예제 #1
0
def splitWithProportion(self, proportion = 0.7):
        """Produce two new datasets, the first one containing the fraction given
        by `proportion` of the samples."""
        indicies = random.permutation(len(self))
        separator = int(len(self) * proportion)

        leftIndicies = indicies[:separator]
        rightIndicies = indicies[separator:]

        leftDs = ClassificationDataSet(inp=self['input'][leftIndicies].copy(),
                                   target=self['target'][leftIndicies].copy())
        rightDs = ClassificationDataSet(inp=self['input'][rightIndicies].copy(),
                                    target=self['target'][rightIndicies].copy())
        return leftDs, rightDs
예제 #2
0
    def createTrainingSupervisedDataSet(self, msrcImages, scale,
                                        keepClassDistTrain):
        print "\tSplitting MSRC data into train, test, valid data sets."
        splitData = pomio.splitInputDataset_msrcData(msrcImages, scale,
                                                     keepClassDistTrain)

        print "\tNow generating features for each training image."
        trainData = FeatureGenerator.processLabeledImageData(splitData[0],
                                                             ignoreVoid=True)
        features = trainData[0]
        numDataPoints = np.shape(features)[0]
        numFeatures = np.shape(features)[1]
        labels = trainData[1]
        numLabels = np.size(labels)  #!!error! nb unique labels, or max label
        assert numDataPoints == numLabels, "Number of feature data points and number of labels not equal!"

        dataSetTrain = ClassificationDataSet(numFeatures, numClasses)

        print "\tNow adding all data points to the ClassificationDataSet..."
        for idx in range(0, numDataPoints):
            feature = trainData[0][idx]
            label = trainData[1][idx]

            binaryLabels = np.zeros(numClasses)
            # to cope with the removal of void class (idx 13)
            if label < voidClass:
                binaryLabels[label] = 1
            else:
                binaryLabels[label - 1] = 1

            dataSetTrain.addSample(feature, binaryLabels)

        print "\tAdded", np.size(trainData), " labeled data points to DataSet."
        return dataSetTrain
예제 #3
0
 def buildXor(self):
     self.params['dataset'] = 'XOR'
     d = ClassificationDataSet(2)
     d.addSample([0., 0.], [0.])
     d.addSample([0., 1.], [1.])
     d.addSample([1., 0.], [1.])
     d.addSample([1., 1.], [0.])
     d.setField('class', [[0.], [1.], [1.], [0.]])
     self.trn_data = d
     self.tst_data = d
     global trn_data
     trn_data = self.trn_data
     nn = FeedForwardNetwork()
     inLayer = TanhLayer(2, name='in')
     hiddenLayer = TanhLayer(3, name='hidden0')
     outLayer = ThresholdLayer(1, name='out')
     nn.addInputModule(inLayer)
     nn.addModule(hiddenLayer)
     nn.addOutputModule(outLayer)
     in_to_hidden = FullConnection(inLayer, hiddenLayer)
     hidden_to_out = FullConnection(hiddenLayer, outLayer)
     nn.addConnection(in_to_hidden)
     nn.addConnection(hidden_to_out)
     nn.sortModules()
     nn.randomize()
     self.net_settings = str(nn.connections)
     self.nn = nn
예제 #4
0
def nntester(tx, ty, rx, ry, iterations):
    """
    builds, tests, and graphs a neural network over a series of trials as it is
    constructed
    """
    resultst = []
    resultsr = []
    positions = range(iterations)
    network = buildNetwork(100, 50, 1, bias=True)
    ds = ClassificationDataSet(100, 1, class_labels=["valley", "hill"])
    for i in xrange(len(tx)):
        ds.addSample(tx[i], [ty[i]])
    trainer = BackpropTrainer(network, ds, learningrate=0.01)
    for i in positions:
        print trainer.train()
        resultst.append(
            sum((np.array([round(network.activate(test))
                           for test in tx]) - ty)**2) / float(len(ty)))
        resultsr.append(
            sum((np.array([round(network.activate(test))
                           for test in rx]) - ry)**2) / float(len(ry)))
        print i, resultst[i], resultsr[i]
    NetworkWriter.writeToFile(network, "network.xml")
    plt.plot(positions, resultst, 'ro', positions, resultsr, 'bo')
    plt.axis([0, iterations, 0, 1])
    plt.ylabel("Percent Error")
    plt.xlabel("Network Epoch")
    plt.title("Neural Network Error")
    plt.savefig('3Lnn.png', dpi=300)
def nn(tx, ty, rx, ry, add="", iterations=250):
    """
    trains and plots a neural network on the data we have
    """
    resultst = []
    resultsr = []
    positions = range(iterations)
    network = buildNetwork(tx[1].size, 5, 1, bias=True)
    ds = ClassificationDataSet(tx[1].size, 1)
    for i in xrange(len(tx)):
        ds.addSample(tx[i], [ty[i]])
    trainer = BackpropTrainer(network, ds, learningrate=0.01)
    train = zip(tx, ty)
    test = zip(rx, ry)
    for i in positions:
        trainer.train()
        resultst.append(
            sum(
                np.array([(round(network.activate(t_x)) - t_y)**2
                          for t_x, t_y in train]) / float(len(train))))
        resultsr.append(
            sum(
                np.array([(round(network.activate(t_x)) - t_y)**2
                          for t_x, t_y in test]) / float(len(test))))
        # resultsr.append(sum((np.array([round(network.activate(test)) for test in rx]) - ry)**2)/float(len(ry)))
        print i, resultst[-1], resultsr[-1]
    plot([0, iterations, 0, 1],
         (positions, resultst, "ro", positions, resultsr, "bo"),
         "Network Epoch", "Percent Error", "Neural Network Error", "NN" + add)
예제 #6
0
def xorDataSet():
    d = ClassificationDataSet(2)
    d.addSample([0., 0.], [0.])
    d.addSample([0., 1.], [1.])
    d.addSample([1., 0.], [1.])
    d.addSample([1., 1.], [0.])
    d.setField('class', [[0.], [1.], [1.], [0.]])
    return d
예제 #7
0
def main():
    print "Calculating mfcc...."
    mfcc_coeff_vectors_dict = {}
    for i in range(1, 201):
        extractor = FeatureExtractor(
            '/home/venkatesh/Venki/FINAL_SEM/Project/Datasets/Happiness/HappinessAudios/' + str(i) + '.wav')
        mfcc_coeff_vectors = extractor.calculate_mfcc()
        mfcc_coeff_vectors_dict.update({str(i): (mfcc_coeff_vectors, mfcc_coeff_vectors.shape[0])})

    for i in range(201, 401):
        extractor = FeatureExtractor(
            '/home/venkatesh/Venki/FINAL_SEM/Project/Datasets/Sadness/SadnessAudios/' + str(i - 200) + '.wav')
        mfcc_coeff_vectors = extractor.calculate_mfcc()
        mfcc_coeff_vectors_dict.update({str(i): (mfcc_coeff_vectors, mfcc_coeff_vectors.shape[0])})

    audio_with_min_frames, min_frames = get_min_frames_audio(
        mfcc_coeff_vectors_dict)
    processed_mfcc_coeff = preprocess_input_vectors(
        mfcc_coeff_vectors_dict, min_frames)
    # frames = min_frames
    # print frames
    # print len(processed_mfcc_coeff['1'])
    # for each_vector in processed_mfcc_coeff['1']:
    #     print len(each_vector)
    print "mffcc found..."
    classes = ["happiness", "sadness"]

    training_data = ClassificationDataSet(
        26, target=1, nb_classes=2, class_labels=classes)
    # training_data = SupervisedDataSet(13, 1)
    try:
        network = NetworkReader.readFrom(
            'network_state_frame_level_new2_no_pp1.xml')
    except:
        for i in range(1, 51):
            mfcc_coeff_vectors = processed_mfcc_coeff[str(i)]
            for each_vector in mfcc_coeff_vectors:
                training_data.appendLinked(each_vector, [1])

        for i in range(201, 251):
            mfcc_coeff_vectors = processed_mfcc_coeff[str(i)]
            for each_vector in mfcc_coeff_vectors:
                training_data.appendLinked(each_vector, [0])

        training_data._convertToOneOfMany()
        print "prepared training data.."
        print training_data.indim, training_data.outdim
        network = buildNetwork(
            training_data.indim, 5, training_data.outdim, fast=True)
        trainer = BackpropTrainer(network, learningrate=0.01, momentum=0.99)
        print "Before training...", trainer.testOnData(training_data)
        trainer.trainOnDataset(training_data, 1000)
        print "After training...", trainer.testOnData(training_data)
        NetworkWriter.writeToFile(
            network, "network_state_frame_level_new2_no_pp.xml")
예제 #8
0
def nn(tx, ty, rx, ry, iterations):
    network = buildNetwork(14, 5, 5, 1)
    ds = ClassificationDataSet(14, 1, class_labels=["<50K", ">=50K"])
    for i in xrange(len(tx)):
        ds.addSample(tx[i], [ty[i]])
    trainer = BackpropTrainer(network, ds)
    trainer.trainOnDataset(ds, iterations)
    NetworkWriter.writeToFile(network, "network.xml")
    results = sum((np.array([round(network.activate(test))
                             for test in rx]) - ry)**2) / float(len(ry))
    return results
예제 #9
0
def cifar_nn(offset=None):
    data_ = cifar(one_hot=True, ten_percent=False)
    x_dim = len(data_['train']['data'][0])
    data = ClassificationDataSet(x_dim, 10)
    if offset:
        max_sample = offset
    else:
        max_sample = len(data_['train']['data'])
    for i in xrange(max_sample):
        data.addSample(data_['train']['data'][i], data_['train']['labels'][i])
    data_['train_nn'] = data
    return data_
예제 #10
0
 def createTrainingSetFromMatrix( self, dataMat, labelsVec=None ):
     assert labelsVec==None or dataMat.shape[0] == len(labelsVec)
     #nbFtrs = dataMat.shape[1]
     #nbClasses = np.max(labelsVec) + 1
     if labelsVec != None and np.unique(labelsVec) != range(self.nbClasses):
         print 'WARNING: class labels only contain these values %s ' % (str( np.unique(labelsVec) ))
     dataSetTrain = ClassificationDataSet(self.nbFeatures, numClasses)
     for i in range(dataMat.shape[0]):
         binaryLabels = np.zeros(numClasses)
         if labelsVec != None:
             binaryLabels[labelsVec[i]] = 1
         dataSetTrain.addSample( dataMat[i,:], binaryLabels )
     return dataSetTrain
예제 #11
0
def sentiment_nn(bag_size=100, offset=None):
    data_ = sentiment(bag_size)
    x_dim = len(data_['train']['data'][0])
    data = ClassificationDataSet(x_dim, 1)
    if offset:
        max_sample = offset
    else:
        max_sample = len(data_['train']['data'])
    for i in xrange(max_sample):
        data.addSample(data_['train']['data'][i],
                       [data_['train']['labels'][i]])
    data_['train_nn'] = data
    return data_
예제 #12
0
def main():
    print "Calculating mfcc...."
    mfcc_coeff_vectors_dict = {}
    for i in range(1, 201):
        extractor = FeatureExtractor('/home/venkatesh/Venki/FINAL_SEM/Project/Datasets/Happiness/HappinessAudios/' + str(i) + '.wav')
        mfcc_coeff_vectors = extractor.calculate_mfcc()
        mfcc_coeff_vectors_dict.update({str(i): (mfcc_coeff_vectors, mfcc_coeff_vectors.shape[0])})

    for i in range(201, 401):
        extractor = FeatureExtractor('/home/venkatesh/Venki/FINAL_SEM/Project/Datasets/Sadness/SadnessAudios/' + str(i - 200) + '.wav')
        mfcc_coeff_vectors = extractor.calculate_mfcc()
        mfcc_coeff_vectors_dict.update({str(i): (mfcc_coeff_vectors, mfcc_coeff_vectors.shape[0])})

    audio_with_min_frames, min_frames = get_min_frames_audio(mfcc_coeff_vectors_dict)
    processed_mfcc_coeff = preprocess_input_vectors(mfcc_coeff_vectors_dict, min_frames)
    frames = min_frames
    print "mfcc found...."
    classes = ["happiness", "sadness"]
    try:
        network = NetworkReader.readFrom('network_state_new_.xml')
    except:
        # Create new network and start Training
        training_data = ClassificationDataSet(frames * 26, target=1, nb_classes=2, class_labels=classes)
        # training_data = SupervisedDataSet(frames * 39, 1)
        for i in range(1, 151):
            mfcc_coeff_vectors = processed_mfcc_coeff[str(i)]
            training_data.appendLinked(mfcc_coeff_vectors.ravel(), [1])
            # training_data.addSample(mfcc_coeff_vectors.ravel(), [1])

        for i in range(201, 351):
            mfcc_coeff_vectors = processed_mfcc_coeff[str(i)]
            training_data.appendLinked(mfcc_coeff_vectors.ravel(), [0])
            # training_data.addSample(mfcc_coeff_vectors.ravel(), [0])

        training_data._convertToOneOfMany()
        network = buildNetwork(training_data.indim, 5, training_data.outdim)
        trainer = BackpropTrainer(network, learningrate=0.01, momentum=0.99)
        print "Before training...", trainer.testOnData(training_data)
        trainer.trainOnDataset(training_data, 1000)
        print "After training...", trainer.testOnData(training_data)
        NetworkWriter.writeToFile(network, "network_state_new_.xml")

    print "*" * 30 , "Happiness Detection", "*" * 30
    for i in range(151, 201):
        output = network.activate(processed_mfcc_coeff[str(i)].ravel())
        # print output,
        # if output > 0.7:
        #     print "happiness"
        class_index = max(xrange(len(output)), key=output.__getitem__)
        class_name = classes[class_index]
        print class_name
예제 #13
0
def cvnntester(tx, ty, rx, ry, iterations, folds):
    network = buildNetwork(100, 50, 1, bias=True)
    ds = ClassificationDataSet(100, 1, class_labels=["valley", "hill"])
    for i in xrange(len(tx)):
        ds.addSample(tx[i], [ty[i]])
    trainer = BackpropTrainer(network, ds, learningrate=0.005)
    cv = CrossValidator(trainer,
                        ds,
                        n_folds=folds,
                        max_epochs=iterations,
                        verbosity=True)
    print cv.validate()
    print sum((np.array([round(network.activate(test))
                         for test in rx]) - ry)**2) / float(len(ry))
예제 #14
0
def pybrainData(split, data=None):
    # taken from iris data set at machine learning repository
    if not data:
        pat = cat1 + cat2 + cat3
    else:
        pat = data
    alldata = ClassificationDataSet(4,
                                    1,
                                    nb_classes=3,
                                    class_labels=['set', 'vers', 'virg'])
    for p in pat:
        t = p[2]
        alldata.addSample(p[0], t)
    tstdata, trndata = alldata.splitWithProportion(split)
    trndata._convertToOneOfMany()
    tstdata._convertToOneOfMany()
    return trndata, tstdata
예제 #15
0
    def train(network_file, input_length, output_length, training_data_file,
              learning_rate, momentum, stop_on_convergence, epochs, classify):
        n = get_network(network_file)
        if classify:
            ds = ClassificationDataSet(int(input_length),
                                       int(output_length) * 2)
            ds._convertToOneOfMany()
        else:
            ds = SupervisedDataSet(int(input_length), int(output_length))
        training_data = get_training_data(training_data_file)

        NetworkManager.last_training_set_length = 0
        for line in training_data:
            data = [float(x) for x in line.strip().split(',') if x != '']
            input_data = tuple(data[:(int(input_length))])
            output_data = tuple(data[(int(input_length)):])
            ds.addSample(input_data, output_data)
            NetworkManager.last_training_set_length += 1

        t = BackpropTrainer(n,
                            learningrate=learning_rate,
                            momentum=momentum,
                            verbose=True)
        print "training network " + network_storage_path + network_file

        if stop_on_convergence:
            t.trainUntilConvergence(ds, epochs)
        else:
            if classify:
                t.trainOnDataset(ds['class'], epochs)
            else:
                t.trainOnDataset(ds, epochs)

        error = t.testOnData()
        print "training done"
        if not math.isnan(error):
            save_network(n, network_file)
        else:
            print "error occured, network not saved"

        print "network saved"

        return error
예제 #16
0
def montaDatasetConvertido(dadosTemporario):
    """
    função que converte o objeto
    python.datasets.classficication.ClassificationDataSet
    para python.datasets.supervised.SupervisedDataSet

    Será utilizando tanto para o dataset de treino
    quanto para o dataset de teste e validação

    :return: dataset convertindo ao objeto python.datasets.supervised.SupervisedDataSet
    """

    dataset = ClassificationDataSet(4, 1)

    for i in range(dadosTemporario.getLength()):

        dataset.addSample(
            dadosTemporario.getSample(i)[0],
            dadosTemporario.getSample(i)[1])

    return dataset
예제 #17
0
    def test_ann(self):
        from pybrain.datasets.classification import ClassificationDataSet
        # below line can be replaced with the algorithm of choice e.g.
        # from pybrain.optimization.hillclimber import HillClimber
        from pybrain.optimization.populationbased.ga import GA
        from pybrain.tools.shortcuts import buildNetwork

        # create XOR dataset
        d = ClassificationDataSet(2)
        d.addSample([181, 80], [1])
        d.addSample([177, 70], [1])
        d.addSample([160, 60], [0])
        d.addSample([154, 54], [0])
        d.setField('class', [[0.], [1.], [1.], [0.]])

        nn = buildNetwork(2, 3, 1)
        # d.evaluateModuleMSE takes nn as its first and only argument
        ga = GA(d.evaluateModuleMSE, nn, minimize=True)
        for i in range(100):
            nn = ga.learn(0)[0]

        print nn.activate([181, 80])
예제 #18
0
def montaDataset():
    """
    Função que monta o dataset dos dados
    temporários do dataset

    :return: dataset montando
    """
    # carregando o dataset do iris
    # pelo sktlearn
    iris = datasets.load_iris()
    dadosEntrada, dadosSaida = iris.data, iris.target

    # criando o dataset da iris onde : terá um array de tamanho 4 como dados de entrada
    # um array de tamanho 1 como dado de saida terá
    # 3 classes para classificar
    dataset = ClassificationDataSet(4, 1, nb_classes=3)

    for i in range(len(dadosEntrada)):

        dataset.addSample(dadosEntrada[i], dadosSaida[i])

    return dataset
예제 #19
0
    from pybrain.datasets.classification import ClassificationDataSet
    from pybrain.optimization.populationbased.ga import GA
    from pybrain.tools.shortcuts import buildNetwork

    # create XOR dataset
    d = ClassificationDataSet(2)
    d.addSample([0., 0.], [0.])
    d.addSample([0., 1.], [1.])
    d.addSample([1., 0.], [1.])
    d.addSample([1., 1.], [0.])
    d.setField('class', [ [0.],[1.],[1.],[0.]])

    nn = buildNetwork(2, 3, 1)
    ga = GA(d.evaluateModuleMSE, nn, minimize=True)
    for i in range(100):
        nn = ga.learn(0)[0]

    # test results after the above script
    In [68]: nn.activate([0,0])
    Out[68]: array([-0.07944574])

    In [69]: nn.activate([1,0])
    Out[69]: array([ 0.97635635])

    In [70]: nn.activate([0,1])
    Out[70]: array([ 1.0216745])

    In [71]: nn.activate([1,1])
    Out[71]: array([ 0.03604205])
예제 #20
0
from sklearn import datasets
from pybrain.datasets.classification import ClassificationDataSet
from pybrain.tools.shortcuts import buildNetwork
from pybrain.supervised.trainers import BackpropTrainer

iris = datasets.load_iris()

x, y = iris.data, iris.target
print(len(x))

dataset = ClassificationDataSet(4, 1, nb_classes=3)

for i in range(len(x)):
    dataset.addSample(x[i], y[i])

train_data, part_data = dataset.splitWithProportion(0.6)

test_data, val_data = part_data.splitWithProportion(0.5)

net = buildNetwork(dataset.indim, 3, dataset.outdim)
trainer = BackpropTrainer(net,
                          dataset=train_data,
                          learningrate=0.01,
                          momentum=0.1,
                          verbose=True)

train_errors, val_errors = trainer.trainUntilConvergence(dataset=train_data,
                                                         maxEpochs=100)

trainer.totalepochs
예제 #21
0
from sklearn import datasets
from pybrain.datasets.classification import ClassificationDataSet
from pybrain.tools.shortcuts import buildNetwork
from pybrain.supervised.trainers import BackpropTrainer

iris = datasets.load_iris()
x, y = iris.data, iris.target
dataset = ClassificationDataSet(4, 1, nb_classes=3)

for i in range(len(x)):
    dataset.addSample(x[i], y[i])

train_data_temp, part_data_temp = dataset.splitWithProportion(0.6)
test_data_temp, val_data_temp = part_data_temp.splitWithProportion(0.5)

train_data = ClassificationDataSet(4, 1, nb_classes=3)
for n in range(train_data_temp.getLength()):
    train_data.addSample(
        train_data_temp.getSample(n)[0],
        train_data_temp.getSample(n)[1])

test_data = ClassificationDataSet(4, 1, nb_classes=3)
for n in range(test_data_temp.getLength()):
    train_data.addSample(
        test_data_temp.getSample(n)[0],
        test_data_temp.getSample(n)[1])

val_data = ClassificationDataSet(4, 1, nb_classes=3)
for n in range(val_data_temp.getLength()):
    val_data.addSample(
        val_data_temp.getSample(n)[0],
예제 #22
0
def _get_classification_dataset():
    return ClassificationDataSet(INPUT, OUTPUT, nb_classes=CLASSES)
@author: Leonardo
"""

#Carregando os dados do Iris Sataset com skLearn
from sklearn import datasets

iris = datasets.load_iris()
#Obtendo as entradas e saídas
X, y = iris.data, iris.target
print(len(X))
print(len(y))

from pybrain.datasets.classification import ClassificationDataSet

datasets = ClassificationDataSet(4, 1,
                                 nb_classes=3)  #nb_classes = numeros de saidas

# adicionando as amostras
for i in range(len(X)):
    datasets.addSample(X[i], y[i])
len(datasets)
'''
print(datasets['input'])
print(datasets['target'])
'''

# psrticonando os dados para treinamento
train_data, part_data = datasets.splitWithProportion(
    0.6)  #sera dividido em 60%
print('Quantidade para treino: %d' % len(train_data))
예제 #24
0
n.addInputModule(inLayer)
n.addModule(hiddenLayer)
n.addOutputModule(outLayer)

in_to_hidden = FullConnection(inLayer,hiddenLayer)
hidden_to_out = FullConnection(hiddenLayer,outLayer)

n.addConnection(in_to_hidden)
n.addConnection(hidden_to_out)

n.sortModules()


print 'build set'

alldata = ClassificationDataSet(dim, 1, nb_classes=2)

(data,label,items) = BinReader.readData(ur'F:\AliRecommendHomeworkData\1212新版\train15_17.expand.samp.norm.bin') 
#(train,label,data) = BinReader.readData(r'C:\data\small\norm\train1217.bin')
for i in range(len(data)):
    alldata.addSample(data[i],label[i])

tstdata, trndata = alldata.splitWithProportion(0.25)

trainer = BackpropTrainer(n,trndata,momentum=0.1,verbose=True,weightdecay=0.01)

print 'start'
#trainer.trainEpochs(1)
trainer.trainUntilConvergence(maxEpochs=2)
trnresult = percentError(trainer.testOnClassData(),trndata['class'])
    numdata[i][10] = qualidict[numdata[i][10].strip()]
    numdata[i][11] = modedict[numdata[i][11].strip()]
    numdata[i][12] = unidict[numdata[i][12].strip()]
fobj = open('02 select_data_num.csv', 'wb')
[(fobj.write(item), fobj.write(',')) for item in header]
fobj.write('\n')
[([(fobj.write(str(it).replace(',', ' ')), fobj.write(','))
   for it in item], fobj.write('\n')) for item in numdata]
fobj.close()

npdata = np.array(numdata, dtype=np.float)
npdata[:, 2:] = preprocessing.scale(npdata[:, 2:])
numdata = copy.deepcopy(npdata)

net = buildNetwork(14, 14, 1, bias=True, outclass=SoftmaxLayer)
ds = ClassificationDataSet(14, 1, nb_classes=2)
for item in numdata:
    ds.addSample(tuple(item[2:]), (item[1]))
dsTrain, dsTest = ds.splitWithProportion(0.8)

print('Trainging')
trainer = BackpropTrainer(net,
                          ds,
                          momentum=0.1,
                          verbose=True,
                          weightdecay=0.01)
# trainer.train()
trainer.trainUntilConvergence(maxEpochs=20)
print('Finish training')

Traininp = dsTrain['input']
예제 #26
0
def compare_l2_regularization():
    train_features, train_labels, test_features, test_labels = get_breast_cancer_data(
    )
    optimal_num_layers = 6
    num_neurons = [optimal_num_layers * [16]]
    start_time = datetime.now()
    train_accuracy1 = []
    test_accuracy1 = []
    train_accuracy2 = []
    test_accuracy2 = []
    iterations = range(250)
    nn1 = buildNetwork(30, 16, 1, bias=True)
    nn2 = buildNetwork(30, 16, 1, bias=True)
    dataset = ClassificationDataSet(len(train_features[0]),
                                    len(train_labels[0]),
                                    class_labels=["1", "2"])

    for instance in range(len(train_features)):
        dataset.addSample(train_features[instance], train_labels[instance])

    trainer1 = BackpropTrainer(nn1, dataset, weightdecay=0.0001)
    validator1 = CrossValidator(trainer1, dataset)
    print(validator1.validate())

    trainer2 = BackpropTrainer(nn2, dataset, weightdecay=0.001)
    validator2 = CrossValidator(trainer2, dataset)
    print(validator2.validate())

    for iteration in iterations:
        train_accuracy1.append(
            sum((np.array(
                [np.round(nn1.activate(test))
                 for test in train_features]) - train_labels)**2) /
            float(len(train_labels)))
        test_accuracy1.append(
            sum((np.array(
                [np.round(nn1.activate(test))
                 for test in test_features]) - test_labels)**2) /
            float(len(test_labels)))
        train_accuracy2.append(
            sum((np.array(
                [np.round(nn2.activate(test))
                 for test in train_features]) - train_labels)**2) /
            float(len(train_labels)))
        test_accuracy2.append(
            sum((np.array(
                [np.round(nn2.activate(test))
                 for test in test_features]) - test_labels)**2) /
            float(len(test_labels)))

    plt.plot(iterations, train_accuracy1)
    plt.plot(iterations, test_accuracy1)
    plt.plot(iterations, train_accuracy2)
    plt.plot(iterations, test_accuracy2)
    plt.legend([
        "Train Accuracy (0.0001)", "Test Accuracy (0.0001)",
        "Train Accuracy (0.001)", "Test Accuracy (0.001"
    ])
    plt.xlabel("Num Epoch")
    plt.ylabel("Percent Error")
    plt.title("Neural Network on Breast Cancer Data with " + str(num_neurons) +
              " layers")
    plt.savefig("nn_breast_cancer_weight_decay.png")