def _build_solvers(self, json_data): actor_stepsize = 0.001 if (self.ACTOR_STEPSIZE_KEY not in json_data ) else json_data[self.ACTOR_STEPSIZE_KEY] actor_momentum = 0.9 if (self.ACTOR_MOMENTUM_KEY not in json_data ) else json_data[self.ACTOR_MOMENTUM_KEY] critic_stepsize = 0.01 if (self.CRITIC_STEPSIZE_KEY not in json_data ) else json_data[self.CRITIC_STEPSIZE_KEY] critic_momentum = 0.9 if (self.CRITIC_MOMENTUM_KEY not in json_data ) else json_data[self.CRITIC_MOMENTUM_KEY] critic_vars = self._tf_vars('main/critic') critic_opt = tf.train.MomentumOptimizer(learning_rate=critic_stepsize, momentum=critic_momentum) self.critic_grad_tf = tf.gradients(self.critic_loss_tf, critic_vars) self.critic_solver = MPISolver(self.sess, critic_opt, critic_vars) self._actor_stepsize_tf = tf.get_variable(dtype=tf.float32, name='actor_stepsize', initializer=actor_stepsize, trainable=False) self._actor_stepsize_ph = tf.get_variable(dtype=tf.float32, name='actor_stepsize_ph', shape=[]) self._actor_stepsize_update_op = self._actor_stepsize_tf.assign( self._actor_stepsize_ph) actor_vars = self._tf_vars('main/actor') actor_opt = tf.train.MomentumOptimizer( learning_rate=self._actor_stepsize_tf, momentum=actor_momentum) self.actor_grad_tf = tf.gradients(self.actor_loss_tf, actor_vars) self.actor_solver = MPISolver(self.sess, actor_opt, actor_vars) return
def _build_solvers(self, json_data): actor_stepsize = 0.001 if ( self.ACTOR_STEPSIZE_KEY not in json_data) else json_data[self.ACTOR_STEPSIZE_KEY] actor_momentum = 0.9 if ( self.ACTOR_MOMENTUM_KEY not in json_data) else json_data[self.ACTOR_MOMENTUM_KEY] critic_stepsize = 0.01 if ( self.CRITIC_STEPSIZE_KEY not in json_data) else json_data[self.CRITIC_STEPSIZE_KEY] critic_momentum = 0.9 if ( self.CRITIC_MOMENTUM_KEY not in json_data) else json_data[self.CRITIC_MOMENTUM_KEY] critic_vars = self._tf_vars('main/critic') critic_opt = tf.train.MomentumOptimizer(learning_rate=critic_stepsize, momentum=critic_momentum) self.critic_grad_tf = tf.gradients(self.critic_loss_tf, critic_vars) self.critic_solver = MPISolver(self.sess, critic_opt, critic_vars) self._actor_stepsize_tf = tf.get_variable(dtype=tf.float32, name='actor_stepsize', initializer=actor_stepsize, trainable=False) self._actor_stepsize_ph = tf.get_variable(dtype=tf.float32, name='actor_stepsize_ph', shape=[]) self._actor_stepsize_update_op = self._actor_stepsize_tf.assign(self._actor_stepsize_ph) actor_vars = self._tf_vars('main/actor') actor_opt = tf.train.MomentumOptimizer(learning_rate=self._actor_stepsize_tf, momentum=actor_momentum) self.actor_grad_tf = tf.gradients(self.actor_loss_tf, actor_vars) self.actor_solver = MPISolver(self.sess, actor_opt, actor_vars) return
def _build_solvers(self, json_data): actor_stepsize = 0.001 if (self.ACTOR_STEPSIZE_KEY not in json_data) else json_data[self.ACTOR_STEPSIZE_KEY] actor_momentum = 0.9 if (self.ACTOR_MOMENTUM_KEY not in json_data) else json_data[self.ACTOR_MOMENTUM_KEY] critic_stepsize = 0.01 if (self.CRITIC_STEPSIZE_KEY not in json_data) else json_data[self.CRITIC_STEPSIZE_KEY] critic_momentum = 0.9 if (self.CRITIC_MOMENTUM_KEY not in json_data) else json_data[self.CRITIC_MOMENTUM_KEY] critic_vars = self._tf_vars('main/critic') critic_opt = tf.train.MomentumOptimizer(learning_rate=critic_stepsize, momentum=critic_momentum) self.critic_grad_tf = tf.gradients(self.critic_loss_tf, critic_vars) self.critic_solver = MPISolver(self.sess, critic_opt, critic_vars) actor_vars = self._tf_vars('main/actor') actor_opt = tf.train.MomentumOptimizer(learning_rate=actor_stepsize, momentum=actor_momentum) self.actor_grad_tf = tf.gradients(self.actor_loss_tf, actor_vars) self.actor_solver = MPISolver(self.sess, actor_opt, actor_vars) return
def _build_solvers(self, json_data): actor_stepsize = 0.001 if ( self.ACTOR_STEPSIZE_KEY not in json_data) else json_data[self.ACTOR_STEPSIZE_KEY] actor_momentum = 0.9 if ( self.ACTOR_MOMENTUM_KEY not in json_data) else json_data[self.ACTOR_MOMENTUM_KEY] critic_stepsize = 0.01 if ( self.CRITIC_STEPSIZE_KEY not in json_data) else json_data[self.CRITIC_STEPSIZE_KEY] critic_momentum = 0.9 if ( self.CRITIC_MOMENTUM_KEY not in json_data) else json_data[self.CRITIC_MOMENTUM_KEY] critic_vars = self._tf_vars('main/critic') critic_opt = tf.train.MomentumOptimizer(learning_rate=critic_stepsize, momentum=critic_momentum) self.critic_grad_tf = tf.gradients(self.critic_loss_tf, critic_vars) self.critic_solver = MPISolver(self.sess, critic_opt, critic_vars) actor_vars = self._tf_vars('main/actor') actor_opt = tf.train.MomentumOptimizer(learning_rate=actor_stepsize, momentum=actor_momentum) self.actor_grad_tf = tf.gradients(self.actor_loss_tf, actor_vars) self.actor_solver = MPISolver(self.sess, actor_opt, actor_vars) return
class PGAgent(TFAgent): NAME = 'PG' ACTOR_NET_KEY = 'ActorNet' ACTOR_STEPSIZE_KEY = 'ActorStepsize' ACTOR_MOMENTUM_KEY = 'ActorMomentum' ACTOR_WEIGHT_DECAY_KEY = 'ActorWeightDecay' ACTOR_INIT_OUTPUT_SCALE_KEY = 'ActorInitOutputScale' CRITIC_NET_KEY = 'CriticNet' CRITIC_STEPSIZE_KEY = 'CriticStepsize' CRITIC_MOMENTUM_KEY = 'CriticMomentum' CRITIC_WEIGHT_DECAY_KEY = 'CriticWeightDecay' EXP_ACTION_FLAG = 1 << 0 def __init__(self, world, id, json_data): self._exp_action = False super().__init__(world, id, json_data) return def reset(self): super().reset() self._exp_action = False return def _check_action_space(self): action_space = self.get_action_space() return action_space == ActionSpace.Continuous def _load_params(self, json_data): super()._load_params(json_data) self.val_min, self.val_max = self._calc_val_bounds(self.discount) self.val_fail, self.val_succ = self._calc_term_vals(self.discount) return def _build_nets(self, json_data): assert self.ACTOR_NET_KEY in json_data assert self.CRITIC_NET_KEY in json_data actor_net_name = json_data[self.ACTOR_NET_KEY] critic_net_name = json_data[self.CRITIC_NET_KEY] actor_init_output_scale = 1 if (self.ACTOR_INIT_OUTPUT_SCALE_KEY not in json_data ) else json_data[self.ACTOR_INIT_OUTPUT_SCALE_KEY] s_size = self.get_state_size() g_size = self.get_goal_size() a_size = self.get_action_size() # setup input tensors self.s_tf = tf.placeholder(tf.float32, shape=[None, s_size], name="s") # observations self.tar_val_tf = tf.placeholder(tf.float32, shape=[None], name="tar_val") # target value s self.adv_tf = tf.placeholder(tf.float32, shape=[None], name="adv") # advantage self.a_tf = tf.placeholder(tf.float32, shape=[None, a_size], name="a") # target actions self.g_tf = tf.placeholder(tf.float32, shape=([None, g_size] if self.has_goal() else None), name="g") # goals with tf.variable_scope('main'): with tf.variable_scope('actor'): self.actor_tf = self._build_net_actor(actor_net_name, actor_init_output_scale) with tf.variable_scope('critic'): self.critic_tf = self._build_net_critic(critic_net_name) if (self.actor_tf != None): Logger.print2('Built actor net: ' + actor_net_name) if (self.critic_tf != None): Logger.print2('Built critic net: ' + critic_net_name) return def _build_normalizers(self): super()._build_normalizers() with self.sess.as_default(), self.graph.as_default(), tf.variable_scope(self.tf_scope): with tf.variable_scope(self.RESOURCE_SCOPE): val_offset, val_scale = self._calc_val_offset_scale(self.discount) self.val_norm = TFNormalizer(self.sess, 'val_norm', 1) self.val_norm.set_mean_std(-val_offset, 1.0 / val_scale) return def _init_normalizers(self): super()._init_normalizers() with self.sess.as_default(), self.graph.as_default(): self.val_norm.update() return def _load_normalizers(self): super()._load_normalizers() self.val_norm.load() return def _build_losses(self, json_data): actor_weight_decay = 0 if ( self.ACTOR_WEIGHT_DECAY_KEY not in json_data) else json_data[self.ACTOR_WEIGHT_DECAY_KEY] critic_weight_decay = 0 if ( self.CRITIC_WEIGHT_DECAY_KEY not in json_data) else json_data[self.CRITIC_WEIGHT_DECAY_KEY] norm_val_diff = self.val_norm.normalize_tf(self.tar_val_tf) - self.val_norm.normalize_tf( self.critic_tf) self.critic_loss_tf = 0.5 * tf.reduce_mean(tf.square(norm_val_diff)) if (critic_weight_decay != 0): self.critic_loss_tf += critic_weight_decay * self._weight_decay_loss('main/critic') norm_a_mean_tf = self.a_norm.normalize_tf(self.actor_tf) norm_a_diff = self.a_norm.normalize_tf(self.a_tf) - norm_a_mean_tf self.actor_loss_tf = tf.reduce_sum(tf.square(norm_a_diff), axis=-1) self.actor_loss_tf *= self.adv_tf self.actor_loss_tf = 0.5 * tf.reduce_mean(self.actor_loss_tf) norm_a_bound_min = self.a_norm.normalize(self.a_bound_min) norm_a_bound_max = self.a_norm.normalize(self.a_bound_max) a_bound_loss = TFUtil.calc_bound_loss(norm_a_mean_tf, norm_a_bound_min, norm_a_bound_max) a_bound_loss /= self.exp_params_curr.noise self.actor_loss_tf += a_bound_loss if (actor_weight_decay != 0): self.actor_loss_tf += actor_weight_decay * self._weight_decay_loss('main/actor') return def _build_solvers(self, json_data): actor_stepsize = 0.001 if ( self.ACTOR_STEPSIZE_KEY not in json_data) else json_data[self.ACTOR_STEPSIZE_KEY] actor_momentum = 0.9 if ( self.ACTOR_MOMENTUM_KEY not in json_data) else json_data[self.ACTOR_MOMENTUM_KEY] critic_stepsize = 0.01 if ( self.CRITIC_STEPSIZE_KEY not in json_data) else json_data[self.CRITIC_STEPSIZE_KEY] critic_momentum = 0.9 if ( self.CRITIC_MOMENTUM_KEY not in json_data) else json_data[self.CRITIC_MOMENTUM_KEY] critic_vars = self._tf_vars('main/critic') critic_opt = tf.train.MomentumOptimizer(learning_rate=critic_stepsize, momentum=critic_momentum) self.critic_grad_tf = tf.gradients(self.critic_loss_tf, critic_vars) self.critic_solver = MPISolver(self.sess, critic_opt, critic_vars) actor_vars = self._tf_vars('main/actor') actor_opt = tf.train.MomentumOptimizer(learning_rate=actor_stepsize, momentum=actor_momentum) self.actor_grad_tf = tf.gradients(self.actor_loss_tf, actor_vars) self.actor_solver = MPISolver(self.sess, actor_opt, actor_vars) return def _build_net_actor(self, net_name, init_output_scale): norm_s_tf = self.s_norm.normalize_tf(self.s_tf) input_tfs = [norm_s_tf] if (self.has_goal()): norm_g_tf = self.g_norm.normalize_tf(self.g_tf) input_tfs += [norm_g_tf] h = NetBuilder.build_net(net_name, input_tfs) norm_a_tf = tf.layers.dense(inputs=h, units=self.get_action_size(), activation=None, kernel_initializer=tf.random_uniform_initializer( minval=-init_output_scale, maxval=init_output_scale)) a_tf = self.a_norm.unnormalize_tf(norm_a_tf) return a_tf def _build_net_critic(self, net_name): norm_s_tf = self.s_norm.normalize_tf(self.s_tf) input_tfs = [norm_s_tf] if (self.has_goal()): norm_g_tf = self.g_norm.normalize_tf(self.g_tf) input_tfs += [norm_g_tf] h = NetBuilder.build_net(net_name, input_tfs) norm_val_tf = tf.layers.dense(inputs=h, units=1, activation=None, kernel_initializer=TFUtil.xavier_initializer) norm_val_tf = tf.reshape(norm_val_tf, [-1]) val_tf = self.val_norm.unnormalize_tf(norm_val_tf) return val_tf def _initialize_vars(self): super()._initialize_vars() self._sync_solvers() return def _sync_solvers(self): self.actor_solver.sync() self.critic_solver.sync() return def _decide_action(self, s, g): with self.sess.as_default(), self.graph.as_default(): self._exp_action = False a = self._eval_actor(s, g)[0] logp = 0 if self._enable_stoch_policy(): # epsilon-greedy rand_action = MathUtil.flip_coin(self.exp_params_curr.rate) if rand_action: norm_exp_noise = np.random.randn(*a.shape) norm_exp_noise *= self.exp_params_curr.noise exp_noise = norm_exp_noise * self.a_norm.std a += exp_noise logp = self._calc_action_logp(norm_exp_noise) self._exp_action = True return a, logp def _enable_stoch_policy(self): return self.enable_training and (self._mode == self.Mode.TRAIN or self._mode == self.Mode.TRAIN_END) def _eval_actor(self, s, g): s = np.reshape(s, [-1, self.get_state_size()]) g = np.reshape(g, [-1, self.get_goal_size()]) if self.has_goal() else None feed = {self.s_tf: s, self.g_tf: g} a = self.actor_tf.eval(feed) return a def _eval_critic(self, s, g): with self.sess.as_default(), self.graph.as_default(): s = np.reshape(s, [-1, self.get_state_size()]) g = np.reshape(g, [-1, self.get_goal_size()]) if self.has_goal() else None feed = {self.s_tf: s, self.g_tf: g} val = self.critic_tf.eval(feed) return val def _record_flags(self): flags = int(0) if (self._exp_action): flags = flags | self.EXP_ACTION_FLAG return flags def _train_step(self): super()._train_step() critic_loss = self._update_critic() actor_loss = self._update_actor() critic_loss = MPIUtil.reduce_avg(critic_loss) actor_loss = MPIUtil.reduce_avg(actor_loss) critic_stepsize = self.critic_solver.get_stepsize() actor_stepsize = self.actor_solver.get_stepsize() self.logger.log_tabular('Critic_Loss', critic_loss) self.logger.log_tabular('Critic_Stepsize', critic_stepsize) self.logger.log_tabular('Actor_Loss', actor_loss) self.logger.log_tabular('Actor_Stepsize', actor_stepsize) return def _update_critic(self): idx = self.replay_buffer.sample(self._local_mini_batch_size) s = self.replay_buffer.get('states', idx) g = self.replay_buffer.get('goals', idx) if self.has_goal() else None tar_V = self._calc_updated_vals(idx) tar_V = np.clip(tar_V, self.val_min, self.val_max) feed = {self.s_tf: s, self.g_tf: g, self.tar_val_tf: tar_V} loss, grads = self.sess.run([self.critic_loss_tf, self.critic_grad_tf], feed) self.critic_solver.update(grads) return loss def _update_actor(self): key = self.EXP_ACTION_FLAG idx = self.replay_buffer.sample_filtered(self._local_mini_batch_size, key) has_goal = self.has_goal() s = self.replay_buffer.get('states', idx) g = self.replay_buffer.get('goals', idx) if has_goal else None a = self.replay_buffer.get('actions', idx) V_new = self._calc_updated_vals(idx) V_old = self._eval_critic(s, g) adv = V_new - V_old feed = {self.s_tf: s, self.g_tf: g, self.a_tf: a, self.adv_tf: adv} loss, grads = self.sess.run([self.actor_loss_tf, self.actor_grad_tf], feed) self.actor_solver.update(grads) return loss def _calc_updated_vals(self, idx): r = self.replay_buffer.get('rewards', idx) if self.discount == 0: new_V = r else: next_idx = self.replay_buffer.get_next_idx(idx) s_next = self.replay_buffer.get('states', next_idx) g_next = self.replay_buffer.get('goals', next_idx) if self.has_goal() else None is_end = self.replay_buffer.is_path_end(idx) is_fail = self.replay_buffer.check_terminal_flag(idx, Env.Terminate.Fail) is_succ = self.replay_buffer.check_terminal_flag(idx, Env.Terminate.Succ) is_fail = np.logical_and(is_end, is_fail) is_succ = np.logical_and(is_end, is_succ) V_next = self._eval_critic(s_next, g_next) V_next[is_fail] = self.val_fail V_next[is_succ] = self.val_succ new_V = r + self.discount * V_next return new_V def _calc_action_logp(self, norm_action_deltas): # norm action delta are for the normalized actions (scaled by self.a_norm.std) stdev = self.exp_params_curr.noise assert stdev > 0 a_size = self.get_action_size() logp = -0.5 / (stdev * stdev) * np.sum(np.square(norm_action_deltas), axis=-1) logp += -0.5 * a_size * np.log(2 * np.pi) logp += -a_size * np.log(stdev) return logp def _log_val(self, s, g): val = self._eval_critic(s, g) norm_val = self.val_norm.normalize(val) self.world.env.log_val(self.id, norm_val[0]) return def _build_replay_buffer(self, buffer_size): super()._build_replay_buffer(buffer_size) self.replay_buffer.add_filter_key(self.EXP_ACTION_FLAG) return
class PPOAgent(PGAgent): NAME = "PPO" EPOCHS_KEY = "Epochs" BATCH_SIZE_KEY = "BatchSize" RATIO_CLIP_KEY = "RatioClip" NORM_ADV_CLIP_KEY = "NormAdvClip" TD_LAMBDA_KEY = "TDLambda" TAR_CLIP_FRAC = "TarClipFrac" ACTOR_STEPSIZE_DECAY = "ActorStepsizeDecay" def __init__(self, world, id, json_data): super().__init__(world, id, json_data) return def _load_params(self, json_data): super()._load_params(json_data) self.epochs = 1 if (self.EPOCHS_KEY not in json_data) else json_data[self.EPOCHS_KEY] self.batch_size = 1024 if (self.BATCH_SIZE_KEY not in json_data ) else json_data[self.BATCH_SIZE_KEY] self.ratio_clip = 0.2 if (self.RATIO_CLIP_KEY not in json_data ) else json_data[self.RATIO_CLIP_KEY] self.norm_adv_clip = 5 if (self.NORM_ADV_CLIP_KEY not in json_data ) else json_data[self.NORM_ADV_CLIP_KEY] self.td_lambda = 0.95 if (self.TD_LAMBDA_KEY not in json_data ) else json_data[self.TD_LAMBDA_KEY] self.tar_clip_frac = -1 if (self.TAR_CLIP_FRAC not in json_data ) else json_data[self.TAR_CLIP_FRAC] self.actor_stepsize_decay = 0.5 if ( self.ACTOR_STEPSIZE_DECAY not in json_data) else json_data[self.ACTOR_STEPSIZE_DECAY] num_procs = MPIUtil.get_num_procs() local_batch_size = int(self.batch_size / num_procs) min_replay_size = 2 * local_batch_size # needed to prevent buffer overflow assert (self.replay_buffer_size > min_replay_size) self.replay_buffer_size = np.maximum(min_replay_size, self.replay_buffer_size) return def _build_nets(self, json_data): assert self.ACTOR_NET_KEY in json_data assert self.CRITIC_NET_KEY in json_data actor_net_name = json_data[self.ACTOR_NET_KEY] critic_net_name = json_data[self.CRITIC_NET_KEY] actor_init_output_scale = 1 if ( self.ACTOR_INIT_OUTPUT_SCALE_KEY not in json_data) else json_data[self.ACTOR_INIT_OUTPUT_SCALE_KEY] s_size = self.get_state_size() g_size = self.get_goal_size() a_size = self.get_action_size() # setup input tensors self.s_tf = tf.placeholder(tf.float32, shape=[None, s_size], name="s") self.a_tf = tf.placeholder(tf.float32, shape=[None, a_size], name="a") self.tar_val_tf = tf.placeholder(tf.float32, shape=[None], name="tar_val") self.adv_tf = tf.placeholder(tf.float32, shape=[None], name="adv") self.g_tf = tf.placeholder( tf.float32, shape=([None, g_size] if self.has_goal() else None), name="g") self.old_logp_tf = tf.placeholder(tf.float32, shape=[None], name="old_logp") self.exp_mask_tf = tf.placeholder(tf.float32, shape=[None], name="exp_mask") with tf.variable_scope('main'): with tf.variable_scope('actor'): self.a_mean_tf = self._build_net_actor( actor_net_name, actor_init_output_scale) with tf.variable_scope('critic'): self.critic_tf = self._build_net_critic(critic_net_name) if (self.a_mean_tf != None): Logger.print2('Built actor net: ' + actor_net_name) if (self.critic_tf != None): Logger.print2('Built critic net: ' + critic_net_name) self.norm_a_std_tf = self.exp_params_curr.noise * tf.ones(a_size) norm_a_noise_tf = self.norm_a_std_tf * tf.random_normal( shape=tf.shape(self.a_mean_tf)) norm_a_noise_tf *= tf.expand_dims(self.exp_mask_tf, axis=-1) self.sample_a_tf = self.a_mean_tf + norm_a_noise_tf * self.a_norm.std_tf self.sample_a_logp_tf = TFUtil.calc_logp_gaussian( x_tf=norm_a_noise_tf, mean_tf=None, std_tf=self.norm_a_std_tf) return def _build_losses(self, json_data): actor_weight_decay = 0 if ( self.ACTOR_WEIGHT_DECAY_KEY not in json_data) else json_data[self.ACTOR_WEIGHT_DECAY_KEY] critic_weight_decay = 0 if ( self.CRITIC_WEIGHT_DECAY_KEY not in json_data) else json_data[self.CRITIC_WEIGHT_DECAY_KEY] norm_val_diff = self.val_norm.normalize_tf( self.tar_val_tf) - self.val_norm.normalize_tf(self.critic_tf) self.critic_loss_tf = 0.5 * tf.reduce_mean(tf.square(norm_val_diff)) if (critic_weight_decay != 0): self.critic_loss_tf += critic_weight_decay * self._weight_decay_loss( 'main/critic') norm_tar_a_tf = self.a_norm.normalize_tf(self.a_tf) self._norm_a_mean_tf = self.a_norm.normalize_tf(self.a_mean_tf) self.logp_tf = TFUtil.calc_logp_gaussian(norm_tar_a_tf, self._norm_a_mean_tf, self.norm_a_std_tf) ratio_tf = tf.exp(self.logp_tf - self.old_logp_tf) actor_loss0 = self.adv_tf * ratio_tf actor_loss1 = self.adv_tf * tf.clip_by_value( ratio_tf, 1.0 - self.ratio_clip, 1 + self.ratio_clip) self.actor_loss_tf = -tf.reduce_mean( tf.minimum(actor_loss0, actor_loss1)) norm_a_bound_min = self.a_norm.normalize(self.a_bound_min) norm_a_bound_max = self.a_norm.normalize(self.a_bound_max) a_bound_loss = TFUtil.calc_bound_loss(self._norm_a_mean_tf, norm_a_bound_min, norm_a_bound_max) self.actor_loss_tf += a_bound_loss if (actor_weight_decay != 0): self.actor_loss_tf += actor_weight_decay * self._weight_decay_loss( 'main/actor') # for debugging self.clip_frac_tf = tf.reduce_mean( tf.to_float(tf.greater(tf.abs(ratio_tf - 1.0), self.ratio_clip))) return def _build_solvers(self, json_data): actor_stepsize = 0.001 if (self.ACTOR_STEPSIZE_KEY not in json_data ) else json_data[self.ACTOR_STEPSIZE_KEY] actor_momentum = 0.9 if (self.ACTOR_MOMENTUM_KEY not in json_data ) else json_data[self.ACTOR_MOMENTUM_KEY] critic_stepsize = 0.01 if (self.CRITIC_STEPSIZE_KEY not in json_data ) else json_data[self.CRITIC_STEPSIZE_KEY] critic_momentum = 0.9 if (self.CRITIC_MOMENTUM_KEY not in json_data ) else json_data[self.CRITIC_MOMENTUM_KEY] critic_vars = self._tf_vars('main/critic') critic_opt = tf.train.MomentumOptimizer(learning_rate=critic_stepsize, momentum=critic_momentum) self.critic_grad_tf = tf.gradients(self.critic_loss_tf, critic_vars) self.critic_solver = MPISolver(self.sess, critic_opt, critic_vars) self._actor_stepsize_tf = tf.get_variable(dtype=tf.float32, name='actor_stepsize', initializer=actor_stepsize, trainable=False) self._actor_stepsize_ph = tf.get_variable(dtype=tf.float32, name='actor_stepsize_ph', shape=[]) self._actor_stepsize_update_op = self._actor_stepsize_tf.assign( self._actor_stepsize_ph) actor_vars = self._tf_vars('main/actor') actor_opt = tf.train.MomentumOptimizer( learning_rate=self._actor_stepsize_tf, momentum=actor_momentum) self.actor_grad_tf = tf.gradients(self.actor_loss_tf, actor_vars) self.actor_solver = MPISolver(self.sess, actor_opt, actor_vars) return def _decide_action(self, s, g): with self.sess.as_default(), self.graph.as_default(): self._exp_action = self._enable_stoch_policy( ) and MathUtil.flip_coin(self.exp_params_curr.rate) #print("_decide_action._exp_action=",self._exp_action) a, logp = self._eval_actor(s, g, self._exp_action) return a[0], logp[0] def _eval_actor(self, s, g, enable_exp): s = np.reshape(s, [-1, self.get_state_size()]) g = np.reshape(g, [-1, self.get_goal_size()]) if self.has_goal() else None feed = { self.s_tf: s, self.g_tf: g, self.exp_mask_tf: np.array([1 if enable_exp else 0]) } a, logp = self.sess.run([self.sample_a_tf, self.sample_a_logp_tf], feed_dict=feed) return a, logp def _train_step(self): adv_eps = 1e-5 start_idx = self.replay_buffer.buffer_tail end_idx = self.replay_buffer.buffer_head assert (start_idx == 0) assert (self.replay_buffer.get_current_size() <= self.replay_buffer.buffer_size) # must avoid overflow assert (start_idx < end_idx) idx = np.array(list(range(start_idx, end_idx))) end_mask = self.replay_buffer.is_path_end(idx) end_mask = np.logical_not(end_mask) vals = self._compute_batch_vals(start_idx, end_idx) new_vals = self._compute_batch_new_vals(start_idx, end_idx, vals) valid_idx = idx[end_mask] exp_idx = self.replay_buffer.get_idx_filtered( self.EXP_ACTION_FLAG).copy() num_valid_idx = valid_idx.shape[0] num_exp_idx = exp_idx.shape[0] exp_idx = np.column_stack( [exp_idx, np.array(list(range(0, num_exp_idx)), dtype=np.int32)]) local_sample_count = valid_idx.size global_sample_count = int(MPIUtil.reduce_sum(local_sample_count)) mini_batches = int(np.ceil(global_sample_count / self.mini_batch_size)) adv = new_vals[exp_idx[:, 0]] - vals[exp_idx[:, 0]] new_vals = np.clip(new_vals, self.val_min, self.val_max) adv_mean = np.mean(adv) adv_std = np.std(adv) adv = (adv - adv_mean) / (adv_std + adv_eps) adv = np.clip(adv, -self.norm_adv_clip, self.norm_adv_clip) critic_loss = 0 actor_loss = 0 actor_clip_frac = 0 for e in range(self.epochs): np.random.shuffle(valid_idx) np.random.shuffle(exp_idx) for b in range(mini_batches): batch_idx_beg = b * self._local_mini_batch_size batch_idx_end = batch_idx_beg + self._local_mini_batch_size critic_batch = np.array(range(batch_idx_beg, batch_idx_end), dtype=np.int32) actor_batch = critic_batch.copy() critic_batch = np.mod(critic_batch, num_valid_idx) actor_batch = np.mod(actor_batch, num_exp_idx) shuffle_actor = (actor_batch[-1] < actor_batch[0]) or ( actor_batch[-1] == num_exp_idx - 1) critic_batch = valid_idx[critic_batch] actor_batch = exp_idx[actor_batch] critic_batch_vals = new_vals[critic_batch] actor_batch_adv = adv[actor_batch[:, 1]] critic_s = self.replay_buffer.get('states', critic_batch) critic_g = self.replay_buffer.get( 'goals', critic_batch) if self.has_goal() else None curr_critic_loss = self._update_critic(critic_s, critic_g, critic_batch_vals) actor_s = self.replay_buffer.get("states", actor_batch[:, 0]) actor_g = self.replay_buffer.get( "goals", actor_batch[:, 0]) if self.has_goal() else None actor_a = self.replay_buffer.get("actions", actor_batch[:, 0]) actor_logp = self.replay_buffer.get("logps", actor_batch[:, 0]) curr_actor_loss, curr_actor_clip_frac = self._update_actor( actor_s, actor_g, actor_a, actor_logp, actor_batch_adv) critic_loss += curr_critic_loss actor_loss += np.abs(curr_actor_loss) actor_clip_frac += curr_actor_clip_frac if (shuffle_actor): np.random.shuffle(exp_idx) total_batches = mini_batches * self.epochs critic_loss /= total_batches actor_loss /= total_batches actor_clip_frac /= total_batches critic_loss = MPIUtil.reduce_avg(critic_loss) actor_loss = MPIUtil.reduce_avg(actor_loss) actor_clip_frac = MPIUtil.reduce_avg(actor_clip_frac) critic_stepsize = self.critic_solver.get_stepsize() actor_stepsize = self.update_actor_stepsize(actor_clip_frac) self.logger.log_tabular('Critic_Loss', critic_loss) self.logger.log_tabular('Critic_Stepsize', critic_stepsize) self.logger.log_tabular('Actor_Loss', actor_loss) self.logger.log_tabular('Actor_Stepsize', actor_stepsize) self.logger.log_tabular('Clip_Frac', actor_clip_frac) self.logger.log_tabular('Adv_Mean', adv_mean) self.logger.log_tabular('Adv_Std', adv_std) self.replay_buffer.clear() return def _get_iters_per_update(self): return 1 def _valid_train_step(self): samples = self.replay_buffer.get_current_size() exp_samples = self.replay_buffer.count_filtered(self.EXP_ACTION_FLAG) global_sample_count = int(MPIUtil.reduce_sum(samples)) global_exp_min = int(MPIUtil.reduce_min(exp_samples)) return (global_sample_count > self.batch_size) and (global_exp_min > 0) def _compute_batch_vals(self, start_idx, end_idx): states = self.replay_buffer.get_all("states")[start_idx:end_idx] goals = self.replay_buffer.get_all( "goals")[start_idx:end_idx] if self.has_goal() else None idx = np.array(list(range(start_idx, end_idx))) is_end = self.replay_buffer.is_path_end(idx) is_fail = self.replay_buffer.check_terminal_flag( idx, Env.Terminate.Fail) is_succ = self.replay_buffer.check_terminal_flag( idx, Env.Terminate.Succ) is_fail = np.logical_and(is_end, is_fail) is_succ = np.logical_and(is_end, is_succ) vals = self._eval_critic(states, goals) vals[is_fail] = self.val_fail vals[is_succ] = self.val_succ return vals def _compute_batch_new_vals(self, start_idx, end_idx, val_buffer): rewards = self.replay_buffer.get_all("rewards")[start_idx:end_idx] if self.discount == 0: new_vals = rewards.copy() else: new_vals = np.zeros_like(val_buffer) curr_idx = start_idx while curr_idx < end_idx: idx0 = curr_idx - start_idx idx1 = self.replay_buffer.get_path_end(curr_idx) - start_idx r = rewards[idx0:idx1] v = val_buffer[idx0:(idx1 + 1)] new_vals[idx0:idx1] = RLUtil.compute_return( r, self.discount, self.td_lambda, v) curr_idx = idx1 + start_idx + 1 return new_vals def _update_critic(self, s, g, tar_vals): feed = {self.s_tf: s, self.g_tf: g, self.tar_val_tf: tar_vals} loss, grads = self.sess.run([self.critic_loss_tf, self.critic_grad_tf], feed) self.critic_solver.update(grads) return loss def _update_actor(self, s, g, a, logp, adv): feed = { self.s_tf: s, self.g_tf: g, self.a_tf: a, self.adv_tf: adv, self.old_logp_tf: logp } loss, grads, clip_frac = self.sess.run( [self.actor_loss_tf, self.actor_grad_tf, self.clip_frac_tf], feed) self.actor_solver.update(grads) return loss, clip_frac def update_actor_stepsize(self, clip_frac): clip_tol = 1.5 step_scale = 2 max_stepsize = 1e-2 min_stepsize = 1e-8 warmup_iters = 5 actor_stepsize = self.actor_solver.get_stepsize() if (self.tar_clip_frac >= 0 and self.iter > warmup_iters): min_clip = self.tar_clip_frac / clip_tol max_clip = self.tar_clip_frac * clip_tol under_tol = clip_frac < min_clip over_tol = clip_frac > max_clip if (over_tol or under_tol): if (over_tol): actor_stepsize *= self.actor_stepsize_decay else: actor_stepsize /= self.actor_stepsize_decay actor_stepsize = np.clip(actor_stepsize, min_stepsize, max_stepsize) self.set_actor_stepsize(actor_stepsize) return actor_stepsize def set_actor_stepsize(self, stepsize): feed = { self._actor_stepsize_ph: stepsize, } self.sess.run(self._actor_stepsize_update_op, feed) return
class PPOAgent(PGAgent): NAME = "PPO" EPOCHS_KEY = "Epochs" BATCH_SIZE_KEY = "BatchSize" RATIO_CLIP_KEY = "RatioClip" NORM_ADV_CLIP_KEY = "NormAdvClip" TD_LAMBDA_KEY = "TDLambda" TAR_CLIP_FRAC = "TarClipFrac" ACTOR_STEPSIZE_DECAY = "ActorStepsizeDecay" def __init__(self, world, id, json_data): super().__init__(world, id, json_data) return def _load_params(self, json_data): super()._load_params(json_data) self.epochs = 1 if (self.EPOCHS_KEY not in json_data) else json_data[self.EPOCHS_KEY] self.batch_size = 1024 if ( self.BATCH_SIZE_KEY not in json_data) else json_data[self.BATCH_SIZE_KEY] self.ratio_clip = 0.2 if ( self.RATIO_CLIP_KEY not in json_data) else json_data[self.RATIO_CLIP_KEY] self.norm_adv_clip = 5 if ( self.NORM_ADV_CLIP_KEY not in json_data) else json_data[self.NORM_ADV_CLIP_KEY] self.td_lambda = 0.95 if ( self.TD_LAMBDA_KEY not in json_data) else json_data[self.TD_LAMBDA_KEY] self.tar_clip_frac = -1 if ( self.TAR_CLIP_FRAC not in json_data) else json_data[self.TAR_CLIP_FRAC] self.actor_stepsize_decay = 0.5 if ( self.ACTOR_STEPSIZE_DECAY not in json_data) else json_data[self.ACTOR_STEPSIZE_DECAY] num_procs = MPIUtil.get_num_procs() local_batch_size = int(self.batch_size / num_procs) min_replay_size = 2 * local_batch_size # needed to prevent buffer overflow assert (self.replay_buffer_size > min_replay_size) self.replay_buffer_size = np.maximum(min_replay_size, self.replay_buffer_size) return def _build_nets(self, json_data): assert self.ACTOR_NET_KEY in json_data assert self.CRITIC_NET_KEY in json_data actor_net_name = json_data[self.ACTOR_NET_KEY] critic_net_name = json_data[self.CRITIC_NET_KEY] actor_init_output_scale = 1 if (self.ACTOR_INIT_OUTPUT_SCALE_KEY not in json_data ) else json_data[self.ACTOR_INIT_OUTPUT_SCALE_KEY] s_size = self.get_state_size() g_size = self.get_goal_size() a_size = self.get_action_size() # setup input tensors self.s_tf = tf.placeholder(tf.float32, shape=[None, s_size], name="s") self.a_tf = tf.placeholder(tf.float32, shape=[None, a_size], name="a") self.tar_val_tf = tf.placeholder(tf.float32, shape=[None], name="tar_val") self.adv_tf = tf.placeholder(tf.float32, shape=[None], name="adv") self.g_tf = tf.placeholder(tf.float32, shape=([None, g_size] if self.has_goal() else None), name="g") self.old_logp_tf = tf.placeholder(tf.float32, shape=[None], name="old_logp") self.exp_mask_tf = tf.placeholder(tf.float32, shape=[None], name="exp_mask") with tf.variable_scope('main'): with tf.variable_scope('actor'): self.a_mean_tf = self._build_net_actor(actor_net_name, actor_init_output_scale) with tf.variable_scope('critic'): self.critic_tf = self._build_net_critic(critic_net_name) if (self.a_mean_tf != None): Logger.print2('Built actor net: ' + actor_net_name) if (self.critic_tf != None): Logger.print2('Built critic net: ' + critic_net_name) self.norm_a_std_tf = self.exp_params_curr.noise * tf.ones(a_size) norm_a_noise_tf = self.norm_a_std_tf * tf.random_normal(shape=tf.shape(self.a_mean_tf)) norm_a_noise_tf *= tf.expand_dims(self.exp_mask_tf, axis=-1) self.sample_a_tf = self.a_mean_tf + norm_a_noise_tf * self.a_norm.std_tf self.sample_a_logp_tf = TFUtil.calc_logp_gaussian(x_tf=norm_a_noise_tf, mean_tf=None, std_tf=self.norm_a_std_tf) return def _build_losses(self, json_data): actor_weight_decay = 0 if ( self.ACTOR_WEIGHT_DECAY_KEY not in json_data) else json_data[self.ACTOR_WEIGHT_DECAY_KEY] critic_weight_decay = 0 if ( self.CRITIC_WEIGHT_DECAY_KEY not in json_data) else json_data[self.CRITIC_WEIGHT_DECAY_KEY] norm_val_diff = self.val_norm.normalize_tf(self.tar_val_tf) - self.val_norm.normalize_tf( self.critic_tf) self.critic_loss_tf = 0.5 * tf.reduce_mean(tf.square(norm_val_diff)) if (critic_weight_decay != 0): self.critic_loss_tf += critic_weight_decay * self._weight_decay_loss('main/critic') norm_tar_a_tf = self.a_norm.normalize_tf(self.a_tf) self._norm_a_mean_tf = self.a_norm.normalize_tf(self.a_mean_tf) self.logp_tf = TFUtil.calc_logp_gaussian(norm_tar_a_tf, self._norm_a_mean_tf, self.norm_a_std_tf) ratio_tf = tf.exp(self.logp_tf - self.old_logp_tf) actor_loss0 = self.adv_tf * ratio_tf actor_loss1 = self.adv_tf * tf.clip_by_value(ratio_tf, 1.0 - self.ratio_clip, 1 + self.ratio_clip) self.actor_loss_tf = -tf.reduce_mean(tf.minimum(actor_loss0, actor_loss1)) norm_a_bound_min = self.a_norm.normalize(self.a_bound_min) norm_a_bound_max = self.a_norm.normalize(self.a_bound_max) a_bound_loss = TFUtil.calc_bound_loss(self._norm_a_mean_tf, norm_a_bound_min, norm_a_bound_max) self.actor_loss_tf += a_bound_loss if (actor_weight_decay != 0): self.actor_loss_tf += actor_weight_decay * self._weight_decay_loss('main/actor') # for debugging self.clip_frac_tf = tf.reduce_mean( tf.to_float(tf.greater(tf.abs(ratio_tf - 1.0), self.ratio_clip))) return def _build_solvers(self, json_data): actor_stepsize = 0.001 if ( self.ACTOR_STEPSIZE_KEY not in json_data) else json_data[self.ACTOR_STEPSIZE_KEY] actor_momentum = 0.9 if ( self.ACTOR_MOMENTUM_KEY not in json_data) else json_data[self.ACTOR_MOMENTUM_KEY] critic_stepsize = 0.01 if ( self.CRITIC_STEPSIZE_KEY not in json_data) else json_data[self.CRITIC_STEPSIZE_KEY] critic_momentum = 0.9 if ( self.CRITIC_MOMENTUM_KEY not in json_data) else json_data[self.CRITIC_MOMENTUM_KEY] critic_vars = self._tf_vars('main/critic') critic_opt = tf.train.MomentumOptimizer(learning_rate=critic_stepsize, momentum=critic_momentum) self.critic_grad_tf = tf.gradients(self.critic_loss_tf, critic_vars) self.critic_solver = MPISolver(self.sess, critic_opt, critic_vars) self._actor_stepsize_tf = tf.get_variable(dtype=tf.float32, name='actor_stepsize', initializer=actor_stepsize, trainable=False) self._actor_stepsize_ph = tf.get_variable(dtype=tf.float32, name='actor_stepsize_ph', shape=[]) self._actor_stepsize_update_op = self._actor_stepsize_tf.assign(self._actor_stepsize_ph) actor_vars = self._tf_vars('main/actor') actor_opt = tf.train.MomentumOptimizer(learning_rate=self._actor_stepsize_tf, momentum=actor_momentum) self.actor_grad_tf = tf.gradients(self.actor_loss_tf, actor_vars) self.actor_solver = MPISolver(self.sess, actor_opt, actor_vars) return def _decide_action(self, s, g): with self.sess.as_default(), self.graph.as_default(): self._exp_action = self._enable_stoch_policy() and MathUtil.flip_coin( self.exp_params_curr.rate) #print("_decide_action._exp_action=",self._exp_action) a, logp = self._eval_actor(s, g, self._exp_action) return a[0], logp[0] def _eval_actor(self, s, g, enable_exp): s = np.reshape(s, [-1, self.get_state_size()]) g = np.reshape(g, [-1, self.get_goal_size()]) if self.has_goal() else None feed = {self.s_tf: s, self.g_tf: g, self.exp_mask_tf: np.array([1 if enable_exp else 0])} a, logp = self.sess.run([self.sample_a_tf, self.sample_a_logp_tf], feed_dict=feed) return a, logp def _train_step(self): adv_eps = 1e-5 start_idx = self.replay_buffer.buffer_tail end_idx = self.replay_buffer.buffer_head assert (start_idx == 0) assert (self.replay_buffer.get_current_size() <= self.replay_buffer.buffer_size ) # must avoid overflow assert (start_idx < end_idx) idx = np.array(list(range(start_idx, end_idx))) end_mask = self.replay_buffer.is_path_end(idx) end_mask = np.logical_not(end_mask) vals = self._compute_batch_vals(start_idx, end_idx) new_vals = self._compute_batch_new_vals(start_idx, end_idx, vals) valid_idx = idx[end_mask] exp_idx = self.replay_buffer.get_idx_filtered(self.EXP_ACTION_FLAG).copy() num_valid_idx = valid_idx.shape[0] num_exp_idx = exp_idx.shape[0] exp_idx = np.column_stack([exp_idx, np.array(list(range(0, num_exp_idx)), dtype=np.int32)]) local_sample_count = valid_idx.size global_sample_count = int(MPIUtil.reduce_sum(local_sample_count)) mini_batches = int(np.ceil(global_sample_count / self.mini_batch_size)) adv = new_vals[exp_idx[:, 0]] - vals[exp_idx[:, 0]] new_vals = np.clip(new_vals, self.val_min, self.val_max) adv_mean = np.mean(adv) adv_std = np.std(adv) adv = (adv - adv_mean) / (adv_std + adv_eps) adv = np.clip(adv, -self.norm_adv_clip, self.norm_adv_clip) critic_loss = 0 actor_loss = 0 actor_clip_frac = 0 for e in range(self.epochs): np.random.shuffle(valid_idx) np.random.shuffle(exp_idx) for b in range(mini_batches): batch_idx_beg = b * self._local_mini_batch_size batch_idx_end = batch_idx_beg + self._local_mini_batch_size critic_batch = np.array(range(batch_idx_beg, batch_idx_end), dtype=np.int32) actor_batch = critic_batch.copy() critic_batch = np.mod(critic_batch, num_valid_idx) actor_batch = np.mod(actor_batch, num_exp_idx) shuffle_actor = (actor_batch[-1] < actor_batch[0]) or (actor_batch[-1] == num_exp_idx - 1) critic_batch = valid_idx[critic_batch] actor_batch = exp_idx[actor_batch] critic_batch_vals = new_vals[critic_batch] actor_batch_adv = adv[actor_batch[:, 1]] critic_s = self.replay_buffer.get('states', critic_batch) critic_g = self.replay_buffer.get('goals', critic_batch) if self.has_goal() else None curr_critic_loss = self._update_critic(critic_s, critic_g, critic_batch_vals) actor_s = self.replay_buffer.get("states", actor_batch[:, 0]) actor_g = self.replay_buffer.get("goals", actor_batch[:, 0]) if self.has_goal() else None actor_a = self.replay_buffer.get("actions", actor_batch[:, 0]) actor_logp = self.replay_buffer.get("logps", actor_batch[:, 0]) curr_actor_loss, curr_actor_clip_frac = self._update_actor(actor_s, actor_g, actor_a, actor_logp, actor_batch_adv) critic_loss += curr_critic_loss actor_loss += np.abs(curr_actor_loss) actor_clip_frac += curr_actor_clip_frac if (shuffle_actor): np.random.shuffle(exp_idx) total_batches = mini_batches * self.epochs critic_loss /= total_batches actor_loss /= total_batches actor_clip_frac /= total_batches critic_loss = MPIUtil.reduce_avg(critic_loss) actor_loss = MPIUtil.reduce_avg(actor_loss) actor_clip_frac = MPIUtil.reduce_avg(actor_clip_frac) critic_stepsize = self.critic_solver.get_stepsize() actor_stepsize = self.update_actor_stepsize(actor_clip_frac) self.logger.log_tabular('Critic_Loss', critic_loss) self.logger.log_tabular('Critic_Stepsize', critic_stepsize) self.logger.log_tabular('Actor_Loss', actor_loss) self.logger.log_tabular('Actor_Stepsize', actor_stepsize) self.logger.log_tabular('Clip_Frac', actor_clip_frac) self.logger.log_tabular('Adv_Mean', adv_mean) self.logger.log_tabular('Adv_Std', adv_std) self.replay_buffer.clear() return def _get_iters_per_update(self): return 1 def _valid_train_step(self): samples = self.replay_buffer.get_current_size() exp_samples = self.replay_buffer.count_filtered(self.EXP_ACTION_FLAG) global_sample_count = int(MPIUtil.reduce_sum(samples)) global_exp_min = int(MPIUtil.reduce_min(exp_samples)) return (global_sample_count > self.batch_size) and (global_exp_min > 0) def _compute_batch_vals(self, start_idx, end_idx): states = self.replay_buffer.get_all("states")[start_idx:end_idx] goals = self.replay_buffer.get_all("goals")[start_idx:end_idx] if self.has_goal() else None idx = np.array(list(range(start_idx, end_idx))) is_end = self.replay_buffer.is_path_end(idx) is_fail = self.replay_buffer.check_terminal_flag(idx, Env.Terminate.Fail) is_succ = self.replay_buffer.check_terminal_flag(idx, Env.Terminate.Succ) is_fail = np.logical_and(is_end, is_fail) is_succ = np.logical_and(is_end, is_succ) vals = self._eval_critic(states, goals) vals[is_fail] = self.val_fail vals[is_succ] = self.val_succ return vals def _compute_batch_new_vals(self, start_idx, end_idx, val_buffer): rewards = self.replay_buffer.get_all("rewards")[start_idx:end_idx] if self.discount == 0: new_vals = rewards.copy() else: new_vals = np.zeros_like(val_buffer) curr_idx = start_idx while curr_idx < end_idx: idx0 = curr_idx - start_idx idx1 = self.replay_buffer.get_path_end(curr_idx) - start_idx r = rewards[idx0:idx1] v = val_buffer[idx0:(idx1 + 1)] new_vals[idx0:idx1] = RLUtil.compute_return(r, self.discount, self.td_lambda, v) curr_idx = idx1 + start_idx + 1 return new_vals def _update_critic(self, s, g, tar_vals): feed = {self.s_tf: s, self.g_tf: g, self.tar_val_tf: tar_vals} loss, grads = self.sess.run([self.critic_loss_tf, self.critic_grad_tf], feed) self.critic_solver.update(grads) return loss def _update_actor(self, s, g, a, logp, adv): feed = {self.s_tf: s, self.g_tf: g, self.a_tf: a, self.adv_tf: adv, self.old_logp_tf: logp} loss, grads, clip_frac = self.sess.run( [self.actor_loss_tf, self.actor_grad_tf, self.clip_frac_tf], feed) self.actor_solver.update(grads) return loss, clip_frac def update_actor_stepsize(self, clip_frac): clip_tol = 1.5 step_scale = 2 max_stepsize = 1e-2 min_stepsize = 1e-8 warmup_iters = 5 actor_stepsize = self.actor_solver.get_stepsize() if (self.tar_clip_frac >= 0 and self.iter > warmup_iters): min_clip = self.tar_clip_frac / clip_tol max_clip = self.tar_clip_frac * clip_tol under_tol = clip_frac < min_clip over_tol = clip_frac > max_clip if (over_tol or under_tol): if (over_tol): actor_stepsize *= self.actor_stepsize_decay else: actor_stepsize /= self.actor_stepsize_decay actor_stepsize = np.clip(actor_stepsize, min_stepsize, max_stepsize) self.set_actor_stepsize(actor_stepsize) return actor_stepsize def set_actor_stepsize(self, stepsize): feed = { self._actor_stepsize_ph: stepsize, } self.sess.run(self._actor_stepsize_update_op, feed) return