def enumerate_extrusions(printed, node, element): for traj in trajs_from_element[node, element]: yield traj if (max_directions <= count_per_element[node, element]) or \ (max_extrusions <= len(trajs_from_element[node, element])): return with LockRenderer(True): if condition: # TODO: could perform bidirectional here again generator = print_gen_fn( node1=node, element=element, extruded=printed, trajectories=trajs_from_element[node, element]) else: generator = gen_from_element[node, element] for traj in generator: # TODO: islice for the num to sample count_per_element[node, element] += 1 if traj is not None: traj, = traj trajs_from_element[node, element].append(traj) yield traj if max_directions <= count_per_element[node, element]: print('Enumerated {}: {} directions and {} trajectories'. format(element, count_per_element[node, element], len(trajs_from_element[node, element]))) break
def test_drake_base_motion(pr2, base_start, base_goal, obstacles=[]): # TODO: combine this with test_arm_motion """ Drake's PR2 URDF has explicit base joints """ disabled_collisions = get_disabled_collisions(pr2) base_joints = [joint_from_name(pr2, name) for name in PR2_GROUPS['base']] set_joint_positions(pr2, base_joints, base_start) base_joints = base_joints[:2] base_goal = base_goal[:len(base_joints)] wait_if_gui('Plan Base?') with LockRenderer(lock=False): base_path = plan_joint_motion(pr2, base_joints, base_goal, obstacles=obstacles, disabled_collisions=disabled_collisions) if base_path is None: print('Unable to find a base path') return print(len(base_path)) for bq in base_path: set_joint_positions(pr2, base_joints, bq) if SLEEP is None: wait_if_gui('Continue?') else: wait_for_duration(SLEEP)
def main(): connect(use_gui=True) add_data_path() plane = p.loadURDF("plane.urdf") with HideOutput(): with LockRenderer(): robot = load_model(FRANKA_URDF, fixed_base=True) dump_body(robot) print('Start?') wait_for_user() tool_link = link_from_name(robot, 'panda_hand') joints = get_movable_joints(robot) print('Joints', [get_joint_name(robot, joint) for joint in joints]) sample_fn = get_sample_fn(robot, joints) for i in range(10): print('Iteration:', i) conf = sample_fn() set_joint_positions(robot, joints, conf) wait_for_user() test_retraction(robot, PANDA_INFO, tool_link, max_distance=0.01, max_time=0.05) disconnect()
def main(): # TODO: move to pybullet-planning for now parser = argparse.ArgumentParser() parser.add_argument('-viewer', action='store_true', help='enable the viewer while planning') args = parser.parse_args() print(args) connect(use_gui=True) with LockRenderer(): draw_pose(unit_pose(), length=1) floor = create_floor() with HideOutput(): robot = load_pybullet(get_model_path(ROOMBA_URDF), fixed_base=True, scale=2.0) for link in get_all_links(robot): set_color(robot, link=link, color=ORANGE) robot_z = stable_z(robot, floor) set_point(robot, Point(z=robot_z)) #set_base_conf(robot, rover_confs[i]) data_path = add_data_path() shelf, = load_model(os.path.join(data_path, KIVA_SHELF_SDF), fixed_base=True) # TODO: returns a tuple dump_body(shelf) #draw_aabb(get_aabb(shelf)) wait_for_user() disconnect()
def draw_model(elements, node_points, ground_nodes, color=None): handles = [] with LockRenderer(): for element in elements: #color = BLUE if is_ground(element, ground_nodes) else RED handles.append(draw_element(node_points, element, color=color)) return handles
def main(): # The URDF loader seems robust to package:// and slightly wrong relative paths? connect(use_gui=True) add_data_path() plane = p.loadURDF("plane.urdf") #with HideOutput(): with LockRenderer(): robot = load_model(MOVO_URDF, fixed_base=True) dump_body(robot) print('Start?') wait_for_user() #joint_names = HEAD_JOINTS #joints = joints_from_names(robot, joint_names) joints = get_movable_joints(robot) print('Joints', [get_joint_name(robot, joint) for joint in joints]) sample_fn = get_sample_fn(robot, joints) for i in range(10): print('Iteration:', i) conf = sample_fn() set_joint_positions(robot, joints, conf) wait_for_user() disconnect()
def resample(self, n=NUM_PARTICLES): if len(self.dist.support()) <= 1: return self with LockRenderer(): poses = [self.sample() for _ in range(n)] new_dist = UniformDist(poses) return self.__class__(self.world, self.name, new_dist)
def main(): parser = argparse.ArgumentParser() # Automatically includes help parser.add_argument('-viewer', action='store_true', help='enable viewer.') args = parser.parse_args() connect(use_gui=True) with LockRenderer(): draw_pose(unit_pose(), length=1, width=1) floor = create_floor() set_point(floor, Point(z=-EPSILON)) table1 = create_table(width=TABLE_WIDTH, length=TABLE_WIDTH/2, height=TABLE_WIDTH/2, top_color=TAN, cylinder=False) set_point(table1, Point(y=+0.5)) table2 = create_table(width=TABLE_WIDTH, length=TABLE_WIDTH/2, height=TABLE_WIDTH/2, top_color=TAN, cylinder=False) set_point(table2, Point(y=-0.5)) tables = [table1, table2] #set_euler(table1, Euler(yaw=np.pi/2)) with HideOutput(): # data_path = add_data_path() # robot_path = os.path.join(data_path, WSG_GRIPPER) robot_path = get_model_path(WSG_50_URDF) # WSG_50_URDF | PANDA_HAND_URDF robot = load_pybullet(robot_path, fixed_base=True) #dump_body(robot) block1 = create_box(w=BLOCK_SIDE, l=BLOCK_SIDE, h=BLOCK_SIDE, color=RED) block_z = stable_z(block1, table1) set_point(block1, Point(y=-0.5, z=block_z)) block2 = create_box(w=BLOCK_SIDE, l=BLOCK_SIDE, h=BLOCK_SIDE, color=GREEN) set_point(block2, Point(x=-0.25, y=-0.5, z=block_z)) block3 = create_box(w=BLOCK_SIDE, l=BLOCK_SIDE, h=BLOCK_SIDE, color=BLUE) set_point(block3, Point(x=-0.15, y=+0.5, z=block_z)) blocks = [block1, block2, block3] set_camera_pose(camera_point=Point(x=-1, z=block_z+1), target_point=Point(z=block_z)) block_pose = get_pose(block1) open_gripper(robot) tool_link = link_from_name(robot, 'tool_link') base_from_tool = get_relative_pose(robot, tool_link) #draw_pose(unit_pose(), parent=robot, parent_link=tool_link) grasps = get_side_grasps(block1, tool_pose=Pose(euler=Euler(yaw=np.pi/2)), top_offset=0.02, grasp_length=0.03, under=False)[1:2] for grasp in grasps: gripper_pose = multiply(block_pose, invert(grasp)) set_pose(robot, multiply(gripper_pose, invert(base_from_tool))) wait_for_user() wait_for_user('Finish?') disconnect()
def main(): # The URDF loader seems robust to package:// and slightly wrong relative paths? connect(use_gui=True) add_data_path() plane = p.loadURDF("plane.urdf") with LockRenderer(): with HideOutput(): robot = load_model(MOVO_URDF, fixed_base=True) for link in get_links(robot): set_color(robot, color=apply_alpha(0.25 * np.ones(3), 1), link=link) base_joints = joints_from_names(robot, BASE_JOINTS) draw_base_limits((get_min_limits( robot, base_joints), get_max_limits(robot, base_joints)), z=1e-2) dump_body(robot) wait_for_user('Start?') #for arm in ARMS: # test_close_gripper(robot, arm) arm = 'right' tool_link = link_from_name(robot, TOOL_LINK.format(arm)) #joint_names = HEAD_JOINTS #joints = joints_from_names(robot, joint_names) joints = base_joints + get_arm_joints(robot, arm) #joints = get_movable_joints(robot) print('Joints:', get_joint_names(robot, joints)) ik_joints = get_ik_joints(robot, MOVO_INFOS[arm], tool_link) #fixed_joints = [] fixed_joints = ik_joints[:1] #fixed_joints = ik_joints sample_fn = get_sample_fn(robot, joints) handles = [] for i in range(10): print('Iteration:', i) conf = sample_fn() print(conf) set_joint_positions(robot, joints, conf) tool_pose = get_link_pose(robot, tool_link) remove_handles(handles) handles = draw_pose(tool_pose) wait_for_user() #conf = next(ikfast_inverse_kinematics(robot, MOVO_INFOS[arm], tool_link, tool_pose, # fixed_joints=fixed_joints, max_time=0.1), None) #if conf is not None: # set_joint_positions(robot, ik_joints, conf) #wait_for_user() test_retraction(robot, MOVO_INFOS[arm], tool_link, fixed_joints=fixed_joints, max_time=0.1) disconnect()
def draw(self, **kwargs): with LockRenderer(True): remove_handles(self.handles) self.handles = [] with WorldSaver(): for name, pose_dist in self.pose_dists.items(): self.handles.extend( pose_dist.draw(color=self.color_from_name[name], **kwargs))
def fill_with_beads(world, bowl_name, beads, **kwargs): with LockRenderer(lock=True): with BodySaver(world.robot): contained_beads = pour_beads(world, bowl_name, list(beads), **kwargs) print('Contained: {} out of {} beads ({:.3f}%)'.format( len(contained_beads), len(beads), 100 * safe_ratio(len(contained_beads), len(beads), undefined=0))) return contained_beads
def draw_action(node_points, printed, element): if not has_gui(): return [] with LockRenderer(): remove_all_debug() handles = [draw_element(node_points, element, color=(1, 0, 0))] handles.extend( draw_element(node_points, e, color=(0, 1, 0)) for e in printed) wait_for_user() return handles
def main(display='execute'): # control | execute | step # One of the arm's gantry carriage is fixed when the other is moving. connect(use_gui=True) set_camera(yaw=-90, pitch=-40, distance=10, target_position=(0, 7.5, 0)) draw_pose(unit_pose(), length=1.0) disable_real_time() with HideOutput(): root_directory = os.path.dirname(os.path.abspath(__file__)) robot = load_pybullet(os.path.join(root_directory, ETH_RFL_URDF), fixed_base=True) # floor = load_model('models/short_floor.urdf') block = load_model(BLOCK_URDF, fixed_base=False) #link = link_from_name(robot, 'gantry_base_link') #print(get_aabb(robot, link)) block_x = -0.2 #block_y = 1 if ARM == 'right' else 13.5 #block_x = 10 block_y = 5. # set_pose(floor, Pose(Point(x=floor_x, y=1, z=1.3))) # set_pose(block, Pose(Point(x=floor_x, y=0.6, z=stable_z(block, floor)))) set_pose(block, Pose(Point(x=block_x, y=block_y, z=3.5))) # set_default_camera() dump_world() #print(get_camera()) saved_world = WorldSaver() with LockRenderer(): command = plan(robot, block, fixed=[], teleport=False) # fixed=[floor], if (command is None) or (display is None): print('Unable to find a plan! Quit?') wait_for_interrupt() disconnect() return saved_world.restore() update_state() print('{}?'.format(display)) wait_for_interrupt() if display == 'control': enable_gravity() command.control(real_time=False, dt=0) elif display == 'execute': command.refine(num_steps=10).execute(time_step=0.002) elif display == 'step': command.step() else: raise ValueError(display) print('Quit?') wait_for_interrupt() disconnect()
def test_arm_motion(pr2, left_joints, arm_goal): disabled_collisions = get_disabled_collisions(pr2) wait_if_gui('Plan Arm?') with LockRenderer(lock=False): arm_path = plan_joint_motion(pr2, left_joints, arm_goal, disabled_collisions=disabled_collisions) if arm_path is None: print('Unable to find an arm path') return print(len(arm_path)) for q in arm_path: set_joint_positions(pr2, left_joints, q) #wait_if_gui('Continue?') wait_for_duration(0.01)
def create_gripper(robot, visual=False): gripper_link = link_from_name(robot, get_gripper_link(robot)) links = get_link_descendants(robot, gripper_link) # get_link_descendants | get_link_subtree with LockRenderer(): # Actually uses the parent of the first link gripper = clone_body(robot, links=links, visual=False, collision=True) # TODO: joint limits if not visual: for link in get_all_links(gripper): set_color(gripper, np.zeros(4), link) #dump_body(robot) #dump_body(gripper) #user_input() return gripper
def iterate_path(robot, joints, path, step_size=None): # 1e-2 | None if path is None: return path = adjust_path(robot, joints, path) with LockRenderer(): handles = draw_path(path) wait_if_gui(message='Begin?') for i, conf in enumerate(path): set_joint_positions(robot, joints, conf) if step_size is None: wait_if_gui(message='{}/{} Continue?'.format(i, len(path))) else: wait_for_duration(duration=step_size) wait_if_gui(message='Finish?')
def main(): parser = argparse.ArgumentParser() # choreo_brick_demo | choreo_eth-trees_demo parser.add_argument('-p', '--problem', default='choreo_brick_demo', help='The name of the problem to solve') parser.add_argument('-c', '--cfree', action='store_true', help='Disables collisions with obstacles') parser.add_argument('-t', '--teleport', action='store_true', help='Teleports instead of computing motions') parser.add_argument('-v', '--viewer', action='store_true', help='Enables the viewer during planning (slow!)') args = parser.parse_args() print('Arguments:', args) connect(use_gui=args.viewer) robot, brick_from_index, obstacle_from_name = load_pick_and_place( args.problem) np.set_printoptions(precision=2) pr = cProfile.Profile() pr.enable() with WorldSaver(): pddlstream_problem = get_pddlstream(robot, brick_from_index, obstacle_from_name, collisions=not args.cfree, teleport=args.teleport) with LockRenderer(): solution = solve_focused(pddlstream_problem, planner='ff-wastar1', max_time=30) pr.disable() pstats.Stats(pr).sort_stats('cumtime').print_stats(10) print_solution(solution) plan, _, _ = solution if plan is None: return if not has_gui(): connect(use_gui=True) _ = load_pick_and_place(args.problem) step_plan(plan, time_step=(np.inf if args.teleport else 0.01))
def test_base_motion(pr2, base_start, base_goal, obstacles=[]): #disabled_collisions = get_disabled_collisions(pr2) set_base_values(pr2, base_start) wait_if_gui('Plan Base-pr2?') base_limits = ((-2.5, -2.5), (2.5, 2.5)) with LockRenderer(lock=False): base_path = plan_base_motion(pr2, base_goal, base_limits, obstacles=obstacles) if base_path is None: print('Unable to find a base path') return print(len(base_path)) for bq in base_path: set_base_values(pr2, bq) if SLEEP is None: wait_if_gui('Continue?') else: wait_for_duration(SLEEP)
def compute_visible(body, poses, camera_pose, draw=True): ordered_poses = list(poses) rays = [] camera_point = point_from_pose(camera_pose) for pose in ordered_poses: point = point_from_pose(pose.get_world_from_body()) rays.append(Ray(camera_point, point)) ray_results = batch_ray_collision(rays) if draw: with LockRenderer(): handles = [] for ray, result in zip(rays, ray_results): handles.extend(draw_ray(ray, result)) # Blocking objects will likely be known with high probability # TODO: move objects out of the way? return { pose for pose, result in zip(ordered_poses, ray_results) if result.objectUniqueId in (body, -1) }
def main(display='execute'): # control | execute | step connect(use_gui=True) disable_real_time() with HideOutput(): root_directory = os.path.dirname(os.path.abspath(__file__)) robot = load_pybullet(os.path.join(root_directory, IRB6600_TRACK_URDF), fixed_base=True) floor = load_model('models/short_floor.urdf') block = load_model(BLOCK_URDF, fixed_base=False) floor_x = 2 set_pose(floor, Pose(Point(x=floor_x, z=0.5))) set_pose(block, Pose(Point(x=floor_x, y=0, z=stable_z(block, floor)))) # set_default_camera() dump_world() saved_world = WorldSaver() with LockRenderer(): command = plan(robot, block, fixed=[floor], teleport=False) if (command is None) or (display is None): print('Unable to find a plan!') print('Quit?') wait_for_interrupt() disconnect() return saved_world.restore() update_state() user_input('{}?'.format(display)) if display == 'control': enable_gravity() command.control(real_time=False, dt=0) elif display == 'execute': command.refine(num_steps=10).execute(time_step=0.002) elif display == 'step': command.step() else: raise ValueError(display) print('Quit?') wait_for_interrupt() disconnect()
def main(): connect(use_gui=True) add_data_path() draw_pose(Pose(), length=1.) set_camera_pose(camera_point=[1, -1, 1]) plane = p.loadURDF("plane.urdf") with LockRenderer(): with HideOutput(True): robot = load_pybullet(FRANKA_URDF, fixed_base=True) assign_link_colors(robot, max_colors=3, s=0.5, v=1.) #set_all_color(robot, GREEN) obstacles = [plane] # TODO: collisions with the ground dump_body(robot) print('Start?') wait_for_user() info = PANDA_INFO tool_link = link_from_name(robot, 'panda_hand') draw_pose(Pose(), parent=robot, parent_link=tool_link) joints = get_movable_joints(robot) print('Joints', [get_joint_name(robot, joint) for joint in joints]) check_ik_solver(info) sample_fn = get_sample_fn(robot, joints) for i in range(10): print('Iteration:', i) conf = sample_fn() set_joint_positions(robot, joints, conf) wait_for_user() #test_ik(robot, info, tool_link, get_link_pose(robot, tool_link)) test_retraction(robot, info, tool_link, use_pybullet=False, max_distance=0.1, max_time=0.05, max_candidates=100) disconnect()
def update(self, detections, n_samples=25): start_time = time.time() self.observations.append(detections) # Processing detected first # Could simply sample from the set of worlds and update # Would need to sample many worlds with name at different poses # Instead, let the moving object take on different poses with LockRenderer(): with WorldSaver(): if REPAIR_DETECTIONS: detections = fix_detections( self, detections) # TODO: skip if in sim detections = relative_detections(self, detections) order = [name for name in detections] # Detected order.extend(set(self.pose_dists) - set(order)) # Not detected for name in order: self.pose_dists[name] = self.pose_dists[name].update( self, detections, n_samples=n_samples) self.update_state() print('Update time: {:.3f} sec for {} objects and {} samples'.format( elapsed_time(start_time), len(order), n_samples)) return self
def create_surface_pose_dist(world, obj_name, surface_dist, n=NUM_PARTICLES): # TODO: likely easier to just make a null surface below ground placement_gen = get_stable_gen(world, max_attempts=100, learned=True, pos_scale=1e-3, rot_scale=1e-2) poses = [] with LockRenderer(): with BodySaver(world.get_body(obj_name)): while len(poses) < n: surface_name = surface_dist.sample() assert surface_name is not ELSEWHERE result = next(placement_gen(obj_name, surface_name), None) if result is None: surface_dist = surface_dist.condition( lambda s: s != surface_name) else: (rel_pose, ) = result rel_pose.init = True poses.append(rel_pose) return PoseDist(world, obj_name, UniformDist(poses))
def collect_place(world, object_name, surface_name, grasp_type, args): date = get_date() #set_seed(args.seed) #dump_body(world.robot) surface_pose = get_surface_reference_pose(world.kitchen, surface_name) # TODO: assumes the drawer is open stable_gen_fn = get_stable_gen(world, z_offset=Z_EPSILON, visibility=False, learned=False, collisions=not args.cfree) grasp_gen_fn = get_grasp_gen(world) ik_ir_gen = get_pick_gen_fn(world, learned=False, collisions=not args.cfree, teleport=args.teleport) stable_gen = stable_gen_fn(object_name, surface_name) grasps = list(grasp_gen_fn(object_name, grasp_type)) robot_name = get_body_name(world.robot) path = get_place_path(robot_name, surface_name, grasp_type) print(SEPARATOR) print('Robot name: {} | Object name: {} | Surface name: {} | Grasp type: {} | Filename: {}'.format( robot_name, object_name, surface_name, grasp_type, path)) entries = [] start_time = time.time() failures = 0 while (len(entries) < args.num_samples) and \ (elapsed_time(start_time) < args.max_time): #and (failures <= max_failures): (rel_pose,) = next(stable_gen) if rel_pose is None: break (grasp,) = random.choice(grasps) with LockRenderer(lock=True): result = next(ik_ir_gen(object_name, rel_pose, grasp), None) if result is None: print('Failure! | {} / {} [{:.3f}]'.format( len(entries), args.num_samples, elapsed_time(start_time))) failures += 1 continue # TODO: ensure an arm motion exists bq, aq, at = result rel_pose.assign() bq.assign() aq.assign() base_pose = get_link_pose(world.robot, world.base_link) object_pose = rel_pose.get_world_from_body() tool_pose = multiply(object_pose, invert(grasp.grasp_pose)) entries.append({ 'tool_from_base': multiply(invert(tool_pose), base_pose), 'surface_from_object': multiply(invert(surface_pose), object_pose), 'base_from_object': multiply(invert(base_pose), object_pose), }) print('Success! | {} / {} [{:.3f}]'.format( len(entries), args.num_samples, elapsed_time(start_time))) if has_gui(): wait_for_user() #visualize_database(tool_from_base_list) if not entries: safe_remove(path) return None # Assuming the kitchen is fixed but the objects might be open world data = { 'date': date, 'robot_name': robot_name, # get_name | get_body_name | get_base_name | world.robot_name 'base_link': get_link_name(world.robot, world.base_link), 'tool_link': get_link_name(world.robot, world.tool_link), 'kitchen_name': get_body_name(world.kitchen), 'surface_name': surface_name, 'object_name': object_name, 'grasp_type': grasp_type, 'entries': entries, 'failures': failures, 'successes': len(entries), } write_json(path, data) print('Saved', path) return data
def solve_pddlstream(problem, node_points, element_bodies, planner=GREEDY_PLANNER, max_time=60): # TODO: try search at different cost levels (i.e. w/ and w/o abstract) # TODO: only consider axioms that could be relevant # TODO: iterated search using random restarts # TODO: most of the time seems to be spent extracting the stream plan # TODO: NEGATIVE_SUFFIX to make axioms easier # TODO: sort by action cost heuristic # http://www.fast-downward.org/Doc/Evaluator#Max_evaluator temporal = DURATIVE_ACTIONS in problem.domain_pddl print('Init:', problem.init) print('Goal:', problem.goal) print('Max time:', max_time) print('Temporal:', temporal) stream_info = { # TODO: stream effort 'sample-print': StreamInfo(PartialInputs(unique=True)), 'sample-move': StreamInfo(PartialInputs(unique=True)), 'test-cfree-traj-conf': StreamInfo(p_success=1e-2, negate=True), # , verbose=False), 'test-cfree-traj-traj': StreamInfo(p_success=1e-2, negate=True), 'TrajConfCollision': FunctionInfo(p_success=1e-1, overhead=1), # TODO: verbose 'TrajTrajCollision': FunctionInfo(p_success=1e-1, overhead=1), # TODO: verbose 'Distance': FunctionInfo(opt_fn=get_opt_distance_fn(element_bodies, node_points), eager=True) # 'Length': FunctionInfo(eager=True), # Need to eagerly evaluate otherwise 0 makespan (failure) # 'Duration': FunctionInfo(opt_fn=lambda r, t: opt_distance / TOOL_VELOCITY, eager=True), # 'Euclidean': FunctionInfo(eager=True), } # TODO: goal serialization # TODO: could revert back to goal count now that no deadends # TODO: limit the branching factor if necessary # TODO: ensure that function costs aren't prunning plans if not temporal: # Reachability heuristics good for detecting dead-ends # Infeasibility from the start means disconnected or collision set_cost_scale(1) # planner = 'ff-ehc' # planner = 'ff-lazy-tiebreak' # Branching factor becomes large. Rely on preferred. Preferred should also be cheaper planner = 'ff-eager-tiebreak' # Need to use a eager search, otherwise doesn't incorporate child cost # planner = 'max-astar' # TODO: assert (instance.value == value) with LockRenderer(lock=False): # solution = solve_incremental(problem, planner='add-random-lazy', max_time=600, # max_planner_time=300, debug=True) # TODO: allow some types of failures solution = solve_focused( problem, stream_info=stream_info, max_time=max_time, effort_weight=None, unit_efforts=True, unit_costs=False, # TODO: effort_weight=None vs 0 max_skeletons=None, bind=True, max_failures=INF, # 0 | INF planner=planner, max_planner_time=60, debug=False, reorder=False, initial_complexity=1) print_solution(solution) plan, _, certificate = solution # TODO: post-process by calling planner again # TODO: could solve for trajectories conditioned on the sequence return plan, certificate
def main(floor_width=2.0): # Creates a pybullet world and a visualizer for it connect(use_gui=True) identity_pose = (unit_point(), unit_quat()) origin_handles = draw_pose( identity_pose, length=1.0 ) # Draws the origin coordinate system (x:RED, y:GREEN, z:BLUE) # Bodies are described by an integer index floor = create_box(w=floor_width, l=floor_width, h=0.001, color=TAN) # Creates a tan box object for the floor set_point(floor, [0, 0, -0.001 / 2.]) # Sets the [x,y,z] translation of the floor obstacle = create_box(w=0.5, l=0.5, h=0.1, color=RED) # Creates a red box obstacle set_point( obstacle, [0.5, 0.5, 0.1 / 2.]) # Sets the [x,y,z] position of the obstacle print('Position:', get_point(obstacle)) set_euler(obstacle, [0, 0, np.pi / 4 ]) # Sets the [roll,pitch,yaw] orientation of the obstacle print('Orientation:', get_euler(obstacle)) with LockRenderer( ): # Temporarily prevents the renderer from updating for improved loading efficiency with HideOutput(): # Temporarily suppresses pybullet output robot = load_model(ROOMBA_URDF) # Loads a robot from a *.urdf file robot_z = stable_z( robot, floor ) # Returns the z offset required for robot to be placed on floor set_point(robot, [0, 0, robot_z]) # Sets the z position of the robot dump_body(robot) # Prints joint and link information about robot set_all_static() # Joints are also described by an integer index # The turtlebot has explicit joints representing x, y, theta x_joint = joint_from_name(robot, 'x') # Looks up the robot joint named 'x' y_joint = joint_from_name(robot, 'y') # Looks up the robot joint named 'y' theta_joint = joint_from_name( robot, 'theta') # Looks up the robot joint named 'theta' joints = [x_joint, y_joint, theta_joint] base_link = link_from_name( robot, 'base_link') # Looks up the robot link named 'base_link' world_from_obstacle = get_pose( obstacle ) # Returns the pose of the origin of obstacle wrt the world frame obstacle_aabb = get_subtree_aabb(obstacle) draw_aabb(obstacle_aabb) random.seed(0) # Sets the random number generator state handles = [] for i in range(10): for handle in handles: remove_debug(handle) print('\nIteration: {}'.format(i)) x = random.uniform(-floor_width / 2., floor_width / 2.) set_joint_position(robot, x_joint, x) # Sets the current value of the x joint y = random.uniform(-floor_width / 2., floor_width / 2.) set_joint_position(robot, y_joint, y) # Sets the current value of the y joint yaw = random.uniform(-np.pi, np.pi) set_joint_position(robot, theta_joint, yaw) # Sets the current value of the theta joint values = get_joint_positions( robot, joints) # Obtains the current values for the specified joints print('Joint values: [x={:.3f}, y={:.3f}, yaw={:.3f}]'.format(*values)) world_from_robot = get_link_pose( robot, base_link) # Returns the pose of base_link wrt the world frame position, quaternion = world_from_robot # Decomposing pose into position and orientation (quaternion) x, y, z = position # Decomposing position into x, y, z print('Base link position: [x={:.3f}, y={:.3f}, z={:.3f}]'.format( x, y, z)) euler = euler_from_quat( quaternion) # Converting from quaternion to euler angles roll, pitch, yaw = euler # Decomposing orientation into roll, pitch, yaw print('Base link orientation: [roll={:.3f}, pitch={:.3f}, yaw={:.3f}]'. format(roll, pitch, yaw)) handles.extend( draw_pose(world_from_robot, length=0.5) ) # # Draws the base coordinate system (x:RED, y:GREEN, z:BLUE) obstacle_from_robot = multiply( invert(world_from_obstacle), world_from_robot) # Relative transformation from robot to obstacle robot_aabb = get_subtree_aabb( robot, base_link) # Computes the robot's axis-aligned bounding box (AABB) lower, upper = robot_aabb # Decomposing the AABB into the lower and upper extrema center = (lower + upper) / 2. # Computing the center of the AABB extent = upper - lower # Computing the dimensions of the AABB handles.extend(draw_aabb(robot_aabb)) collision = pairwise_collision( robot, obstacle ) # Checks whether robot is currently colliding with obstacle print('Collision: {}'.format(collision)) wait_for_duration(1.0) # Like sleep() but also updates the viewer wait_for_user() # Like raw_input() but also updates the viewer # Destroys the pybullet world disconnect()
def visualize_vector_field(learner, bowl_type='blue_bowl', cup_type='red_cup', num=500, delta=False, alpha=0.5): print(learner, len(learner.results)) xx, yy, ww = learner.xx, learner.yy, learner.weights learner.hyperparameters = get_parameters(learner.model) print(learner.hyperparameters) learner.query_type = REJECTION # BEST | REJECTION | STRADDLE world = create_world() world.bodies[bowl_type] = load_cup_bowl(bowl_type) world.bodies[cup_type] = load_cup_bowl(cup_type) feature = get_pour_feature(world, bowl_type, cup_type) set_point(world.bodies[cup_type], np.array([0.2, 0, 0])) # TODO: visualize training data as well # TODO: artificially limit training data to make a low-confidence region # TODO: visualize mean and var at the same time using intensity and hue print('Feature:', feature) with LockRenderer(): #for parameter in islice(learner.parameter_generator(world, feature, valid=True), num): parameters = [] while len(parameters) < num: parameter = learner.sample_parameter() # TODO: special color if invalid if is_valid_pour(world, feature, parameter): parameters.append(parameter) center, _ = approximate_as_prism(world.get_body(cup_type)) bodies = [] with LockRenderer(): for parameter in parameters: path, _ = pour_path_from_parameter(world, feature, parameter) pose = path[0] body = create_cylinder(radius=0.001, height=0.02, color=apply_alpha(GREY, alpha)) set_pose(body, multiply(pose, Pose(point=center))) bodies.append(body) #train_sizes = inclusive_range(10, 100, 1) #train_sizes = inclusive_range(10, 100, 10) #train_sizes = inclusive_range(100, 1000, 100) #train_sizes = [1000] train_sizes = [None] # training_poses = [] # for result in learner.results[:train_sizes[-1]]: # path, _ = pour_path_from_parameter(world, feature, result['parameter']) # pose = path[0] # training_poses.append(pose) # TODO: draw the example as well scores_per_size = [] for train_size in train_sizes: if train_size is not None: learner.xx, learner.yy, learner.weights = xx[:train_size], yy[:train_size], ww[:train_size] learner.retrain() X = np.array([learner.func.x_from_feature_parameter(feature, parameter) for parameter in parameters]) predictions = learner.predict_x(X, noise=False) # Noise is just a constant scores_per_size.append([prediction['mean'] for prediction in predictions]) # mean | variance #scores_per_size.append([1./np.sqrt(prediction['variance']) for prediction in predictions]) #scores_per_size.append([prediction['mean'] / np.sqrt(prediction['variance']) for prediction in predictions]) #plt.hist(scores_per_size[-1]) #plt.show() #scores_per_size.append([scipy.stats.norm.interval(alpha=0.95, loc=prediction['mean'], # scale=np.sqrt(prediction['variance']))[0] # for prediction in predictions]) # mean | variance # score = learner.score(feature, parameter) if delta: scores_per_size = [np.array(s2) - np.array(s1) for s1, s2 in zip(scores_per_size, scores_per_size[1:])] train_sizes = train_sizes[1:] all_scores = [score for scores in scores_per_size for score in scores] #interval = (min(all_scores), max(all_scores)) interval = scipy.stats.norm.interval(alpha=0.95, loc=np.mean(all_scores), scale=np.std(all_scores)) #interval = DEFAULT_INTERVAL print('Interval:', interval) print('Mean: {:.3f} | Stdev: {:.3f}'.format(np.mean(all_scores), np.std(all_scores))) #train_body = create_cylinder(radius=0.002, height=0.02, color=apply_alpha(BLACK, 1.0)) for i, (train_size, scores) in enumerate(zip(train_sizes, scores_per_size)): print('Train size: {} | Average: {:.3f} | Min: {:.3f} | Max: {:.3f}'.format( train_size, np.mean(scores), min(scores), max(scores))) handles = [] # TODO: visualize delta with LockRenderer(): #if train_size is None: # train_size = len(learner.results) #set_pose(train_body, multiply(training_poses[train_size-1], Pose(point=center))) #set_pose(world.bodies[cup_type], training_poses[train_size-1]) for score, body in zip(scores, bodies): score = clip(score, *interval) fraction = rescale(score, interval, new_interval=(0, 1)) color = interpolate_hue(fraction) #color = (1 - fraction) * np.array(RED) + fraction * np.array(GREEN) # TODO: convex combination set_color(body, apply_alpha(color, alpha)) #set_pose(world.bodies[cup_type], pose) #draw_pose(pose, length=0.05) #handles.extend(draw_point(tform_point(pose, center), color=color)) #extent = np.array([0, 0, 0.01]) #start = tform_point(pose, center - extent/2) #end = tform_point(pose, center + extent/2) #handles.append(add_line(start, end, color=color, width=1)) wait_for_duration(0.5) # TODO: test on boundaries wait_for_user()
def main(num_iterations=10): # The URDF loader seems robust to package:// and slightly wrong relative paths? connect(use_gui=True) add_data_path() plane = p.loadURDF("plane.urdf") side = 0.05 block = create_box(w=side, l=side, h=side, color=RED) start_time = time.time() with LockRenderer(): with HideOutput(): # TODO: MOVO must be loaded last robot = load_model(MOVO_URDF, fixed_base=True) #set_all_color(robot, color=MOVO_COLOR) assign_link_colors(robot) base_joints = joints_from_names(robot, BASE_JOINTS) draw_base_limits((get_min_limits( robot, base_joints), get_max_limits(robot, base_joints)), z=1e-2) print('Load time: {:.3f}'.format(elapsed_time(start_time))) dump_body(robot) #print(get_colliding(robot)) #for arm in ARMS: # test_close_gripper(robot, arm) #test_grasps(robot, block) arm = RIGHT tool_link = link_from_name(robot, TOOL_LINK.format(arm)) #joint_names = HEAD_JOINTS #joints = joints_from_names(robot, joint_names) joints = base_joints + get_arm_joints(robot, arm) #joints = get_movable_joints(robot) print('Joints:', get_joint_names(robot, joints)) ik_info = MOVO_INFOS[arm] print_ik_warning(ik_info) ik_joints = get_ik_joints(robot, ik_info, tool_link) #fixed_joints = [] fixed_joints = ik_joints[:1] #fixed_joints = ik_joints wait_if_gui('Start?') sample_fn = get_sample_fn(robot, joints) handles = [] for i in range(num_iterations): conf = sample_fn() print('Iteration: {}/{} | Conf: {}'.format(i + 1, num_iterations, np.array(conf))) set_joint_positions(robot, joints, conf) tool_pose = get_link_pose(robot, tool_link) remove_handles(handles) handles = draw_pose(tool_pose) wait_if_gui() #conf = next(ikfast_inverse_kinematics(robot, MOVO_INFOS[arm], tool_link, tool_pose, # fixed_joints=fixed_joints, max_time=0.1), None) #if conf is not None: # set_joint_positions(robot, ik_joints, conf) #wait_if_gui() test_retraction(robot, ik_info, tool_link, fixed_joints=fixed_joints, max_time=0.05, max_candidates=100) disconnect()
def main(): parser = argparse.ArgumentParser() parser.add_argument('-c', '--cfree', action='store_true', help='When enabled, disables collision checking.') # parser.add_argument('-p', '--problem', default='test_pour', choices=sorted(problem_fn_from_name), # help='The name of the problem to solve.') parser.add_argument('--holonomic', action='store_true', # '-h', help='') parser.add_argument('-l', '--lock', action='store_false', help='') parser.add_argument('-s', '--seed', default=None, type=int, help='The random seed to use.') parser.add_argument('-v', '--viewer', action='store_false', help='') args = parser.parse_args() connect(use_gui=args.viewer) seed = args.seed #seed = 0 #seed = time.time() set_random_seed(seed=seed) # None: 2147483648 = 2**31 set_numpy_seed(seed=seed) print('Random seed:', get_random_seed(), random.random()) print('Numpy seed:', get_numpy_seed(), np.random.random()) ######################### robot, base_limits, goal_conf, obstacles = problem1() draw_base_limits(base_limits) custom_limits = create_custom_base_limits(robot, base_limits) base_joints = joints_from_names(robot, BASE_JOINTS) base_link = link_from_name(robot, BASE_LINK_NAME) if args.cfree: obstacles = [] # for obstacle in obstacles: # draw_aabb(get_aabb(obstacle)) # Updates automatically resolutions = None #resolutions = np.array([0.05, 0.05, math.radians(10)]) set_all_static() # Doesn't seem to affect region_aabb = AABB(lower=-np.ones(3), upper=+np.ones(3)) draw_aabb(region_aabb) step_simulation() # Need to call before get_bodies_in_region #update_scene() # TODO: https://github.com/bulletphysics/bullet3/pull/3331 bodies = get_bodies_in_region(region_aabb) print(len(bodies), bodies) # https://github.com/bulletphysics/bullet3/search?q=broadphase # https://github.com/bulletphysics/bullet3/search?p=1&q=getCachedOverlappingObjects&type=&utf8=%E2%9C%93 # https://andysomogyi.github.io/mechanica/bullet.html # http://www.cs.kent.edu/~ruttan/GameEngines/lectures/Bullet_User_Manual #draw_pose(get_link_pose(robot, base_link), length=0.5) for conf in [get_joint_positions(robot, base_joints), goal_conf]: draw_pose(pose_from_pose2d(conf, z=DRAW_Z), length=DRAW_LENGTH) aabb = get_aabb(robot) #aabb = get_subtree_aabb(robot, base_link) draw_aabb(aabb) for link in [BASE_LINK, base_link]: print(link, get_collision_data(robot, link), pairwise_link_collision(robot, link, robot, link)) ######################### saver = WorldSaver() start_time = time.time() profiler = Profiler(field='tottime', num=50) # tottime | cumtime | None profiler.save() with LockRenderer(lock=args.lock): path = plan_motion(robot, base_joints, goal_conf, holonomic=args.holonomic, obstacles=obstacles, custom_limits=custom_limits, resolutions=resolutions, use_aabb=True, cache=True, max_distance=0., restarts=2, iterations=20, smooth=20) # 20 | None saver.restore() #wait_for_duration(duration=1e-3) profiler.restore() ######################### solved = path is not None length = INF if path is None else len(path) cost = sum(get_distance_fn(robot, base_joints, weights=resolutions)(*pair) for pair in get_pairs(path)) print('Solved: {} | Length: {} | Cost: {:.3f} | Runtime: {:.3f} sec'.format( solved, length, cost, elapsed_time(start_time))) if path is None: disconnect() return iterate_path(robot, base_joints, path) disconnect()
def main(): parser = argparse.ArgumentParser() # Automatically includes help parser.add_argument('-viewer', action='store_true', help='enable viewer.') args = parser.parse_args() connect(use_gui=True) #ycb_path = os.path.join(DRAKE_PATH, DRAKE_YCB) #ycb_path = os.path.join(YCB_PATH, YCB_TEMPLATE.format('003_cracker_box')) #print(ycb_path) #load_pybullet(ycb_path) with LockRenderer(): draw_pose(unit_pose(), length=1, width=1) floor = create_floor() set_point(floor, Point(z=-EPSILON)) table = create_table(width=TABLE_WIDTH, length=TABLE_WIDTH / 2, height=TABLE_WIDTH / 2, top_color=TAN, cylinder=False) #set_euler(table, Euler(yaw=np.pi/2)) with HideOutput(False): # data_path = add_data_path() # robot_path = os.path.join(data_path, WSG_GRIPPER) robot_path = get_model_path( WSG_50_URDF) # WSG_50_URDF | PANDA_HAND_URDF #robot_path = get_file_path(__file__, 'mit_arch_suction_gripper/mit_arch_suction_gripper.urdf') robot = load_pybullet(robot_path, fixed_base=True) #dump_body(robot) #robot = create_cylinder(radius=0.5*BLOCK_SIDE, height=4*BLOCK_SIDE) # vacuum gripper block1 = create_box(w=BLOCK_SIDE, l=BLOCK_SIDE, h=BLOCK_SIDE, color=RED) block_z = stable_z(block1, table) set_point(block1, Point(z=block_z)) block2 = create_box(w=BLOCK_SIDE, l=BLOCK_SIDE, h=BLOCK_SIDE, color=GREEN) set_point(block2, Point(x=+0.25, z=block_z)) block3 = create_box(w=BLOCK_SIDE, l=BLOCK_SIDE, h=BLOCK_SIDE, color=BLUE) set_point(block3, Point(x=-0.15, z=block_z)) blocks = [block1, block2, block3] add_line(Point(x=-TABLE_WIDTH / 2, z=block_z - BLOCK_SIDE / 2 + EPSILON), Point(x=+TABLE_WIDTH / 2, z=block_z - BLOCK_SIDE / 2 + EPSILON), color=RED) set_camera_pose(camera_point=Point(y=-1, z=block_z + 1), target_point=Point(z=block_z)) wait_for_user() block_pose = get_pose(block1) open_gripper(robot) tool_link = link_from_name(robot, 'tool_link') base_from_tool = get_relative_pose(robot, tool_link) #draw_pose(unit_pose(), parent=robot, parent_link=tool_link) y_grasp, x_grasp = get_top_grasps(block1, tool_pose=unit_pose(), grasp_length=0.03, under=False) grasp = y_grasp # fingers won't collide gripper_pose = multiply(block_pose, invert(grasp)) set_pose(robot, multiply(gripper_pose, invert(base_from_tool))) wait_for_user('Finish?') disconnect()