdr']['maxiter'] lines_per_block = cfg['processing']['blocksize']['y'] dem_block_margin = cfg['processing']['dem_margin'] flatten = cfg['processing']['flatten'] # init parameters shared by frequency A and B slc = SLC(hdf5file=input_hdf5) orbit = slc.getOrbit() dem_raster = isce3.io.Raster(dem_file) epsg = dem_raster.get_epsg() proj = isce3.core.make_projection(epsg) ellipsoid = proj.ellipsoid # Doppler of the image grid (Zero for NISAR) image_grid_doppler = isce3.core.LUT2d() info_channel = journal.info("gslc.run") info_channel.log("starting geocode SLC") t_all = time.time() with h5py.File(output_hdf5, 'a') as dst_h5: for freq in freq_pols.keys(): frequency = f"frequency{freq}" pol_list = freq_pols[freq] radar_grid = slc.getRadarGrid(freq) geo_grid = geogrids[freq] # get doppler centroid native_doppler = slc.getDopplerCentroid(frequency=freq) for polarization in pol_list: t_pol = time.time() output_dir = os.path.dirname(os.path.abspath(output_hdf5)) os.makedirs(output_dir, exist_ok=True) raster_ref = f'HDF5:{input_hdf5}:/{slc.slcPath(freq, polarization)}' slc_raster = isce3.io.Raster(raster_ref) # access the HDF5 dataset for a given frequency and polarization dataset_path = f'/science/LSAR/GSLC/grids/{frequency}/{polarization}' gslc_dataset = dst_h5[dataset_path] # Construct the output ratster directly from HDF5 dataset gslc_raster = isce3.io.Raster( f"IH5:::ID={gslc_dataset.id.id}".encode("utf-8"), update=True) # run geocodeSlc isce3.geocode.geocode_slc(gslc_raster, slc_raster, dem_raster, radar_grid, geo_grid, orbit, native_doppler, image_grid_doppler, ellipsoid, threshold_geo2rdr, iteration_geo2rdr, lines_per_block, dem_block_margin, flatten) # the rasters need to be deleted del gslc_raster del slc_raster t_pol_elapsed = time.time() - t_pol info_channel.log( f'polarization {polarization} ran in {t_pol_elapsed:.3f} seconds' ) t_all_elapsed = time.time() - t_all info_channel.log( f"successfully ran geocode SLC in {t_all_elapsed:.3f} seconds")
def run(cfg): ''' run resample_slc ''' input_hdf5 = cfg['InputFileGroup']['SecondaryFilePath'] scratch_path = pathlib.Path(cfg['ProductPathGroup']['ScratchPath']) freq_pols = cfg['processing']['input_subset']['list_of_frequencies'] resamp_args = cfg['processing']['resample'] # Get SLC parameters slc = SLC(hdf5file=input_hdf5) info_channel = journal.info('resample_slc.run') info_channel.log('starting resampling SLC') # Check if use GPU or CPU resampling use_gpu = gpu_check.use_gpu(cfg['worker']['gpu_enabled'], cfg['worker']['gpu_id']) if use_gpu: # Set current CUDA device device = isce3.cuda.core.Device(cfg['worker']['gpu_id']) isce3.cuda.core.set_device(device) t_all = time.time() for freq in freq_pols.keys(): # Get frequency specific parameters radar_grid = slc.getRadarGrid(frequency=freq) native_doppler = slc.getDopplerCentroid(frequency=freq) # create separate directory within scratch for resample_slc resample_slc_scratch_path = scratch_path / 'resample_slc' / f'freq{freq}' resample_slc_scratch_path.mkdir(parents=True, exist_ok=True) # Initialize CPU or GPU resample object accordingly if use_gpu: Resamp = isce3.cuda.image.ResampSlc else: Resamp = isce3.image.ResampSlc resamp_obj = Resamp(radar_grid, native_doppler, radar_grid.wavelength) # If lines per tile is > 0, assign it to resamp_obj if resamp_args['lines_per_tile']: resamp_obj.lines_per_tile = resamp_args['lines_per_tile'] # Open offsets offset_dir = pathlib.Path(cfg['processing']['resample']['offset_dir']) geo2rdr_off_path = offset_dir / 'geo2rdr' / f'freq{freq}' # Open offsets rg_off = isce3.io.Raster(str(geo2rdr_off_path / 'range.off')) az_off = isce3.io.Raster(str(geo2rdr_off_path / 'azimuth.off')) # Get polarization list to process pol_list = freq_pols[freq] for pol in pol_list: # Create directory for each polarization out_dir = resample_slc_scratch_path / pol out_dir.mkdir(parents=True, exist_ok=True) out_path = out_dir / 'coregistered_secondary.slc' # Extract and create raster of SLC to resample h5_ds = f'//science/LSAR/SLC/swaths/frequency{freq}/{pol}' raster_path = f'HDF5:{input_hdf5}:{h5_ds}' raster = isce3.io.Raster(raster_path) # Create output raster resamp_slc = isce3.io.Raster(str(out_path), rg_off.width, rg_off.length, rg_off.num_bands, gdal.GDT_CFloat32, 'ENVI') resamp_obj.resamp(raster, resamp_slc, rg_off, az_off) t_all_elapsed = time.time() - t_all info_channel.log( f"successfully ran resample in {t_all_elapsed:.3f} seconds")