예제 #1
0
def condition_controller(condition):
    #from itertools import takewhile
    dt = get_time_step()
    for step in irange(INF):
        #duration = step*dt
        if condition(step):
            break
        yield
def follow_curve(robot,
                 joints,
                 curve,
                 goal_t=None,
                 time_step=None,
                 max_velocities=MAX_VELOCITIES,
                 **kwargs):
    if goal_t is None:
        goal_t = curve.x[-1]
    if time_step is None:
        time_step = 10 * get_time_step()
    #distance_fn = get_distance_fn(robot, joints, weights=None, norm=2)
    distance_fn = get_duration_fn(robot,
                                  joints,
                                  velocities=max_velocities,
                                  norm=INF)  # get_distance
    positions = np.array(get_joint_positions(robot, joints))
    closest_dist, closest_t = find_closest(positions,
                                           curve,
                                           t_range=(curve.x[0], goal_t),
                                           max_time=1e-1,
                                           max_iterations=INF,
                                           distance_fn=distance_fn,
                                           verbose=True)
    print('Closest dist: {:.3f} | Closest time: {:.3f}'.format(
        closest_dist, closest_t))
    target_t = closest_t
    # TODO: condition based on closest_dist
    while True:
        print('\nTarget time: {:.3f} | Goal time: {}'.format(target_t, goal_t))
        target_positions = curve(target_t)
        target_velocities = curve(target_t, nu=1)  # TODO: draw the velocity
        #print('Positions: {} | Velocities: {}'.format(target_positions, target_velocities))
        handles = draw_waypoint(target_positions)
        is_goal = (target_t == goal_t)
        position_tol = 1e-2 if is_goal else 1e-2
        for output in control_state(robot,
                                    joints,
                                    target_positions=target_positions,
                                    target_velocities=target_velocities,
                                    position_tol=position_tol,
                                    velocity_tol=INF,
                                    max_velocities=max_velocities,
                                    **kwargs):
            yield output
        remove_handles(handles)
        target_t = min(goal_t, target_t + time_step)
        if is_goal:
            break
예제 #3
0
 def rest_for_duration(self, duration):
     if not self.execute_motor_control:
         return
     sim_duration = 0.0
     body = self.robot
     position_gain = 0.02
     with ClientSaver(self.client):
         # TODO: apply to all joints
         dt = get_time_step()
         movable_joints = get_movable_joints(body)
         target_conf = get_joint_positions(body, movable_joints)
         while sim_duration < duration:
             p.setJointMotorControlArray(
                 body,
                 movable_joints,
                 p.POSITION_CONTROL,
                 targetPositions=target_conf,
                 targetVelocities=[0.0] * len(movable_joints),
                 positionGains=[position_gain] * len(movable_joints),
                 # velocityGains=[velocity_gain] * len(movable_joints),
                 physicsClientId=self.client)
             step_simulation()
             sim_duration += dt
예제 #4
0
def simulate(controller=None,
             max_duration=INF,
             max_steps=INF,
             print_rate=1.,
             sleep=None):
    enable_gravity()
    dt = get_time_step()
    print('Time step: {:.6f} sec'.format(dt))
    start_time = last_print = time.time()
    for step in irange(max_steps):
        duration = step * dt
        if duration >= max_duration:
            break
        if (controller is not None) and is_empty(controller):
            break
        step_simulation()
        synchronize_viewer()
        if elapsed_time(last_print) >= print_rate:
            print(
                'Sim step: {} | Sim time: {:.3f} sec | Elapsed time: {:.3f} sec'
                .format(step, duration, elapsed_time(start_time)))
            last_print = time.time()
        if sleep is not None:
            time.sleep(sleep)
예제 #5
0
    def follow_trajectory(self,
                          joints,
                          path,
                          times_from_start=None,
                          real_time_step=0.0,
                          waypoint_tolerance=1e-2 * np.pi,
                          goal_tolerance=5e-3 * np.pi,
                          max_sim_duration=1.0,
                          print_sim_frequency=1.0,
                          **kwargs):
        # real_time_step = 1e-1 # Can optionally sleep to slow down visualization
        start_time = time.time()
        if times_from_start is not None:
            assert len(path) == len(times_from_start)
            current_positions = get_joint_positions(self.robot, joints)
            differences = [(np.array(q2) - np.array(q1)) / (t2 - t1)
                           for q1, t1, q2, t2 in
                           zip([current_positions] + path, [0.] +
                               times_from_start, path, times_from_start)]
            velocity_path = differences[1:] + [np.zeros(len(joints))
                                               ]  # Using velocity at endpoints
        else:
            velocity_path = [None] * len(path)

        sim_duration = 0.0
        sim_steps = 0
        last_print_sim_duration = sim_duration
        with ClientSaver(self.client):
            dt = get_time_step()
            # TODO: fit using splines to get velocity info
            for num, positions in enumerate(path):
                if self.execute_motor_control:
                    sim_start = sim_duration
                    tolerance = goal_tolerance if (num == len(path) -
                                                   1) else waypoint_tolerance
                    velocities = velocity_path[num]
                    for _ in joint_controller_hold2(self.robot,
                                                    joints,
                                                    positions,
                                                    velocities,
                                                    tolerance=tolerance,
                                                    **kwargs):
                        step_simulation()
                        # print(get_joint_velocities(self.robot, joints))
                        # print([get_joint_torque(self.robot, joint) for joint in joints])
                        sim_duration += dt
                        sim_steps += 1
                        time.sleep(real_time_step)
                        if print_sim_frequency <= (sim_duration -
                                                   last_print_sim_duration):
                            print(
                                'Waypoint: {} | Simulation steps: {} | Simulation seconds: {:.3f} | Steps/sec {:.3f}'
                                .format(num, sim_steps, sim_duration,
                                        sim_steps / elapsed_time(start_time)))
                            last_print_sim_duration = sim_duration
                        if max_sim_duration <= (sim_duration - sim_start):
                            print(
                                'Timeout of {:.3f} simulation seconds exceeded!'
                                .format(max_sim_duration))
                            break
                    # control_joints(self.robot, arm_joints, positions)
                else:
                    set_joint_positions(self.robot, joints, positions)
        print(
            'Followed {} waypoints in {:.3f} simulation seconds and {} simulation steps'
            .format(len(path), sim_duration, sim_steps))
def follow_curve_old(robot, joints, curve, goal_t=None):
    # TODO: unify with /Users/caelan/Programs/open-world-tamp/open_world/simulation/control.py
    if goal_t is None:
        goal_t = curve.x[-1]
    time_step = get_time_step()
    target_step = 10 * time_step
    #distance_fn = get_distance_fn(robot, joints, weights=None, norm=2)
    distance_fn = get_duration_fn(robot,
                                  joints,
                                  velocities=MAX_VELOCITIES,
                                  norm=INF)
    for i in irange(INF):
        # if (i % 10) != 0:
        #     continue
        current_p = np.array(get_joint_positions(robot, joints))
        current_v = np.array(get_joint_velocities(robot, joints))
        goal_dist = distance_fn(current_p, curve(goal_t))
        print('Positions: {} | Velocities: {} | Goal distance: {:.3f}'.format(
            current_p.round(N_DIGITS), current_v.round(N_DIGITS), goal_dist))
        if goal_dist < 1e-2:
            return True

        # _, connection = mpc(current_p, current_v, curve, v_max=MAX_VELOCITIES, a_max=MAX_ACCELERATIONS,
        #                     dt_max=1e-1, max_time=1e-1)
        # assert connection is not None
        # target_t = 0.5*connection.x[-1]
        # target_p = connection(target_t)
        # target_v = connection(target_t, nu=1)
        # #print(target_p)

        closest_dist, closest_t = find_closest(current_p,
                                               curve,
                                               t_range=None,
                                               max_time=1e-2,
                                               max_iterations=INF,
                                               distance_fn=distance_fn,
                                               verbose=True)
        target_t = min(closest_t + target_step, curve.x[-1])
        target_p = curve(target_t)
        #target_v = curve(target_t, nu=1)
        target_v = curve(closest_t, nu=1)

        #target_v = MAX_VELOCITIES
        #target_v = INF*np.zeros(len(joints))

        handles = draw_waypoint(target_p)
        #times, confs = time_discretize_curve(curve, verbose=False, resolution=resolutions)  # max_velocities=v_max,

        # set_joint_positions(robot, joints, target_p)
        max_velocity_control_joints(robot,
                                    joints,
                                    positions=target_p,
                                    velocities=target_v,
                                    max_velocities=MAX_VELOCITIES)

        #next_t = closest_t + time_step
        #next_p = current_p + current_v*time_step
        yield target_t
        actual_p = np.array(get_joint_positions(robot, joints))
        actual_v = np.array(get_joint_velocities(robot, joints))
        next_p = current_p + actual_v * time_step
        print('Predicted: {} | Actual: {}'.format(next_p.round(N_DIGITS),
                                                  actual_p.round(N_DIGITS)))
        remove_handles(handles)