def plan_cartesian_motion_from_links(robot, selected_links, target_link, waypoint_poses, max_iterations=200, custom_limits={}, get_sub_conf=False, **kwargs): lower_limits, upper_limits = get_custom_limits(robot, get_movable_joints(robot), custom_limits) selected_movable_joints = prune_fixed_joints(robot, selected_links) assert (target_link in selected_links) selected_target_link = selected_links.index(target_link) sub_robot = clone_body(robot, links=selected_links, visual=False, collision=False) # TODO: joint limits sub_movable_joints = get_movable_joints(sub_robot) #null_space = get_null_space(robot, selected_movable_joints, custom_limits=custom_limits) null_space = None solutions = [] for target_pose in waypoint_poses: for iteration in range(max_iterations): sub_kinematic_conf = inverse_kinematics_helper( sub_robot, selected_target_link, target_pose, null_space=null_space) if sub_kinematic_conf is None: remove_body(sub_robot) return None # continue set_joint_positions(sub_robot, sub_movable_joints, sub_kinematic_conf) # pos_tolerance=1e-3, ori_tolerance=1e-3*np.pi if is_pose_close(get_link_pose(sub_robot, selected_target_link), target_pose, **kwargs): set_joint_positions(robot, selected_movable_joints, sub_kinematic_conf) kinematic_conf = get_configuration(robot) if not all_between(lower_limits, kinematic_conf, upper_limits): remove_body(sub_robot) return None if not get_sub_conf: solutions.append(kinematic_conf) else: solutions.append(sub_kinematic_conf) break else: remove_body(sub_robot) return None remove_body(sub_robot) return solutions
def _compute_ik(self, robot_uid, ik_joints, tool_link, target_pose, max_iterations=8, custom_limits={}): lower_limits, upper_limits = get_custom_limits( robot_uid, get_movable_joints(robot_uid), custom_limits) selected_links = get_link_subtree( robot_uid, ik_joints[0]) # TODO: child_link_from_joint? selected_movable_joints = prune_fixed_joints(robot_uid, selected_links) assert (tool_link in selected_links) selected_target_link = selected_links.index(tool_link) sub_robot = clone_body(robot_uid, links=selected_links, visual=False, collision=False) # TODO: joint limits sub_movable_joints = get_movable_joints(sub_robot) for _ in range(max_iterations): # TODO: stop is no progress # TODO: stop if collision or invalid joint limits # kinematic_conf = inverse_kinematics_helper(robot_uid, tool_link, target_pose) sub_kinematic_conf = inverse_kinematics_helper( sub_robot, selected_target_link, target_pose) if sub_kinematic_conf is None: remove_body(sub_robot) return [] set_joint_positions(sub_robot, sub_movable_joints, sub_kinematic_conf) if is_pose_close(get_link_pose(sub_robot, selected_target_link), target_pose): #, **kwargs): set_joint_positions(robot_uid, selected_movable_joints, sub_kinematic_conf) kinematic_conf = get_configuration(robot_uid) if not all_between(lower_limits, kinematic_conf, upper_limits): remove_body(sub_robot) return [] break else: remove_body(sub_robot) return [] remove_body(sub_robot) conf = [ kinematic_conf[i] for i, jt in enumerate(selected_movable_joints) if jt in ik_joints ] # TODO in RFL case, the base_link will give us 17 joint, needs some pruning according to the ik_joints return [conf]
def sweeping_collision_fn(q1, q2, diagnosis=False): lines_from_body = defaultdict(list) # * set body & attachment positions set_joint_positions(body, joints, q1) for attachment in attachments: attachment.assign() for attached_body in attached_bodies: attached_body, body_links = expand_links(attached_body) for body_link in body_links: updated_vertices = vertices_from_rigid(attached_body, body_link) lines_from_body[attached_body].append(updated_vertices) set_joint_positions(body, joints, q2) for attachment in attachments: attachment.assign() for attached_body in attached_bodies: attached_body, body_links = expand_links(attached_body) for body_link in body_links: updated_vertices = vertices_from_rigid(attached_body, body_link) lines_from_body[attached_body].append(updated_vertices) rays = [] for lines in lines_from_body.values(): for start, end in zip(lines[0], lines[1]): rays.append(Ray(start, end)) # if diagnosis: # add_line(start, end) # * body - body check for ray, ray_result in zip(rays, batch_ray_collision(rays)): if ray_result.objectUniqueId in obstacles: if diagnosis: draw_ray(ray, ray_result) return True return False
def inverse_kinematics(self, robot, frame_WCF, start_configuration=None, group=None, options=None): """Calculate the robot's inverse kinematic for a given frame. Parameters ---------- robot : :class:`compas_fab.robots.Robot` The robot instance for which inverse kinematics is being calculated. frame_WCF: :class:`compas.geometry.Frame` The frame to calculate the inverse for. start_configuration: :class:`compas_fab.robots.Configuration`, optional If passed, the inverse will be calculated such that the calculated joint positions differ the least from the start_configuration. Defaults to the init configuration. group: str, optional The planning group used for calculation. Defaults to the robot's main planning group. options: dict, optional Dictionary containing the following key-value pairs: - ``"base_link"``: (:obj:`str`) Name of the base link. - ``"avoid_collisions"``: (:obj:`bool`, optional) Whether or not to avoid collisions. Defaults to `True`. - ``"constraints"``: (:obj:`list` of :class:`compas_fab.robots.Constraint`, optional) A set of constraints that the request must obey. Defaults to `None`. - ``"attempts"``: (:obj:`int`, optional) The maximum number of inverse kinematic attempts. Defaults to `8`. - ``"attached_collision_meshes"``: (:obj:`list` of :class:`compas_fab.robots.AttachedCollisionMesh`, optional) Defaults to `None`. - ``"return_all"``: (bool, optional) return a list of all computed ik solutions Defaults to False Raises ------ compas_fab.backends.exceptions.BackendError If no configuration can be found. Returns ------- :class:`compas_fab.robots.Configuration` The planning group's configuration. """ max_iterations = is_valid_option(options, 'attempts', 8) avoid_collisions = is_valid_option(options, 'avoid_collisions', True) return_all = is_valid_option(options, 'return_all', False) custom_limits = options.get('custom_limits') or {} # return_closest_to_start = is_valid_option(options, 'return_closest_to_start', False) # cull = is_valid_option(options, 'cull', True) robot_uid = robot.attributes['pybullet_uid'] ik_joint_names = robot.get_configurable_joint_names(group=group) ik_joints = joints_from_names(robot_uid, ik_joint_names) tool_link_name = robot.get_end_effector_link_name(group=group) tool_link = link_from_name(robot_uid, tool_link_name) pb_custom_limits = get_custom_limits( robot_uid, ik_joints, custom_limits={ joint_from_name(robot_uid, jn): lims for jn, lims in custom_limits.items() }) target_pose = pose_from_frame(frame_WCF) with WorldSaver(): if start_configuration is not None: start_conf_vals = start_configuration.values set_joint_positions(robot_uid, ik_joints, start_conf_vals) # else: # sample_fn = get_sample_fn(robot_uid, ik_joints) # start_conf_vals = sample_fn() # if group not in self.client.planner.ik_fn_from_group: # use default ik fn conf_vals = self._compute_ik(robot_uid, ik_joints, tool_link, target_pose, max_iterations, custom_limits=pb_custom_limits) joint_types = robot.get_joint_types_by_names(ik_joint_names) configurations = [Configuration(values=conf_val, types=joint_types, joint_names=ik_joint_names) \ for conf_val in conf_vals if conf_val is not None] # else: # # qs = client.inverse_kinematics(frame_WCF, group=move_group) # configurations = self.client.planner.ik_fn_from_group[group](frame_WCF, group=group, options=options) if avoid_collisions: configurations = [ conf for conf in configurations if not self.client.check_collisions( robot, conf, options=options) ] if return_all: return configurations else: return configurations[0] if len(configurations) > 0 else None
def sequenced_picknplace_plan(assembly_pkg_json_path, solve_method='sparse_ladder_graph', viewer=False, scale=1e-3, sample_time=5, sparse_time_out=2, jt_res=0.1, pos_step_size=0.01, ori_step_size=np.pi/16, viz_inspect=False, warning_pause=False, save_dir=None, **kwargs): """call pychoreo's planner to solve for picknplace Cartesian & transition trajectories. Robot setup is specified in coop_assembly.choreo_interface.robot_setup Parameters ---------- assembly_pkg_json_path : [type] [description] solve_method : str, optional [description], by default 'sparse_ladder_graph' viewer : bool, optional [description], by default False scale : [type], optional [description], by default 1e-3 sample_time : int, optional [description], by default 5 sparse_time_out : int, optional [description], by default 2 jt_res : float, optional joint resolution for transition planning, by default 0.1 pos_step_size : float, optional interpolation step size for the end effector Cartesia movements, by default 0.01 (meter) ori_step_size : [type], optional [description], by default np.pi/16 viz_inspect : bool, optional visualize planning process in a pybullet window (slow!), by default False warning_pause : bool, optional wait for user input if any of the planning process cannot find a solution, by default False save_dir : string, optional absolute directory path to save the planning result json file, by default None Returns ------- [type] [description] Raises ------ ValueError [description] """ # TODO: assert solve method in avaiable list # * load robot setup data (robot_urdf, base_link_name, tool_root_link_name, ee_link_name, ik_joint_names, disabled_self_collision_link_names), \ (workspace_urdf, workspace_robot_disabled_link_names) = get_picknplace_robot_data() picknplace_end_effector_urdf = get_picknplace_end_effector_urdf() picknplace_tcp_def = get_picknplace_tcp_def() # * create robot and pb environment connect(use_gui=viewer) # * adjust camera pose (optional) if has_gui(): camera_base_pt = (0,0,0) camera_pt = np.array(camera_base_pt) + np.array([1, 0, 0.5]) set_camera_pose(tuple(camera_pt), camera_base_pt) with HideOutput(): # * pybullet can handle ROS-package path URDF automatically now (ver 2.5.7)! robot = load_pybullet(robot_urdf, fixed_base=True) workspace = load_pybullet(workspace_urdf, fixed_base=True) # ee_body = create_obj(picknplace_end_effector_urdf) ee_body = load_pybullet(picknplace_end_effector_urdf) # * set robot idle configuration ik_joints = joints_from_names(robot, ik_joint_names) robot_start_conf = get_robot_init_conf() set_joint_positions(robot, ik_joints, robot_start_conf) # * create tool and tool TCP from flange (tool0) transformation root_link = link_from_name(robot, tool_root_link_name) # create end effector body ee_attach = Attachment(robot, root_link, unit_pose(), ee_body) # set up TCP transformation, just a renaming here root_from_tcp = picknplace_tcp_def if has_gui() : # draw_tcp pose ee_attach.assign() ee_link_pose = get_pose(ee_attach.child) draw_pose(multiply(ee_link_pose, root_from_tcp)) # * specify ik fn wrapper ik_fn = IK_MODULE.get_ik def get_sample_ik_fn(robot, ik_fn, ik_joint_names, base_link_name, tool_from_root=None): def sample_ik_fn(world_from_tcp): if tool_from_root: world_from_tcp = multiply(world_from_tcp, tool_from_root) return sample_tool_ik(ik_fn, robot, ik_joint_names, base_link_name, world_from_tcp, get_all=True) #,sampled=[0]) return sample_ik_fn # ik generation function stays the same for all cartesian processes sample_ik_fn = get_sample_ik_fn(robot, ik_fn, ik_joint_names, base_link_name, invert(root_from_tcp)) # * load shape & collision data with open(assembly_pkg_json_path, 'r') as f: json_data = json.loads(f.read()) assembly = Assembly.from_package(json_data) elements = assembly.elements for element in elements.values(): for unit_geo in element.unit_geometries: unit_geo.rescale(scale) # TODO: scale derived from the assembly package unit # static_obstacles = [] # for ug in assembly.static_obstacle_geometries.values(): # static_obstacles.extend(ug.mesh) # * load precomputed sequence / use assigned sequence # TODO: load this as function argument # element_seq = elements.keys() element_seq = [0, 1, 2, 3, 4, 5] # element_seq = [3, 4, 5] print('sequence: ', element_seq) # visualize goal pose if has_gui(): # viz_len = 0.003 with WorldSaver(): for e_id in element_seq: element = elements[e_id] with LockRenderer(): print('e_id #{} : {}'.format(e_id, element)) for unit_geo in element.unit_geometries: for pb_geo in unit_geo.pybullet_bodies: set_pose(pb_geo, random.choice(unit_geo.get_goal_frames(get_pb_pose=True))) # print('---------') # wait_for_user() # wait_for_user() # * construct ignored body-body links for collision checking # in this case, including self-collision between links of the robot disabled_self_collisions = get_disabled_collisions(robot, disabled_self_collision_link_names) # and links between the robot and the workspace (e.g. robot_base_link to base_plate) extra_disabled_collisions = get_body_body_disabled_collisions(robot, workspace, workspace_robot_disabled_link_names) # TODO: extra disabled collisions as function argument extra_disabled_collisions.update({ ((robot, link_from_name(robot, 'robot_link_5')), (ee_body, link_from_name(ee_body, 'eef_base_link'))), ((robot, link_from_name(robot, 'robot_link_6')), (ee_body, link_from_name(ee_body, 'eef_base_link'))) }) # * create cartesian processes without a sequence being given, with random pose generators cart_process_seq = build_picknplace_cartesian_process_seq( element_seq, elements, robot, ik_joint_names, root_link, sample_ik_fn, ee_attachs=[ee_attach], self_collisions=True, disabled_collisions=disabled_self_collisions, obstacles=[workspace],extra_disabled_collisions=extra_disabled_collisions, tool_from_root=invert(root_from_tcp), viz_step=False, pick_from_same_rack=True, pos_step_size=pos_step_size, ori_step_size=ori_step_size) # specifically for UR5, because of its wide joint range, we need to apply joint value snapping for cp in cart_process_seq: cp.target_conf = robot_start_conf with LockRenderer(not viz_inspect): if solve_method == 'ladder_graph': print('\n'+'#' * 10) print('Solving with the vanilla ladder graph search algorithm.') cart_process_seq = solve_ladder_graph_from_cartesian_process_list(cart_process_seq, verbose=True, warning_pause=warning_pause, viz_inspect=viz_inspect, check_collision=False, start_conf=robot_start_conf) elif solve_method == 'sparse_ladder_graph': print('\n'+'#' * 10) print('Solving with the sparse ladder graph search algorithm.') sparse_graph = SparseLadderGraph(cart_process_seq) sparse_graph.find_sparse_path(verbose=True, vert_timeout=sample_time, sparse_sample_timeout=sparse_time_out) cart_process_seq = sparse_graph.extract_solution(verbose=True, start_conf=robot_start_conf) else: raise ValueError('Invalid solve method!') assert all(isinstance(cp, CartesianProcess) for cp in cart_process_seq) pnp_trajs = [[] for _ in range(len(cart_process_seq))] for cp_id, cp in enumerate(cart_process_seq): element_attachs = [] for sp_id, sp in enumerate(cp.sub_process_list): assert sp.trajectory, '{}-{} does not have a Cartesian plan found!'.format(cp, sp) # ! reverse engineer the grasp pose if sp.trajectory.tag == 'pick_retreat': unit_geo = elements[sp.trajectory.element_id].unit_geometries[0] e_bodies = unit_geo.pybullet_bodies for e_body in e_bodies: set_pose(e_body, unit_geo.get_initial_frames(get_pb_pose=True)[0]) set_joint_positions(sp.trajectory.robot, sp.trajectory.joints, sp.trajectory.traj_path[0]) element_attachs.append(create_attachment(sp.trajectory.robot, root_link, e_body)) if sp.trajectory.tag == 'pick_retreat' or sp.trajectory.tag == 'place_approach': sp.trajectory.attachments= element_attachs pnp_trajs[cp_id].append(sp.trajectory) full_trajs = pnp_trajs # * transition motion planning between extrusions return2idle = True transition_traj = solve_transition_between_picknplace_processes(pnp_trajs, elements, robot_start_conf, disabled_collisions=disabled_self_collisions, extra_disabled_collisions=extra_disabled_collisions, obstacles=[workspace], return2idle=return2idle, resolutions=[jt_res]*len(ik_joints), **kwargs) # * weave the Cartesian and transition processses together for cp_id, print_trajs in enumerate(full_trajs): print_trajs.insert(0, transition_traj[cp_id][0]) print_trajs.insert(3, transition_traj[cp_id][1]) if return2idle: full_trajs[-1].append(transition_traj[-1][-1]) if save_dir is None: here = os.path.dirname(__file__) save_dir = os.path.join(here, 'results') export_trajectory(save_dir, full_trajs, ee_link_name, indent=1, shape_file_path=assembly_pkg_json_path, include_robot_data=True, include_link_path=True) # * disconnect and close pybullet engine used for planning, visualizing trajectories will start a new one reset_simulation() disconnect() if viewer: cart_time_step = None tr_time_step = None display_picknplace_trajectories(robot_urdf, ik_joint_names, assembly_pkg_json_path, full_trajs, tool_root_link_name, ee_urdf=picknplace_end_effector_urdf, workspace_urdf=workspace_urdf, animate=True, cart_time_step=cart_time_step, tr_time_step=tr_time_step)
def descartes_demo(viewer=True, scaling_test=False, draw_graph=True): connect(use_gui=viewer) with HideOutput(): robot = load_pybullet(KUKA_ROBOT_URDF, fixed_base=True) # * adjust camera pose (optional) # has_gui checks if the GUI mode is enabled if has_gui(): camera_base_pt = (0,0,0) camera_pt = np.array(camera_base_pt) + np.array([1, -0.5, 1]) set_camera_pose(tuple(camera_pt), camera_base_pt) cprint('Hello robot world! <ctrl+left mouse> to pan', 'green') wait_if_gui() ik_joints = get_movable_joints(robot) ik_joint_names = get_joint_names(robot, ik_joints) print('ik joint names: {}'.format(ik_joint_names)) lower_limits, upper_limits = get_custom_limits(robot, ik_joints) print('joint lower limit: {}'.format(lower_limits)) print('joint upper limit: {}'.format(upper_limits)) # we can also read these velocities from the SRDF file (using e.g. COMPAS_FAB) # I'm a bit lazy, just handcode the values here vel_limits = {0 : 6.28318530718, 1 : 5.23598775598, 2 : 6.28318530718, 3 : 6.6497044501, 4 : 6.77187749774, 5 : 10.7337748998} # set the robot to a "comfortable" start configuration, optional robot_start_conf = [0,-np.pi/2,np.pi/2,0,0,0] set_joint_positions(robot, ik_joints, robot_start_conf) tool_link = link_from_name(robot, EE_LINK_NAME) robot_base_link = link_from_name(robot, ROBOT_BASE_LINK_NAME) # tool_from_root = get_relative_pose(robot, root_link, tool_link) # * draw EE pose if has_gui() : tcp_pose = get_link_pose(robot, tool_link) draw_pose(tcp_pose) circle_center = np.array([0.6, 0, 0.2]) circle_r = 0.1 # * generate multiple circles ee_poses = [] full_angle = 2*2*np.pi # total num of path pts, one path point per 5 degree n_pt = int(full_angle / (np.pi/180 * 5)) # full_angle = np.pi for a in np.linspace(0.0, full_angle, num=n_pt): pt = circle_center + circle_r*np.array([np.cos(a), np.sin(a), 0]) circ_pose = multiply(Pose(point=pt, euler=Euler(yaw=a+np.pi/2)), Pose(euler=Euler(roll=np.pi*3/4))) draw_pose(circ_pose, length=0.01) ee_poses.append(circ_pose) # def get_ee_sample_fn(roll_gen, pitch_gen, yaw_gen): # def ee_sample_fn(ee_pose): # # a finite generator # for roll, pitch, yaw in product(roll_gen, pitch_gen, yaw_gen): # yield multiply(ee_pose, Pose(euler=Euler(roll=roll, pitch=pitch, yaw=yaw))) # return ee_sample_fn # roll_sample_size = 3 # pitch_sample_size = 3 # yaw_sample_size = 1 # delta_roll = np.pi/12 # delta_pitch = np.pi/12 # roll_gen = np.linspace(-delta_roll, delta_roll, num=roll_sample_size) # pitch_gen = np.linspace(-delta_pitch, delta_pitch, num=pitch_sample_size) # yaw_gen = np.linspace(0.0, 2*np.pi, num=yaw_sample_size) # ee_sample_fn = get_ee_sample_fn(roll_gen, pitch_gen, yaw_gen) # for ep in ee_sample_fn(ee_poses[0]): # draw_pose(ep, length=0.03) # * baseline, keeping the EE z axis rotational dof fixed st_time = time.time() path = plan_cartesian_motion(robot, robot_base_link, tool_link, ee_poses) print('Solving time: {}'.format(elapsed_time(st_time))) if path is None: cprint('Gradient-based ik cartesian planning cannot find a plan!', 'red') else: cprint('Gradient-based ik cartesian planning find a plan!', 'green') time_step = 0.03 for conf in path: set_joint_positions(robot, ik_joints, conf) wait_for_duration(time_step) if draw_graph: print('drawing graph...') plot_joint_val(path, lower_limits, upper_limits, method='GradIK') print('='*20) # * Now, let's try if using ladder graph without releasing the ee dof can give us a good trajectory # you should be doing something similar in your picture, right? # First, we will need ikfast to obtain ik solution variance, same in Descartes ik_fn = ikfast_kuka_kr6_r900.get_ik # we have to specify ik fn wrapper and feed it into pychoreo def get_sample_ik_fn(robot, ik_fn, robot_base_link, ik_joints, tool_from_root=None): def sample_ik_fn(world_from_tcp): if tool_from_root: world_from_tcp = multiply(world_from_tcp, tool_from_root) return sample_tool_ik(ik_fn, robot, ik_joints, world_from_tcp, robot_base_link, get_all=True) return sample_ik_fn # ik generation function stays the same for all cartesian processes sample_ik_fn = get_sample_ik_fn(robot, ik_fn, robot_base_link, ik_joints) # we ignore self collision in this tutorial, the collision_fn only considers joint limit now # See : https://github.com/yijiangh/pybullet_planning/blob/dev/tests/test_collisions.py # for more info on examples on using collision function collision_fn = get_collision_fn(robot, ik_joints, obstacles=[], attachments=[], self_collisions=False, # disabled_collisions=disabled_collisions, # extra_disabled_collisions=extra_disabled_collisions, custom_limits={}) # Let's check if our ik sampler is working properly # uncomment the following if you want to play with this # for p in ee_poses: # print('-'*5) # pb_q = inverse_kinematics(robot, tool_link, p) # if pb_q is None: # cprint('pb ik can\'t find an ik solution', 'red') # qs = sample_ik_fn(p) # if qs is not None: # cprint('But Ikfast does find one! {}'.format(qs[0]), 'green') # # set_joint_positions(robot, ik_joints, qs[0]) # # wait_if_gui() # else: # cprint('ikfast can\'t find an ik solution', 'red') # * Ok, now we have the ik sampler and collision function ready, let's see if we can find a valid cartesian trajectory! ee_vel = 0.005 # m/s # st_time = time.time() # path, cost = plan_cartesian_motion_lg(robot, ik_joints, ee_poses, sample_ik_fn, collision_fn, \ # custom_vel_limits=vel_limits, ee_vel=ee_vel) # print('Solving time: {}'.format(elapsed_time(st_time))) # if path is None: # cprint('ladder graph (w/o releasing dof) cartesian planning cannot find a plan!', 'red') # else: # cprint('ladder graph (w/o releasing dof) cartesian planning find a plan!', 'green') # cprint('Cost: {}'.format(cost), 'yellow') # time_step = 0.03 # for conf in path: # # cprint('conf: {}'.format(conf)) # set_joint_positions(robot, ik_joints, conf) # wait_for_duration(time_step) # if draw_graph: # print('drawing graph...') # plot_joint_val(path, lower_limits, upper_limits, method='IKFast+LadderGraph') # print('='*20) # * Now, let's see if releasing EE z axis dof can bring down the cost # First, let's build an end effector pose sampler to release the EE z axis dof! ## * EE z axis dof generator def get_ee_sample_fn(roll_gen, pitch_gen, yaw_gen): def ee_sample_fn(ee_pose): # a finite generator for roll, pitch, yaw in product(roll_gen, pitch_gen, yaw_gen): yield multiply(ee_pose, Pose(euler=Euler(roll=roll, pitch=pitch, yaw=yaw))) return ee_sample_fn # by increasing this number we can see the cost go down roll_sample_size = 10 pitch_sample_size = 10 yaw_sample_size = 10 delta_roll = np.pi/6 delta_pitch = np.pi/6 delta_yaw = np.pi/6 roll_gen = np.linspace(-delta_roll, delta_roll, num=roll_sample_size) pitch_gen = np.linspace(-delta_pitch, delta_pitch, num=pitch_sample_size) yaw_gen = np.linspace(-delta_yaw, delta_yaw, num=yaw_sample_size) ee_sample_fn = get_ee_sample_fn(roll_gen, pitch_gen, yaw_gen) st_time = time.time() path, cost = plan_cartesian_motion_lg(robot, ik_joints, ee_poses, sample_ik_fn, collision_fn, sample_ee_fn=ee_sample_fn, \ custom_vel_limits=vel_limits, ee_vel=ee_vel) print('Solving time: {}'.format(elapsed_time(st_time))) # TODO: plot ee z axis deviation plot # the ladder graph cost is just summation of all adjacent joint difference # so the following assertion should be true # conf_array = np.array(path) # conf_diff = np.abs(conf_array[:-1,:] - conf_array[1:,:]) # np_cost = np.sum(conf_diff) # assert np.allclose(np_cost, cost), '{} - {}'.format(np_cost, cost) if path is None: cprint('ladder graph (releasing EE z dof) cartesian planning cannot find a plan!', 'red') else: cprint('ladder graph (releasing EE z dof) cartesian planning find a plan!', 'cyan') cprint('Cost: {}'.format(cost), 'yellow') time_step = 0.03 for conf in path: # cprint('conf: {}'.format(conf)) set_joint_positions(robot, ik_joints, conf) wait_for_duration(time_step) if draw_graph: print('drawing graph...') plot_joint_val(path, lower_limits, upper_limits, method='IKFast+LadderGraph+release z dof-res{}'.format(yaw_sample_size)) print('='*20) # Now, let's do a scaling test: # if scaling_test: # res_sc = list(range(4,30)) # cost_sc = [] # for res in res_sc: # yaw_sample_size = res # yaw_gen = np.linspace(0.0, 2*np.pi, num=yaw_sample_size) # ee_sample_fn = get_ee_sample_fn(yaw_gen) # path, cost = plan_cartesian_motion_lg(robot, ik_joints, ee_poses, sample_ik_fn, collision_fn, sample_ee_fn=ee_sample_fn) # assert path is not None # cost_sc.append(cost) # if res % 5 == 0: # if draw_graph: # plot_joint_val(path, lower_limits, upper_limits, method='IKFast+LadderGraph+release z dof-res{}'.format(yaw_sample_size)) # fig, ax = plt.subplots() # ax.plot(res_sc, cost_sc) # ax.set(xlabel='yaw angle discr resolution', ylabel='total joint difference cost', # title='Total joint diff scaling test') # ax.grid() # fig.savefig(os.path.join(HERE, 'images', 'tota_diff-scaling.png')) # # plt.show() wait_if_gui('Press enter to exit')
def ur_demo(viewer=True, robot_path=UR_ROBOT_URDF, ee_path=EE_PATH, \ workspace_path=MIT_WORKSPACE_PATH, attach_obj_path=ATTACH_OBJ_PATH, obstacle_obj_path=OBSTACLE_OBJ_PATH): # * this will create the pybullet GUI # setting viewers=False will enter GUI-free mode connect(use_gui=viewer) cprint( "Welcome to pybullet! <Ctrl+left mouse> to rotate, <Ctrl+middle mouse> to move the camera, <Ctrl+right mouse> to zoom", 'green') cprint('But the space is empty, let\'s load our robot!', 'yellow') # wait_for_user is your friend! It will pause the console, but having a separate thread keeping # the GUI running so you can rotate and see wait_for_user() # * This is how we load a robot from a URDF, a workspace from a URDF, or simply a mesh object from an obj file # Notice that the pybullet uses *METER* by default, make sure you scale things properly! robot = load_pybullet(robot_path, fixed_base=True) workspace = load_pybullet(workspace_path, fixed_base=True) ee_body = create_obj(ee_path) # this will print all the bodies' information in your console dump_world() cprint( 'You just loaded a robot, a workspace (with many static objects as its link, I modeled our good old MIT 3-412 shop here), ' + 'and an end effector (it\'s inside the robot base now)', 'green') wait_for_user() # * adjust camera pose (optional) # has_gui checks if the GUI mode is enabled if has_gui(): camera_base_pt = (0, 0, 0) camera_pt = np.array(camera_base_pt) + np.array([1, -0.5, 0.5]) set_camera_pose(tuple(camera_pt), camera_base_pt) # * each joint of the robot are assigned with an integer in pybullet ik_joints = get_movable_joints(robot) ik_joint_names = get_joint_names(robot, ik_joints) cprint('Joint {} \ncorresponds to:\n{}'.format(ik_joints, ik_joint_names), 'green') robot_start_conf = [0, -1.65715, 1.71108, -1.62348, 0, 0] cprint("This is before updating pose", 'yellow') wait_for_user() # * set joint configuration, the robot's pose will be updated set_joint_positions(robot, ik_joints, robot_start_conf) cprint("This is after set joint pose: {}".format(robot_start_conf), 'green') wait_for_user() tool_attach_link_name = 'ee_link' tool_attach_link = link_from_name(robot, tool_attach_link_name) # * attach the end effector ee_link_pose = get_link_pose(robot, tool_attach_link) set_pose(ee_body, ee_link_pose) ee_attach = create_attachment(robot, tool_attach_link, ee_body) # we need to call "assign()" to update the attachment to the current end effector pose ee_attach.assign() # let's load a bar element (obj) and a box (pybullet primitive shape) into the world attached_bar_body = create_obj(attach_obj_path) box_body = create_obj(obstacle_obj_path) cprint('We loaded a box to our scene!', 'green') wait_for_user() # * attach the bar ee_link_from_tcp = Pose(point=(0.094, 0, 0)) set_pose(attached_bar_body, multiply(ee_link_pose, ee_link_from_tcp)) bar_attach = create_attachment(robot, tool_attach_link, attached_bar_body) bar_attach.assign() cprint('The bar element is attached to the robot', 'green') wait_for_user() attachments = [ee_attach, bar_attach] # * Let's do some collision checking # * specify disabled link pairs for collision checking (because they are adjacent / impossible to collide) # link name corresponds to the ones specified in the URDF # again, each robot link is assigned with an integer index in pybullet robot_self_collision_disabled_link_names = [ ('base_link', 'shoulder_link'), ('ee_link', 'wrist_1_link'), ('ee_link', 'wrist_2_link'), ('ee_link', 'wrist_3_link'), ('forearm_link', 'upper_arm_link'), ('forearm_link', 'wrist_1_link'), ('shoulder_link', 'upper_arm_link'), ('wrist_1_link', 'wrist_2_link'), ('wrist_1_link', 'wrist_3_link'), ('wrist_2_link', 'wrist_3_link') ] self_collision_links = get_disabled_collisions( robot, robot_self_collision_disabled_link_names) cprint('self_collision_links disabled: {}'.format(self_collision_links), 'yellow') extra_disabled_link_names = [('base_link', 'MIT_3412_robot_base_plate'), ('shoulder_link', 'MIT_3412_robot_base_plate') ] extra_disabled_collisions = get_body_body_disabled_collisions( robot, workspace, extra_disabled_link_names) cprint('extra disabled: {}'.format(extra_disabled_collisions), 'yellow') print('#' * 10) cprint('Checking robot links self-collision', 'green') collision_fn = get_collision_fn(robot, ik_joints, obstacles=[], attachments=attachments, self_collisions=True, disabled_collisions=self_collision_links) conf = [-1.029744, -1.623156, 2.844887, -0.977384, 1.58825, 0.314159] # self collision, this should return true # this function will first set the robot's joint configuration (together with the attachment) # and check collision # notice that turning on the diagnosis flag here will show you where the collision is happening cprint( 'Notice that the diagnosis mode will zoom the camera to where the collision is detected. Move the camera around if you can\'t see what\'s going on there.', 'yellow') assert collision_fn(conf, diagnosis=True) print('#' * 10) cprint('Checking robot links - holding attachment self-collision', 'green') collision_fn = get_collision_fn( robot, ik_joints, obstacles=[], attachments=attachments, self_collisions=True, disabled_collisions=self_collision_links, extra_disabled_collisions=extra_disabled_collisions) conf = [0.03500, -2.26900, 2.44300, 1.117, 1.6579, 0.105] assert collision_fn(conf, diagnosis=True) print('\n') print('#' * 10) cprint('Checking robot links to obstacles (w/o links) collision', 'green') collision_fn = get_collision_fn( robot, ik_joints, obstacles=[box_body], attachments=attachments, self_collisions=True, disabled_collisions=self_collision_links, extra_disabled_collisions=extra_disabled_collisions) conf = [ -0.105, -0.76800000000000002, 1.292, -0.61099999999999999, 1.484, 0.105 ] assert collision_fn(conf, diagnosis=True) print('\n') print('#' * 10) cprint('Checking robot links to multi-link obstacle collision', 'green') collision_fn = get_collision_fn( robot, ik_joints, obstacles=[workspace], attachments=[], self_collisions=True, disabled_collisions=self_collision_links, extra_disabled_collisions=extra_disabled_collisions) conf = [ -0.17499999999999999, -3.194, 0.33200000000000002, -1.6579999999999999, 1.431, 0.105 ] assert collision_fn(conf, diagnosis=True) print('\n') print('#' * 10) cprint('Checking attachment to obstacles (w/o links) collision', 'green') collision_fn = get_collision_fn( robot, ik_joints, obstacles=[workspace, box_body], attachments=attachments, self_collisions=True, disabled_collisions=self_collision_links, extra_disabled_collisions=extra_disabled_collisions) conf = [ -2.8100000000000001, -1.484, -1.9199999999999999, -1.6579999999999999, 1.431, 0.105 ] assert collision_fn(conf, diagnosis=True) print('\n') print('#' * 10) cprint('Checking attachment to multi-link obstacle collision', 'green') collision_fn = get_collision_fn( robot, ik_joints, obstacles=[workspace], attachments=attachments, self_collisions=True, disabled_collisions=self_collision_links, extra_disabled_collisions=extra_disabled_collisions) conf = [ -0.17499999999999999, -2.4780000000000002, 0.33200000000000002, -1.6579999999999999, 1.431, 0.105 ] assert collision_fn(conf, diagnosis=True) print('\n') # * collision checking exoneration print('#' * 10) print('self-link collision disable') collision_fn = get_collision_fn(robot, ik_joints, obstacles=[], attachments=[], self_collisions=False) conf = [-1.029744, -1.623156, 2.844887, -0.977384, 1.58825, 0.314159] assert not collision_fn(conf, diagnosis=True) print('\n') print('#' * 10) cprint('robot links to obstacle collision exoneration', 'green') cprint( 'In this example, the first collision function will check collision between the robot and the box, ' + 'but the second collision function will ignore it.', 'yellow') collision_fn = get_collision_fn( robot, ik_joints, obstacles=[box_body], attachments=[], self_collisions=True, disabled_collisions=self_collision_links, ) collision_fn_disable = get_collision_fn( robot, ik_joints, obstacles=[box_body], attachments=[], self_collisions=True, disabled_collisions=self_collision_links, extra_disabled_collisions=extra_disabled_collisions.union([ ((robot, link_from_name(robot, 'forearm_link')), (box_body, BASE_LINK)) ]), ) conf = [ -3.2639999999999998, -2.6880000000000002, -0.85499999999999998, -1.536, 3.0369999999999999, -0.070000000000000007 ] assert collision_fn(conf, diagnosis=True) assert not collision_fn_disable(conf, diagnosis=True) print('\n') # * joint value overflow checking & exoneration cprint('joint value overflow checking & exoneration', 'green') cprint( 'collision_fn also checks for robot\'s joint limit as well. We can also exonerate it by passing custom_limits into the collision_fn', 'yellow') def get_custom_limits_from_name(robot, joint_limits): return { joint_from_name(robot, joint): limits for joint, limits in joint_limits.items() } custom_limits = get_custom_limits_from_name(robot, { 'shoulder_pan_joint': (-7.9, 0), 'elbow_joint': (-8.0, 0) }) collision_fn = get_collision_fn(robot, ik_joints) collision_fn_disable = get_collision_fn(robot, ik_joints, custom_limits=custom_limits) conf = [ -7.8450000000000002, -2.1469999999999998, -7.99, -0.92500000000000004, 1.78, 0.105 ] assert collision_fn(conf, diagnosis=True) assert not collision_fn_disable(conf, diagnosis=True) print('\n')
def rfl_demo(viewer=True): arm = 'right' connect(use_gui=viewer) robot = load_pybullet(RFL_ROBOT_URDF, fixed_base=True) set_camera(yaw=-90, pitch=-40, distance=10, target_position=(0, 7.5, 0)) cprint('hello RFL! <ctrl+left mouse> to pan', 'green') wait_for_user() # create a box to be picked up # see: https://pybullet-planning.readthedocs.io/en/latest/reference/generated/pybullet_planning.interfaces.env_manager.create_box.html#pybullet_planning.interfaces.env_manager.create_box block = create_box(0.059, 20., 0.089) block_x = 10 block_y = 5. block_z = 1.5 set_pose( block, Pose(Point(x=block_x, y=block_y, z=block_z), Euler(yaw=np.pi / 2))) arm_tag = arm[0] arm_joint_names = ['gantry_x_joint', '{}_gantry_y_joint'.format(arm_tag), '{}_gantry_z_joint'.format(arm_tag)] + \ ['{}_robot_joint_{}'.format(arm_tag, i+1) for i in range(6)] arm_joints = joints_from_names(robot, arm_joint_names) # * if a subset of joints is used, use: # arm_joints = joints_from_names(robot, arm_joint_names[1:]) # this will disable the gantry-x joint cprint('Used joints: {}'.format(get_joint_names(robot, arm_joints)), 'yellow') # * get a joint configuration sample function: # it separately sample each joint value within the feasible range sample_fn = get_sample_fn(robot, arm_joints) cprint( 'Randomly sample robot configuration and set them! (no collision check is performed)', 'blue') wait_for_user() for i in range(5): # randomly sample a joint conf sampled_conf = sample_fn() set_joint_positions(robot, arm_joints, sampled_conf) cprint('#{} | Conf sampeld: {}'.format(i, sampled_conf), 'green') wait_for_user() # * now let's plan a trajectory # we use y-z-arm 6 joint all together here cprint( 'Randomly sample robot start/end configuration and comptue a motion plan! (no self-collision check is performed)', 'blue') print( 'Disabled collision links needs to be given (can be parsed from a SRDF via compas_fab)' ) for _ in range(5): print('=' * 10) q1 = list(sample_fn()) # intentionly make the robot needs to cross the collision object # let it start from the right side q1[0] = 0. q1[1] = 0 set_joint_positions(robot, arm_joints, q1) cprint('Sampled start conf: {}'.format(q1), 'cyan') wait_for_user() # let it ends at the left side q2 = list(sample_fn()) q2[0] = 0.5 q2[1] = 7.0 cprint('Sampled end conf: {}'.format(q2), 'cyan') path = plan_joint_motion(robot, arm_joints, q2, obstacles=[block], self_collisions=False, custom_limits={arm_joints[0]: [0.0, 1.2]}) if path is None: cprint('no plan found', 'red') continue else: wait_for_user( 'a motion plan is found! Press enter to start simulating!') # adjusting this number will adjust the simulation speed time_step = 0.03 for conf in path: set_joint_positions(robot, arm_joints, conf) wait_for_duration(time_step)
def _set_body_configuration(self, body_id, configuration): joints = joints_from_names(body_id, configuration.joint_names) set_joint_positions(body_id, joints, configuration.values)
def panda_demo(viewer=True): arm='right' connect(use_gui=viewer) robot = load_pybullet("franka_panda/panda.urdf", fixed_base=True) tableUid = load_pybullet("table/table.urdf", fixed_base=True, basePosition=[0.5,0,-0.65]) #workspace = load_pybullet("plane.urdf", fixed_base=True) set_camera(yaw=0, pitch=-40, distance=1.5, target_position=(0.55, -0.35, 0.2)) cprint('hello Panda! <ctrl+left mouse> to pan', 'green') wait_for_user() # create a box to be picked up # see: https://pybullet-planning.readthedocs.io/en/latest/reference/generated/pybullet_planning.interfaces.env_manager.create_box.html#pybullet_planning.interfaces.env_manager.create_box block = create_box(0.2, 0.2, 0.4) block_x = 0.4 block_y = 0.2 block_z = 0.0 set_pose(block, Pose(Point(x=block_x, y=block_y, z=block_z), Euler(yaw=np.pi/2))) block1 = create_cylinder(0.1, 0.4) block1_x = 0.8 block1_y = -0.2 block1_z = 0.0 set_pose(block1, Pose(Point(x=block1_x, y=block1_y, z=block1_z), Euler(yaw=np.pi/2))) ik_joints = get_movable_joints(robot) ik_joint_names = get_joint_names(robot, ik_joints) # * if a subset of joints is used, use: #panda_joints = joints_from_names(robot, ik_joint_names[:7]) # this will disable the gantry-x joint cprint('Used joints: {}'.format(get_joint_names(robot, ik_joints)), 'yellow') ee_link = get_link_name(robot, 11) print(ee_link) # * get a joint configuration sample function: # it separately sample each joint value within the feasible range sample_fn = get_sample_fn(robot, ik_joints) cprint('Randomly sample robot configuration and set them! (no collision check is performed)', 'blue') wait_for_user() for i in range(5): # randomly sample a joint conf sampled_conf = sample_fn() set_joint_positions(robot, ik_joints, sampled_conf) cprint('#{} | Conf sampeld: {}'.format(i, sampled_conf), 'green') wait_for_user() # * now let's plan a trajectory # we use y-z-arm 6 joint all together here cprint('Randomly sample robot start/end configuration and comptue a motion plan! (no self-collision check is performed)', 'blue') print('Disabled collision links needs to be given (can be parsed from a SRDF via compas_fab)') for _ in range(5): print('='*10) ''' q1 = list(sample_fn()) # intentionly make the robot needs to cross the collision object # let it start from the right side q1[0] = 0. q1[1] = 0 ''' #set_joint_positions(robot, ik_joints, q1) #cprint('Sampled start conf: {}'.format(q1), 'cyan') #wait_for_user() # let it ends at the left side ''' q2 = list(sample_fn()) q2[0] = 0.5 q2[1] = 0.5 cprint('Sampled end conf: {}'.format(q2), 'cyan') ''' ''' path = plan_joint_motion(robot, ik_joints, q2, obstacles=[block], self_collisions=False, custom_limits={ik_joints[0]:[0.0, 1.2]}) if path is None: cprint('no plan found', 'red') continue else: wait_for_user('a motion plan is found! Press enter to start simulating!') ''' sol = sub_inverse_kinematics(robot, ik_joints[0], 11, ([0.6, 0.0, 0.3], [1,0,0,0])) print(sol) # adjusting this number will adjust the simulation speed time_step = 0.03 for conf in path: set_joint_positions(robot, ik_joints, conf) wait_for_duration(time_step)