예제 #1
0
    def __init__(self,
                 in_filename,
                 in_dir='.',
                 unitConv=1,
                 ftype='xy',
                 dataName='z'):
        FileExt = in_filename.split('.')[-1]
        if FileExt.lower() == 'tif' or FileExt.lower() == 'tiff':
            tmp = GeoImg(in_filename, in_dir=in_dir)
            ndv = tmp.gd.GetRasterBand(1).GetNoDataValue()
            X, Y = tmp.xy()
            self.x = X.reshape(-1)
            self.y = Y.reshape(-1)
            self.c, self.r = tmp.img.shape
            self.data = tmp.img.reshape(-1) * unitConv
            self.data[self.data == ndv] = np.nan
            self.img = True
        elif FileExt.lower() == 'shp':
            tmp = gpd.GeoDataFrame.from_file(in_dir + os.path.sep +
                                             in_filename)
            self.x = np.empty(0)
            self.y = np.empty(0)
            for pt in tmp['geometry']:
                self.x = np.append(self.x, pt.x)
                self.y = np.append(self.y, pt.y)
            # not sure how people would call these things
            # just assume that the default is going to be 'z'
            self.data = tmp[dataName] * unitConv
            self.img = False

        elif FileExt.lower() == 'csv':
            tmp = pd.read_csv(in_dir + os.path.sep + in_filename,
                              sep=',|;',
                              engine='python')
            if ftype == 'xy':
                self.x = tmp['x']
                self.y = tmp['y']
            else:
                self.x = tmp['z']
                self.y = None
            self.data = tmp[dataName] * unitConv
            self.img = False

        self.xy = ftype == 'xy'
예제 #2
0
def raster_to_point(fn_dem):

    extent, proj_wkt = ot.extent_rast(fn_dem)
    poly = ot.poly_from_extent(extent)
    transform = ot.coord_trans(True, proj_wkt, False, 4326)
    poly.Transform(transform)
    center_lon, center_lat = ot.get_poly_centroid(poly)

    epsg, utm_zone = ot.latlon_to_UTM(center_lat, center_lon)

    print('Reprojecting in ' + str(epsg))

    img_vhr = GeoImg(fn_dem)

    dest = gdal.Warp('',
                     img_vhr.gd,
                     format='MEM',
                     dstSRS='EPSG:{}'.format(epsg),
                     xRes=out_res,
                     yRes=out_res,
                     resampleAlg=gdal.GRA_Bilinear,
                     dstNodata=-9999)

    img_lr = GeoImg(dest)

    print('Extracting coords...')

    elevs = img_lr.img.flatten()
    x, y = img_lr.xy(ctype='center')
    coords = list(zip(x.flatten(), y.flatten()))
    coords_latlon = point_to_lonlat_trans(int(epsg), coords)
    lon, lat = zip(*coords_latlon)
    lon = np.array(lon)
    lat = np.array(lat)

    keep = ~np.isnan(elevs)
    h = elevs[keep]
    lat = lat[keep]
    lon = lon[keep]

    print('Done for this DEM')

    return h, lat, lon
예제 #3
0
def create_mmaster_stack(filelist,
                         extent=None,
                         res=None,
                         epsg=None,
                         outfile='mmaster_stack.nc',
                         clobber=False,
                         uncert=False,
                         coreg=False,
                         ref_tiles=None,
                         exc_mask=None,
                         inc_mask=None,
                         outdir='tmp',
                         filt_dem=None,
                         add_ref=False,
                         add_corr=False,
                         latlontile_nodata=None,
                         filt_mm_corr=False,
                         l1a_zipped=False,
                         y0=1900,
                         tmptag=None):
    """
    Given a list of DEM files, create a stacked NetCDF file.

    :param filelist: List of DEM filenames to stack.
    :param extent: Spatial extent of DEMs to limit stack to [xmin, xmax, ymin, ymax].
    :param res: Output spatial resolution of DEMs.
    :param epsg: EPSG code of output CRS.
    :param outfile: Filename for output NetCDF file.
    :param clobber: clobber existing dataset when creating NetCDF file.
    :param uncert: Include uncertainty variable in the output NetCDF.
    :param coreg: Co-register DEMs to an input DEM (given by a shapefile of tiles).
    :param ref_tiles: Filename of input reference DEM tiles.
    :param exc_mask: Filename of exclusion mask (i.e., glaciers) to use in co-registration
    :param inc_mask: Filename of inclusion mask (i.e., land) to use in co-registration.
    :param outdir: Output directory for temporary files.
    :param filt_dem: Filename of DEM to filter elevation differences to.
    :param add_ref: Add reference DEM as a stack variable
    :param add_corr: Add correlation masks as a stack variable
    :param latlontile_nodata: Apply nodata for a lat/lon tile footprint to avoid overlapping and simplify xarray merging
    :param filt_mm_corr: Filter MMASTER DEM with correlation mask out of mmaster_tools when stacking (disk space),
    :param l1a_zipped: Use if files have been zipped to save on space.
    :param y0: Year 0 to reference NetCDF time variable to.
    :param tmptag: string to append to temporary files.

    :type filelist: array-like
    :type extent: array-like
    :type res: float
    :type epsg: int
    :type outfile: str
    :type clobber: bool
    :type uncert: bool
    :type coreg: bool
    :type ref_tiles: str
    :type exc_mask: str
    :type inc_mask: str
    :type outdir: str
    :type filt_dem: str
    :type add_ref: bool
    :type add_corr: bool
    :type latlontile_nodata: str
    :type filt_mm_corr: bool
    :type l1a_zipped: bool
    :type y0: float
    :type tmptag: str

    :returns nco: NetCDF Dataset of stacked DEMs.
    """
    if extent is not None:
        if type(extent) in [list, tuple]:
            xmin, xmax, ymin, ymax = extent
        elif type(extent) is Polygon:
            x, y = extent.boundary.coords.xy
            xmin, xmax = min(x), max(x)
            ymin, ymax = min(y), max(y)
        else:
            raise ValueError(
                'extent should be a list, tuple, or shapely.Polygon')
    else:
        xmin, xmax, ymin, ymax = get_common_bbox(filelist, epsg)

    print('Searching for intersecting DEMs among the list of ' +
          str(len(filelist)) + '...')
    # check if each footprint falls within our given extent, and if not - remove from the list.
    if l1a_zipped:
        # if l1a are zipped, too long to extract archives and read extent from rasters ; so read metadata instead
        l1a_filelist = [
            fn for fn in filelist if os.path.basename(fn)[0:3] == 'AST'
        ]
        rest_filelist = [fn for fn in filelist if fn not in l1a_filelist]
        l1a_inters = get_footprints_inters_ext(l1a_filelist,
                                               [xmin, ymin, xmax, ymax],
                                               epsg,
                                               use_l1a_met=True)
        rest_inters = get_footprints_inters_ext(rest_filelist,
                                                [xmin, ymin, xmax, ymax], epsg)
        filelist = l1a_inters + rest_inters

    else:
        filelist = get_footprints_inters_ext(filelist,
                                             [xmin, ymin, xmax, ymax], epsg)
    print('Found ' + str(len(filelist)) + '.')

    if len(filelist) == 0:
        print('Found no DEMs intersecting extent to stack. Skipping...')
        sys.exit()

    datelist = np.array([parse_date(f) for f in filelist])
    sorted_inds = np.argsort(datelist)

    print(filelist[sorted_inds[0]])
    if l1a_zipped and os.path.basename(filelist[sorted_inds[0]])[0:3] == 'AST':
        tmp_zip = filelist[sorted_inds[0]]
        z_name = '_'.join(
            os.path.basename(tmp_zip).split('_')[0:3]) + '_Z_adj_XAJ_final.tif'
        if tmptag is None:
            fn_tmp = os.path.join(os.path.dirname(tmp_zip), 'tmp_out.tif')
        else:
            fn_tmp = os.path.join(os.path.dirname(tmp_zip),
                                  'tmp_out_' + tmptag + '.tif')
        mt.extract_file_from_zip(tmp_zip, z_name, fn_tmp)
        tmp_img = GeoImg(fn_tmp)
    else:
        tmp_img = GeoImg(filelist[sorted_inds[0]])

    if res is None:
        res = np.round(
            tmp_img.dx)  # make sure that we have a nice resolution for gdal

    if epsg is None:
        epsg = tmp_img.epsg

    # now, reproject the first image to the extent, resolution, and coordinate system needed.
    dest = gdal.Warp('',
                     tmp_img.gd,
                     format='MEM',
                     dstSRS='EPSG:{}'.format(epsg),
                     xRes=res,
                     yRes=res,
                     outputBounds=(xmin, ymin, xmax, ymax),
                     resampleAlg=gdal.GRA_Bilinear)

    if l1a_zipped and os.path.basename(filelist[sorted_inds[0]])[0:3] == 'AST':
        os.remove(fn_tmp)

    first_img = GeoImg(dest)

    first_img.filename = filelist[sorted_inds[0]]

    # NetCDF assumes that coordinates are the cell center
    if first_img.is_area():
        first_img.to_point()
    # first_img.info()

    nco, to, xo, yo = create_nc(first_img.img,
                                outfile=outfile,
                                clobber=clobber,
                                t0=np.datetime64('{}-01-01'.format(y0)))
    create_crs_variable(first_img.epsg, nco)
    # crso.GeoTransform = ' '.join([str(i) for i in first_img.gd.GetGeoTransform()])

    # maxchar = max([len(f.rsplit('.tif', 1)[0]) for f in args.filelist])
    go = nco.createVariable('dem_names', str, ('time', ))
    go.long_name = 'Source DEM Filename'

    zo = nco.createVariable('z',
                            'f4', ('time', 'y', 'x'),
                            fill_value=-9999,
                            zlib=True,
                            chunksizes=[
                                500,
                                min(150, first_img.npix_y),
                                min(150, first_img.npix_x)
                            ])
    zo.units = 'meters'
    zo.long_name = 'Height above WGS84 ellipsoid'
    zo.grid_mapping = 'crs'
    zo.coordinates = 'x y'
    zo.set_auto_mask(True)

    if ref_tiles is not None:
        if ref_tiles.endswith('.shp'):
            master_tiles = gpd.read_file(ref_tiles)
            s = STRtree([f for f in master_tiles['geometry'].values])
            bounds = Polygon([(xmin, ymin), (xmax, ymin), (xmax, ymax),
                              (xmin, ymax)])
            ref_vrt = get_tiles(bounds, master_tiles, s, outdir)
        elif ref_tiles.endswith('.vrt') or ref_tiles.endswith('.tif'):
            ref_vrt = ref_tiles
        ref = GeoImg(ref_vrt)

    if filt_dem is not None:
        filt_dem_img = GeoImg(filt_dem)
        filt_dem = filt_dem_img.reproject(first_img)

    # 3 overlapping pixels on each side of the tile in case reprojection is necessary; will be removed when merging
    if latlontile_nodata is not None and epsg is not None:
        mask = binary_dilation(vt.latlontile_nodatamask(
            first_img, latlontile_nodata),
                               iterations=3)

    if uncert:
        uo = nco.createVariable('uncert', 'f4', ('time', ))
        uo.long_name = 'RMSE of stable terrain differences.'
        uo.units = 'meters'

    if add_ref and ref_tiles is not None:
        ro = nco.createVariable('ref_z',
                                'f4', ('y', 'x'),
                                fill_value=-9999,
                                chunksizes=[
                                    min(150, first_img.npix_y),
                                    min(150, first_img.npix_x)
                                ])
        ro.units = 'meters'
        ro.long_name = 'Height above WGS84 ellipsoid'
        ro.grid_mapping = 'crs'
        ro.coordinates = 'x y'
        ro.set_auto_mask(True)
        ref_img = ref.reproject(first_img).img
        if latlontile_nodata is not None and epsg is not None:
            ref_img[~mask] = np.nan
            ro[:, :] = ref_img

    if add_corr:
        co = nco.createVariable('corr',
                                'i1', ('time', 'y', 'x'),
                                fill_value=-1,
                                zlib=True,
                                chunksizes=[
                                    500,
                                    min(150, first_img.npix_y),
                                    min(150, first_img.npix_x)
                                ])
        co.units = 'percent'
        co.long_name = 'MMASTER correlation'
        co.grid_mapping = 'crs'
        co.coordinates = 'x y'
        co.set_auto_mask(True)

    x, y = first_img.xy(grid=False)
    xo[:] = x
    yo[:] = y

    # trying something else to speed up writting in compressed chunks
    list_img, list_corr, list_uncert, list_dt, list_name = ([]
                                                            for i in range(5))

    outind = 0
    for ind in sorted_inds[0:]:
        print(filelist[ind])
        # get instrument
        bname = os.path.splitext(os.path.basename(filelist[ind]))[0]
        splitname = bname.split('_')
        instru = splitname[0]
        # special case for MMASTER outputs (for disk usage)
        if instru == 'AST':
            fn_z = '_'.join(splitname[0:3]) + '_Z_adj_XAJ_final.tif'
            fn_corr = '_'.join(splitname[0:3]) + '_CORR_adj_final.tif'
            # to avoid running into issues in parallel
            if tmptag is None:
                fn_z_tmp = os.path.join(os.path.dirname(filelist[ind]), fn_z)
                fn_corr_tmp = os.path.join(os.path.dirname(filelist[ind]),
                                           fn_corr)
            else:
                fn_z_tmp = os.path.join(
                    os.path.dirname(filelist[ind]),
                    os.path.splitext(fn_z)[0] + '_' + tmptag + '.tif')
                fn_corr_tmp = os.path.join(
                    os.path.dirname(filelist[ind]),
                    os.path.splitext(fn_corr)[0] + '_' + tmptag + '.tif')
            list_fn_rm = [fn_z_tmp, fn_corr_tmp]
            # unzip if needed
            if l1a_zipped:
                mt.extract_file_from_zip(filelist[ind], fn_z, fn_z_tmp)
                if filt_mm_corr or add_corr:
                    mt.extract_file_from_zip(filelist[ind], fn_corr,
                                             fn_corr_tmp)
            # open dem, filter with correlation mask if it comes out of MMASTER
            if filt_mm_corr:
                img = corr_filter_aster(fn_z_tmp, fn_corr_tmp, 70)
            else:
                img = GeoImg(fn_z_tmp)
        else:
            img = GeoImg(filelist[ind])

        if img.is_area():  # netCDF assumes coordinates are the cell center
            img.to_point()

        if add_corr:
            if instru == 'AST':
                corr = GeoImg(fn_corr_tmp)
                if corr.is_area():
                    corr.to_point()

        if coreg:
            try:
                NDV = img.NDV
                coreg_outdir = os.path.join(
                    outdir,
                    os.path.basename(filelist[ind]).rsplit('.tif', 1)[0])
                _, img, _, stats_final = dem_coregistration(
                    ref,
                    img,
                    glaciermask=exc_mask,
                    landmask=inc_mask,
                    outdir=coreg_outdir,
                    inmem=True)
                dest = gdal.Warp('',
                                 img.gd,
                                 format='MEM',
                                 dstSRS='EPSG:{}'.format(epsg),
                                 xRes=res,
                                 yRes=res,
                                 outputBounds=(xmin, ymin, xmax, ymax),
                                 resampleAlg=gdal.GRA_Bilinear,
                                 srcNodata=NDV,
                                 dstNodata=-9999)
                img = GeoImg(dest)
                if add_corr:
                    if instru == 'AST':
                        corr = corr.reproject(img)
                    else:
                        corr = img.copy()
                        corr.img[:] = 100
                    co[outind, :, :] = corr.img.astype(np.int8)

                if filt_dem is not None:
                    valid = np.logical_and(img.img - filt_dem.img > -400,
                                           img.img - filt_dem.img < 1000)
                    img.img[~valid] = np.nan
                if latlontile_nodata is not None and epsg is not None:
                    img.img[~mask] = np.nan
                    if add_corr:
                        corr.img[~mask] = -1
                nvalid = np.count_nonzero(~np.isnan(img.img))
                if nvalid == 0:
                    print('No valid pixel in the stack extent: skipping...')
                    if l1a_zipped and (instru == 'AST'):
                        for fn_rm in list_fn_rm:
                            if os.path.exists(fn_rm):
                                os.remove(fn_rm)
                    continue
                zo[outind, :, :] = img.img
                if uncert:
                    uo[outind] = stats_final[3]
                print('Adding DEM that has ' + str(nvalid) +
                      ' valid pixels in this extent, with a global RMSE of ' +
                      str(stats_final[3]))
            except:
                print('Coregistration failed: skipping...')
                if l1a_zipped and (instru == 'AST'):
                    for fn_rm in list_fn_rm:
                        if os.path.exists(fn_rm):
                            os.remove(fn_rm)
                continue

        else:
            img = img.reproject(first_img)
            if add_corr:
                if instru == 'AST':
                    corr = corr.reproject(first_img)
                else:
                    corr = img.copy()
                    corr.img[:] = 100
                # co[outind, :, :] = corr.img.astype(np.int8)
            if filt_dem is not None:
                valid = np.logical_and(img.img - filt_dem.img > -400,
                                       img.img - filt_dem.img < 1000)
                img.img[~valid] = np.nan
            if latlontile_nodata is not None and epsg is not None:
                img.img[~mask] = np.nan
                if add_corr:
                    corr.img[~mask] = -1
            nvalid = np.count_nonzero(~np.isnan(img.img))
            if nvalid == 0:
                print('No valid pixel in the stack extent: skipping...')
                if l1a_zipped and (instru == 'AST'):
                    for fn_rm in list_fn_rm:
                        if os.path.exists(fn_rm):
                            os.remove(fn_rm)
                continue
            # zo[outind, :, :] = img.img

            if uncert:
                try:
                    stats = read_stats(os.path.dirname(filelist[ind]))
                except:
                    stats = None
                # uo[outind] = stats['RMSE']
        # to[outind] = datelist[ind].toordinal() - dt.date(y0, 1, 1).toordinal()
        # go[outind] = os.path.basename(filelist[ind]).rsplit('.tif', 1)[0]
        if stats is None:
            list_uncert.append(5.)
        else:
            try:
                list_uncert.append(stats['RMSE'])
            except KeyError:
                print('KeyError for RMSE here:' + filelist[ind])
                continue
        list_img.append(img.img)
        list_corr.append(corr.img.astype(np.int8))
        list_dt.append(datelist[ind].toordinal() -
                       dt.date(y0, 1, 1).toordinal())
        list_name.append(os.path.basename(filelist[ind]).rsplit('.tif', 1)[0])
        outind += 1

        if l1a_zipped and (instru == 'AST'):
            for fn_rm in list_fn_rm:
                if os.path.exists(fn_rm):
                    os.remove(fn_rm)

    # then write all at once
    zo[0:outind, :, :] = np.stack(list_img, axis=0)
    co[0:outind, :, :] = np.stack(list_corr, axis=0)
    uo[0:outind] = np.array(list_uncert)
    to[0:outind] = np.array(list_dt)
    go[0:outind] = np.array(list_name)

    return nco
예제 #4
0
def reproj_stack(ds,
                 utm_out,
                 nice_latlon_tiling=False,
                 write_ds=None,
                 nproc=1):
    ds_out = ds.copy()

    tmp_img = make_geoimg(ds)
    res = tmp_img.dx

    if nice_latlon_tiling:
        tile_name = tilename_stack(ds)
        outputBounds = vt.niceextent_utm_latlontile(tile_name, utm_out, res)
    else:
        outputBounds = None

    dest = gdal.Warp('',
                     tmp_img.gd,
                     format='MEM',
                     dstSRS='EPSG:{}'.format(vt.epsg_from_utm(utm_out)),
                     xRes=res,
                     yRes=res,
                     outputBounds=outputBounds,
                     resampleAlg=gdal.GRA_Bilinear)
    first_img = GeoImg(dest)
    if first_img.is_area():
        first_img.to_point()
    x, y = first_img.xy(grid=False)

    ds_out = ds_out.drop(('z', 'z_ci', 'crs'))
    ds_out = ds_out.drop_dims(('x', 'y'))
    ds_out = ds_out.expand_dims(dim={'y': y, 'x': x})
    ds_out.x.attrs = ds.x.attrs
    ds_out.y.attrs = ds.y.attrs

    if nproc == 1:
        for i in range(ds.time.size):
            new_z = np.zeros((ds.time.size, len(y), len(x)), dtype=np.float32)
            new_z_ci = np.zeros((ds.time.size, len(y), len(x)),
                                dtype=np.float32)
            tmp_z = make_geoimg(ds, i, var='z')
            tmp_z_ci = make_geoimg(ds, i, var='z_ci')
            new_z[i, :] = tmp_z.reproject(first_img).img
            new_z_ci[i, :] = tmp_z_ci.reproject(first_img).img
    else:
        arr_z = ds.z.values
        arr_z_ci = ds.z_ci.values
        in_met = (tmp_img.gt, tmp_img.proj_wkt, tmp_img.npix_x, tmp_img.npix_y)
        out_met = (res, outputBounds, utm_out)
        argsin_z = [(arr_z[i, :], in_met, out_met)
                    for i in range(ds.time.size)]
        argsin_z_ci = [(arr_z_ci[i, :], in_met, out_met)
                       for i in range(ds.time.size)]
        pool = mp.Pool(nproc, maxtasksperchild=1)
        outputs_z = pool.map(wrapper_reproj, argsin_z)
        outputs_z_ci = pool.map(wrapper_reproj, argsin_z_ci)
        pool.close()
        pool.join()

        new_z = np.stack(outputs_z, axis=0)
        new_z_ci = np.stack(outputs_z_ci, axis=0)

    if nice_latlon_tiling:
        mask = vt.latlontile_nodatamask(first_img, tile_name)
        new_z[:, ~mask] = np.nan
        new_z_ci[:, ~mask] = np.nan

    ds_out['z'] = (['time', 'y', 'x'], new_z)
    ds_out['z_ci'] = (['time', 'y', 'x'], new_z_ci)
    ds_out['crs'] = ds['crs']

    ds_out.z.attrs = ds.z.attrs
    ds_out.z_ci.attrs = ds.z_ci.attrs

    ds_out.crs.attrs = create_crs_variable(epsg=vt.epsg_from_utm(utm_out))

    if write_ds is not None:
        ds_out.to_netcdf(write_ds)

    return ds_out