예제 #1
0
 def enumerate_extrusions(printed, node, element):
     for traj in trajs_from_element[node, element]:
         yield traj
     if (max_directions <= count_per_element[node, element]) or \
             (max_extrusions <= len(trajs_from_element[node, element])):
         return
     with LockRenderer(True):
         if condition:
             # TODO: could perform bidirectional here again
             generator = print_gen_fn(
                 node1=node,
                 element=element,
                 extruded=printed,
                 trajectories=trajs_from_element[node, element])
         else:
             generator = gen_from_element[node, element]
         for traj in generator:  # TODO: islice for the num to sample
             count_per_element[node, element] += 1
             if traj is not None:
                 traj, = traj
                 trajs_from_element[node, element].append(traj)
                 yield traj
             if max_directions <= count_per_element[node, element]:
                 print('Enumerated {}: {} directions and {} trajectories'.
                       format(element, count_per_element[node, element],
                              len(trajs_from_element[node, element])))
                 break
예제 #2
0
def test_drake_base_motion(pr2, base_start, base_goal, obstacles=[]):
    # TODO: combine this with test_arm_motion
    """
    Drake's PR2 URDF has explicit base joints
    """
    disabled_collisions = get_disabled_collisions(pr2)
    base_joints = [joint_from_name(pr2, name) for name in PR2_GROUPS['base']]
    set_joint_positions(pr2, base_joints, base_start)
    base_joints = base_joints[:2]
    base_goal = base_goal[:len(base_joints)]
    wait_if_gui('Plan Base?')
    with LockRenderer(lock=False):
        base_path = plan_joint_motion(pr2,
                                      base_joints,
                                      base_goal,
                                      obstacles=obstacles,
                                      disabled_collisions=disabled_collisions)
    if base_path is None:
        print('Unable to find a base path')
        return
    print(len(base_path))
    for bq in base_path:
        set_joint_positions(pr2, base_joints, bq)
        if SLEEP is None:
            wait_if_gui('Continue?')
        else:
            wait_for_duration(SLEEP)
예제 #3
0
def main():
    connect(use_gui=True)
    add_data_path()

    plane = p.loadURDF("plane.urdf")
    with HideOutput():
        with LockRenderer():
            robot = load_model(FRANKA_URDF, fixed_base=True)
    dump_body(robot)
    print('Start?')
    wait_for_user()

    tool_link = link_from_name(robot, 'panda_hand')
    joints = get_movable_joints(robot)
    print('Joints', [get_joint_name(robot, joint) for joint in joints])
    sample_fn = get_sample_fn(robot, joints)
    for i in range(10):
        print('Iteration:', i)
        conf = sample_fn()
        set_joint_positions(robot, joints, conf)
        wait_for_user()
        test_retraction(robot,
                        PANDA_INFO,
                        tool_link,
                        max_distance=0.01,
                        max_time=0.05)
    disconnect()
예제 #4
0
def main():
    # TODO: move to pybullet-planning for now
    parser = argparse.ArgumentParser()
    parser.add_argument('-viewer',
                        action='store_true',
                        help='enable the viewer while planning')
    args = parser.parse_args()
    print(args)

    connect(use_gui=True)
    with LockRenderer():
        draw_pose(unit_pose(), length=1)
        floor = create_floor()
        with HideOutput():
            robot = load_pybullet(get_model_path(ROOMBA_URDF),
                                  fixed_base=True,
                                  scale=2.0)
            for link in get_all_links(robot):
                set_color(robot, link=link, color=ORANGE)
            robot_z = stable_z(robot, floor)
            set_point(robot, Point(z=robot_z))
        #set_base_conf(robot, rover_confs[i])

        data_path = add_data_path()
        shelf, = load_model(os.path.join(data_path, KIVA_SHELF_SDF),
                            fixed_base=True)  # TODO: returns a tuple
        dump_body(shelf)
        #draw_aabb(get_aabb(shelf))

    wait_for_user()
    disconnect()
예제 #5
0
def draw_model(elements, node_points, ground_nodes, color=None):
    handles = []
    with LockRenderer():
        for element in elements:
            #color = BLUE if is_ground(element, ground_nodes) else RED
            handles.append(draw_element(node_points, element, color=color))
    return handles
예제 #6
0
def main():
    # The URDF loader seems robust to package:// and slightly wrong relative paths?
    connect(use_gui=True)
    add_data_path()

    plane = p.loadURDF("plane.urdf")
    #with HideOutput():
    with LockRenderer():
        robot = load_model(MOVO_URDF, fixed_base=True)
    dump_body(robot)
    print('Start?')
    wait_for_user()

    #joint_names = HEAD_JOINTS
    #joints = joints_from_names(robot, joint_names)
    joints = get_movable_joints(robot)
    print('Joints', [get_joint_name(robot, joint) for joint in joints])
    sample_fn = get_sample_fn(robot, joints)
    for i in range(10):
        print('Iteration:', i)
        conf = sample_fn()
        set_joint_positions(robot, joints, conf)
        wait_for_user()

    disconnect()
예제 #7
0
 def resample(self, n=NUM_PARTICLES):
     if len(self.dist.support()) <= 1:
         return self
     with LockRenderer():
         poses = [self.sample() for _ in range(n)]
     new_dist = UniformDist(poses)
     return self.__class__(self.world, self.name, new_dist)
예제 #8
0
def main():
    parser = argparse.ArgumentParser()  # Automatically includes help
    parser.add_argument('-viewer', action='store_true', help='enable viewer.')
    args = parser.parse_args()

    connect(use_gui=True)

    with LockRenderer():
        draw_pose(unit_pose(), length=1, width=1)
        floor = create_floor()
        set_point(floor, Point(z=-EPSILON))

        table1 = create_table(width=TABLE_WIDTH, length=TABLE_WIDTH/2, height=TABLE_WIDTH/2,
                              top_color=TAN, cylinder=False)
        set_point(table1, Point(y=+0.5))

        table2 = create_table(width=TABLE_WIDTH, length=TABLE_WIDTH/2, height=TABLE_WIDTH/2,
                              top_color=TAN, cylinder=False)
        set_point(table2, Point(y=-0.5))

        tables = [table1, table2]

        #set_euler(table1, Euler(yaw=np.pi/2))
        with HideOutput():
            # data_path = add_data_path()
            # robot_path = os.path.join(data_path, WSG_GRIPPER)
            robot_path = get_model_path(WSG_50_URDF)  # WSG_50_URDF | PANDA_HAND_URDF
            robot = load_pybullet(robot_path, fixed_base=True)
            #dump_body(robot)

        block1 = create_box(w=BLOCK_SIDE, l=BLOCK_SIDE, h=BLOCK_SIDE, color=RED)
        block_z = stable_z(block1, table1)
        set_point(block1, Point(y=-0.5, z=block_z))

        block2 = create_box(w=BLOCK_SIDE, l=BLOCK_SIDE, h=BLOCK_SIDE, color=GREEN)
        set_point(block2, Point(x=-0.25, y=-0.5, z=block_z))

        block3 = create_box(w=BLOCK_SIDE, l=BLOCK_SIDE, h=BLOCK_SIDE, color=BLUE)
        set_point(block3, Point(x=-0.15, y=+0.5, z=block_z))

        blocks = [block1, block2, block3]

        set_camera_pose(camera_point=Point(x=-1, z=block_z+1), target_point=Point(z=block_z))

    block_pose = get_pose(block1)
    open_gripper(robot)
    tool_link = link_from_name(robot, 'tool_link')
    base_from_tool = get_relative_pose(robot, tool_link)
    #draw_pose(unit_pose(), parent=robot, parent_link=tool_link)
    grasps = get_side_grasps(block1, tool_pose=Pose(euler=Euler(yaw=np.pi/2)),
                             top_offset=0.02, grasp_length=0.03, under=False)[1:2]
    for grasp in grasps:
        gripper_pose = multiply(block_pose, invert(grasp))
        set_pose(robot, multiply(gripper_pose, invert(base_from_tool)))
        wait_for_user()

    wait_for_user('Finish?')
    disconnect()
예제 #9
0
def main():
    # The URDF loader seems robust to package:// and slightly wrong relative paths?
    connect(use_gui=True)
    add_data_path()
    plane = p.loadURDF("plane.urdf")
    with LockRenderer():
        with HideOutput():
            robot = load_model(MOVO_URDF, fixed_base=True)
        for link in get_links(robot):
            set_color(robot,
                      color=apply_alpha(0.25 * np.ones(3), 1),
                      link=link)
        base_joints = joints_from_names(robot, BASE_JOINTS)
        draw_base_limits((get_min_limits(
            robot, base_joints), get_max_limits(robot, base_joints)),
                         z=1e-2)
    dump_body(robot)
    wait_for_user('Start?')

    #for arm in ARMS:
    #    test_close_gripper(robot, arm)

    arm = 'right'
    tool_link = link_from_name(robot, TOOL_LINK.format(arm))
    #joint_names = HEAD_JOINTS
    #joints = joints_from_names(robot, joint_names)
    joints = base_joints + get_arm_joints(robot, arm)
    #joints = get_movable_joints(robot)
    print('Joints:', get_joint_names(robot, joints))

    ik_joints = get_ik_joints(robot, MOVO_INFOS[arm], tool_link)
    #fixed_joints = []
    fixed_joints = ik_joints[:1]
    #fixed_joints = ik_joints

    sample_fn = get_sample_fn(robot, joints)
    handles = []
    for i in range(10):
        print('Iteration:', i)
        conf = sample_fn()
        print(conf)
        set_joint_positions(robot, joints, conf)
        tool_pose = get_link_pose(robot, tool_link)
        remove_handles(handles)
        handles = draw_pose(tool_pose)
        wait_for_user()

        #conf = next(ikfast_inverse_kinematics(robot, MOVO_INFOS[arm], tool_link, tool_pose,
        #                                      fixed_joints=fixed_joints, max_time=0.1), None)
        #if conf is not None:
        #    set_joint_positions(robot, ik_joints, conf)
        #wait_for_user()
        test_retraction(robot,
                        MOVO_INFOS[arm],
                        tool_link,
                        fixed_joints=fixed_joints,
                        max_time=0.1)
    disconnect()
예제 #10
0
 def draw(self, **kwargs):
     with LockRenderer(True):
         remove_handles(self.handles)
         self.handles = []
         with WorldSaver():
             for name, pose_dist in self.pose_dists.items():
                 self.handles.extend(
                     pose_dist.draw(color=self.color_from_name[name],
                                    **kwargs))
예제 #11
0
def fill_with_beads(world, bowl_name, beads, **kwargs):
    with LockRenderer(lock=True):
        with BodySaver(world.robot):
            contained_beads = pour_beads(world, bowl_name, list(beads),
                                         **kwargs)
    print('Contained: {} out of {} beads ({:.3f}%)'.format(
        len(contained_beads), len(beads),
        100 * safe_ratio(len(contained_beads), len(beads), undefined=0)))
    return contained_beads
예제 #12
0
def draw_action(node_points, printed, element):
    if not has_gui():
        return []
    with LockRenderer():
        remove_all_debug()
        handles = [draw_element(node_points, element, color=(1, 0, 0))]
        handles.extend(
            draw_element(node_points, e, color=(0, 1, 0)) for e in printed)
    wait_for_user()
    return handles
예제 #13
0
def main(display='execute'): # control | execute | step
    # One of the arm's gantry carriage is fixed when the other is moving.
    connect(use_gui=True)
    set_camera(yaw=-90, pitch=-40, distance=10, target_position=(0, 7.5, 0))
    draw_pose(unit_pose(), length=1.0)
    disable_real_time()

    with HideOutput():
        root_directory = os.path.dirname(os.path.abspath(__file__))
        robot = load_pybullet(os.path.join(root_directory, ETH_RFL_URDF), fixed_base=True)
    # floor = load_model('models/short_floor.urdf')
    block = load_model(BLOCK_URDF, fixed_base=False)
    #link = link_from_name(robot, 'gantry_base_link')
    #print(get_aabb(robot, link))

    block_x = -0.2
    #block_y = 1 if ARM == 'right' else 13.5
    #block_x = 10
    block_y = 5.

    # set_pose(floor, Pose(Point(x=floor_x, y=1, z=1.3)))
    # set_pose(block, Pose(Point(x=floor_x, y=0.6, z=stable_z(block, floor))))
    set_pose(block, Pose(Point(x=block_x, y=block_y, z=3.5)))
    # set_default_camera()
    dump_world()

    #print(get_camera())
    saved_world = WorldSaver()
    with LockRenderer():
        command = plan(robot, block, fixed=[], teleport=False) # fixed=[floor],
    if (command is None) or (display is None):
        print('Unable to find a plan! Quit?')
        wait_for_interrupt()
        disconnect()
        return

    saved_world.restore()
    update_state()
    print('{}?'.format(display))
    wait_for_interrupt()
    if display == 'control':
        enable_gravity()
        command.control(real_time=False, dt=0)
    elif display == 'execute':
        command.refine(num_steps=10).execute(time_step=0.002)
    elif display == 'step':
        command.step()
    else:
        raise ValueError(display)

    print('Quit?')
    wait_for_interrupt()
    disconnect()
def test_arm_motion(pr2, left_joints, arm_goal):
    disabled_collisions = get_disabled_collisions(pr2)
    wait_if_gui('Plan Arm?')
    with LockRenderer(lock=False):
        arm_path = plan_joint_motion(pr2, left_joints, arm_goal, disabled_collisions=disabled_collisions)
    if arm_path is None:
        print('Unable to find an arm path')
        return
    print(len(arm_path))
    for q in arm_path:
        set_joint_positions(pr2, left_joints, q)
        #wait_if_gui('Continue?')
        wait_for_duration(0.01)
예제 #15
0
def create_gripper(robot, visual=False):
    gripper_link = link_from_name(robot, get_gripper_link(robot))
    links = get_link_descendants(robot, gripper_link) # get_link_descendants | get_link_subtree
    with LockRenderer():
        # Actually uses the parent of the first link
        gripper = clone_body(robot, links=links, visual=False, collision=True)  # TODO: joint limits
        if not visual:
            for link in get_all_links(gripper):
                set_color(gripper, np.zeros(4), link)
    #dump_body(robot)
    #dump_body(gripper)
    #user_input()
    return gripper
def iterate_path(robot, joints, path, step_size=None): # 1e-2 | None
    if path is None:
        return
    path = adjust_path(robot, joints, path)
    with LockRenderer():
        handles = draw_path(path)
    wait_if_gui(message='Begin?')
    for i, conf in enumerate(path):
        set_joint_positions(robot, joints, conf)
        if step_size is None:
            wait_if_gui(message='{}/{} Continue?'.format(i, len(path)))
        else:
            wait_for_duration(duration=step_size)
    wait_if_gui(message='Finish?')
예제 #17
0
def main():
    parser = argparse.ArgumentParser()
    # choreo_brick_demo | choreo_eth-trees_demo
    parser.add_argument('-p',
                        '--problem',
                        default='choreo_brick_demo',
                        help='The name of the problem to solve')
    parser.add_argument('-c',
                        '--cfree',
                        action='store_true',
                        help='Disables collisions with obstacles')
    parser.add_argument('-t',
                        '--teleport',
                        action='store_true',
                        help='Teleports instead of computing motions')
    parser.add_argument('-v',
                        '--viewer',
                        action='store_true',
                        help='Enables the viewer during planning (slow!)')
    args = parser.parse_args()
    print('Arguments:', args)

    connect(use_gui=args.viewer)
    robot, brick_from_index, obstacle_from_name = load_pick_and_place(
        args.problem)

    np.set_printoptions(precision=2)
    pr = cProfile.Profile()
    pr.enable()
    with WorldSaver():
        pddlstream_problem = get_pddlstream(robot,
                                            brick_from_index,
                                            obstacle_from_name,
                                            collisions=not args.cfree,
                                            teleport=args.teleport)
        with LockRenderer():
            solution = solve_focused(pddlstream_problem,
                                     planner='ff-wastar1',
                                     max_time=30)
    pr.disable()
    pstats.Stats(pr).sort_stats('cumtime').print_stats(10)
    print_solution(solution)
    plan, _, _ = solution
    if plan is None:
        return

    if not has_gui():
        connect(use_gui=True)
        _ = load_pick_and_place(args.problem)
    step_plan(plan, time_step=(np.inf if args.teleport else 0.01))
def test_base_motion(pr2, base_start, base_goal, obstacles=[]):
    #disabled_collisions = get_disabled_collisions(pr2)
    set_base_values(pr2, base_start)
    wait_if_gui('Plan Base-pr2?')
    base_limits = ((-2.5, -2.5), (2.5, 2.5))
    with LockRenderer(lock=False):
        base_path = plan_base_motion(pr2, base_goal, base_limits, obstacles=obstacles)
    if base_path is None:
        print('Unable to find a base path')
        return
    print(len(base_path))
    for bq in base_path:
        set_base_values(pr2, bq)
        if SLEEP is None:
            wait_if_gui('Continue?')
        else:
            wait_for_duration(SLEEP)
예제 #19
0
def compute_visible(body, poses, camera_pose, draw=True):
    ordered_poses = list(poses)
    rays = []
    camera_point = point_from_pose(camera_pose)
    for pose in ordered_poses:
        point = point_from_pose(pose.get_world_from_body())
        rays.append(Ray(camera_point, point))
    ray_results = batch_ray_collision(rays)
    if draw:
        with LockRenderer():
            handles = []
            for ray, result in zip(rays, ray_results):
                handles.extend(draw_ray(ray, result))
    # Blocking objects will likely be known with high probability
    # TODO: move objects out of the way?
    return {
        pose
        for pose, result in zip(ordered_poses, ray_results)
        if result.objectUniqueId in (body, -1)
    }
예제 #20
0
def main(display='execute'):  # control | execute | step
    connect(use_gui=True)
    disable_real_time()

    with HideOutput():
        root_directory = os.path.dirname(os.path.abspath(__file__))
        robot = load_pybullet(os.path.join(root_directory, IRB6600_TRACK_URDF), fixed_base=True)
    floor = load_model('models/short_floor.urdf')
    block = load_model(BLOCK_URDF, fixed_base=False)
    floor_x = 2
    set_pose(floor, Pose(Point(x=floor_x, z=0.5)))
    set_pose(block, Pose(Point(x=floor_x, y=0, z=stable_z(block, floor))))
    # set_default_camera()
    dump_world()

    saved_world = WorldSaver()
    with LockRenderer():
        command = plan(robot, block, fixed=[floor], teleport=False)
    if (command is None) or (display is None):
        print('Unable to find a plan!')
        print('Quit?')
        wait_for_interrupt()
        disconnect()
        return

    saved_world.restore()
    update_state()
    user_input('{}?'.format(display))
    if display == 'control':
        enable_gravity()
        command.control(real_time=False, dt=0)
    elif display == 'execute':
        command.refine(num_steps=10).execute(time_step=0.002)
    elif display == 'step':
        command.step()
    else:
        raise ValueError(display)

    print('Quit?')
    wait_for_interrupt()
    disconnect()
예제 #21
0
def main():
    connect(use_gui=True)
    add_data_path()
    draw_pose(Pose(), length=1.)
    set_camera_pose(camera_point=[1, -1, 1])

    plane = p.loadURDF("plane.urdf")
    with LockRenderer():
        with HideOutput(True):
            robot = load_pybullet(FRANKA_URDF, fixed_base=True)
            assign_link_colors(robot, max_colors=3, s=0.5, v=1.)
            #set_all_color(robot, GREEN)
    obstacles = [plane]  # TODO: collisions with the ground

    dump_body(robot)
    print('Start?')
    wait_for_user()

    info = PANDA_INFO
    tool_link = link_from_name(robot, 'panda_hand')
    draw_pose(Pose(), parent=robot, parent_link=tool_link)
    joints = get_movable_joints(robot)
    print('Joints', [get_joint_name(robot, joint) for joint in joints])
    check_ik_solver(info)

    sample_fn = get_sample_fn(robot, joints)
    for i in range(10):
        print('Iteration:', i)
        conf = sample_fn()
        set_joint_positions(robot, joints, conf)
        wait_for_user()
        #test_ik(robot, info, tool_link, get_link_pose(robot, tool_link))
        test_retraction(robot,
                        info,
                        tool_link,
                        use_pybullet=False,
                        max_distance=0.1,
                        max_time=0.05,
                        max_candidates=100)
    disconnect()
예제 #22
0
 def update(self, detections, n_samples=25):
     start_time = time.time()
     self.observations.append(detections)
     # Processing detected first
     # Could simply sample from the set of worlds and update
     # Would need to sample many worlds with name at different poses
     # Instead, let the moving object take on different poses
     with LockRenderer():
         with WorldSaver():
             if REPAIR_DETECTIONS:
                 detections = fix_detections(
                     self, detections)  # TODO: skip if in sim
             detections = relative_detections(self, detections)
             order = [name for name in detections]  # Detected
             order.extend(set(self.pose_dists) - set(order))  # Not detected
             for name in order:
                 self.pose_dists[name] = self.pose_dists[name].update(
                     self, detections, n_samples=n_samples)
     self.update_state()
     print('Update time: {:.3f} sec for {} objects and {} samples'.format(
         elapsed_time(start_time), len(order), n_samples))
     return self
예제 #23
0
def create_surface_pose_dist(world, obj_name, surface_dist, n=NUM_PARTICLES):
    # TODO: likely easier to just make a null surface below ground
    placement_gen = get_stable_gen(world,
                                   max_attempts=100,
                                   learned=True,
                                   pos_scale=1e-3,
                                   rot_scale=1e-2)
    poses = []
    with LockRenderer():
        with BodySaver(world.get_body(obj_name)):
            while len(poses) < n:
                surface_name = surface_dist.sample()
                assert surface_name is not ELSEWHERE
                result = next(placement_gen(obj_name, surface_name), None)
                if result is None:
                    surface_dist = surface_dist.condition(
                        lambda s: s != surface_name)
                else:
                    (rel_pose, ) = result
                    rel_pose.init = True
                    poses.append(rel_pose)
    return PoseDist(world, obj_name, UniformDist(poses))
예제 #24
0
def collect_place(world, object_name, surface_name, grasp_type, args):
    date = get_date()
    #set_seed(args.seed)

    #dump_body(world.robot)
    surface_pose = get_surface_reference_pose(world.kitchen, surface_name) # TODO: assumes the drawer is open
    stable_gen_fn = get_stable_gen(world, z_offset=Z_EPSILON, visibility=False,
                                   learned=False, collisions=not args.cfree)
    grasp_gen_fn = get_grasp_gen(world)
    ik_ir_gen = get_pick_gen_fn(world, learned=False, collisions=not args.cfree, teleport=args.teleport)

    stable_gen = stable_gen_fn(object_name, surface_name)
    grasps = list(grasp_gen_fn(object_name, grasp_type))

    robot_name = get_body_name(world.robot)
    path = get_place_path(robot_name, surface_name, grasp_type)
    print(SEPARATOR)
    print('Robot name: {} | Object name: {} | Surface name: {} | Grasp type: {} | Filename: {}'.format(
        robot_name, object_name, surface_name, grasp_type, path))

    entries = []
    start_time = time.time()
    failures = 0
    while (len(entries) < args.num_samples) and \
            (elapsed_time(start_time) < args.max_time): #and (failures <= max_failures):
        (rel_pose,) = next(stable_gen)
        if rel_pose is None:
            break
        (grasp,) = random.choice(grasps)
        with LockRenderer(lock=True):
            result = next(ik_ir_gen(object_name, rel_pose, grasp), None)
        if result is None:
            print('Failure! | {} / {} [{:.3f}]'.format(
                len(entries), args.num_samples, elapsed_time(start_time)))
            failures += 1
            continue
        # TODO: ensure an arm motion exists
        bq, aq, at = result
        rel_pose.assign()
        bq.assign()
        aq.assign()
        base_pose = get_link_pose(world.robot, world.base_link)
        object_pose = rel_pose.get_world_from_body()
        tool_pose = multiply(object_pose, invert(grasp.grasp_pose))
        entries.append({
            'tool_from_base': multiply(invert(tool_pose), base_pose),
            'surface_from_object': multiply(invert(surface_pose), object_pose),
            'base_from_object': multiply(invert(base_pose), object_pose),
        })
        print('Success! | {} / {} [{:.3f}]'.format(
            len(entries), args.num_samples, elapsed_time(start_time)))
        if has_gui():
            wait_for_user()
    #visualize_database(tool_from_base_list)
    if not entries:
        safe_remove(path)
        return None

    # Assuming the kitchen is fixed but the objects might be open world
    data = {
        'date': date,
        'robot_name': robot_name, # get_name | get_body_name | get_base_name | world.robot_name
        'base_link': get_link_name(world.robot, world.base_link),
        'tool_link': get_link_name(world.robot, world.tool_link),
        'kitchen_name': get_body_name(world.kitchen),
        'surface_name': surface_name,
        'object_name': object_name,
        'grasp_type': grasp_type,
        'entries': entries,
        'failures': failures,
        'successes': len(entries),
    }

    write_json(path, data)
    print('Saved', path)
    return data
예제 #25
0
def solve_pddlstream(problem,
                     node_points,
                     element_bodies,
                     planner=GREEDY_PLANNER,
                     max_time=60):
    # TODO: try search at different cost levels (i.e. w/ and w/o abstract)
    # TODO: only consider axioms that could be relevant
    # TODO: iterated search using random restarts
    # TODO: most of the time seems to be spent extracting the stream plan
    # TODO: NEGATIVE_SUFFIX to make axioms easier
    # TODO: sort by action cost heuristic
    # http://www.fast-downward.org/Doc/Evaluator#Max_evaluator

    temporal = DURATIVE_ACTIONS in problem.domain_pddl
    print('Init:', problem.init)
    print('Goal:', problem.goal)
    print('Max time:', max_time)
    print('Temporal:', temporal)

    stream_info = {
        # TODO: stream effort
        'sample-print':
        StreamInfo(PartialInputs(unique=True)),
        'sample-move':
        StreamInfo(PartialInputs(unique=True)),
        'test-cfree-traj-conf':
        StreamInfo(p_success=1e-2, negate=True),  # , verbose=False),
        'test-cfree-traj-traj':
        StreamInfo(p_success=1e-2, negate=True),
        'TrajConfCollision':
        FunctionInfo(p_success=1e-1, overhead=1),  # TODO: verbose
        'TrajTrajCollision':
        FunctionInfo(p_success=1e-1, overhead=1),  # TODO: verbose
        'Distance':
        FunctionInfo(opt_fn=get_opt_distance_fn(element_bodies, node_points),
                     eager=True)
        # 'Length': FunctionInfo(eager=True),  # Need to eagerly evaluate otherwise 0 makespan (failure)
        # 'Duration': FunctionInfo(opt_fn=lambda r, t: opt_distance / TOOL_VELOCITY, eager=True),
        # 'Euclidean': FunctionInfo(eager=True),
    }

    # TODO: goal serialization
    # TODO: could revert back to goal count now that no deadends
    # TODO: limit the branching factor if necessary
    # TODO: ensure that function costs aren't prunning plans
    if not temporal:
        # Reachability heuristics good for detecting dead-ends
        # Infeasibility from the start means disconnected or collision
        set_cost_scale(1)
        # planner = 'ff-ehc'
        # planner = 'ff-lazy-tiebreak' # Branching factor becomes large. Rely on preferred. Preferred should also be cheaper
        planner = 'ff-eager-tiebreak'  # Need to use a eager search, otherwise doesn't incorporate child cost
        # planner = 'max-astar'

    # TODO: assert (instance.value == value)
    with LockRenderer(lock=False):
        # solution = solve_incremental(problem, planner='add-random-lazy', max_time=600,
        #                              max_planner_time=300, debug=True)
        # TODO: allow some types of failures
        solution = solve_focused(
            problem,
            stream_info=stream_info,
            max_time=max_time,
            effort_weight=None,
            unit_efforts=True,
            unit_costs=False,  # TODO: effort_weight=None vs 0
            max_skeletons=None,
            bind=True,
            max_failures=INF,  # 0 | INF
            planner=planner,
            max_planner_time=60,
            debug=False,
            reorder=False,
            initial_complexity=1)

    print_solution(solution)
    plan, _, certificate = solution
    # TODO: post-process by calling planner again
    # TODO: could solve for trajectories conditioned on the sequence
    return plan, certificate
def main(floor_width=2.0):
    # Creates a pybullet world and a visualizer for it
    connect(use_gui=True)
    identity_pose = (unit_point(), unit_quat())
    origin_handles = draw_pose(
        identity_pose, length=1.0
    )  # Draws the origin coordinate system (x:RED, y:GREEN, z:BLUE)

    # Bodies are described by an integer index
    floor = create_box(w=floor_width, l=floor_width, h=0.001,
                       color=TAN)  # Creates a tan box object for the floor
    set_point(floor,
              [0, 0, -0.001 / 2.])  # Sets the [x,y,z] translation of the floor

    obstacle = create_box(w=0.5, l=0.5, h=0.1,
                          color=RED)  # Creates a red box obstacle
    set_point(
        obstacle,
        [0.5, 0.5, 0.1 / 2.])  # Sets the [x,y,z] position of the obstacle
    print('Position:', get_point(obstacle))
    set_euler(obstacle,
              [0, 0, np.pi / 4
               ])  #  Sets the [roll,pitch,yaw] orientation of the obstacle
    print('Orientation:', get_euler(obstacle))

    with LockRenderer(
    ):  # Temporarily prevents the renderer from updating for improved loading efficiency
        with HideOutput():  # Temporarily suppresses pybullet output
            robot = load_model(ROOMBA_URDF)  # Loads a robot from a *.urdf file
            robot_z = stable_z(
                robot, floor
            )  # Returns the z offset required for robot to be placed on floor
            set_point(robot,
                      [0, 0, robot_z])  # Sets the z position of the robot
    dump_body(robot)  # Prints joint and link information about robot
    set_all_static()

    # Joints are also described by an integer index
    # The turtlebot has explicit joints representing x, y, theta
    x_joint = joint_from_name(robot, 'x')  # Looks up the robot joint named 'x'
    y_joint = joint_from_name(robot, 'y')  # Looks up the robot joint named 'y'
    theta_joint = joint_from_name(
        robot, 'theta')  # Looks up the robot joint named 'theta'
    joints = [x_joint, y_joint, theta_joint]

    base_link = link_from_name(
        robot, 'base_link')  # Looks up the robot link named 'base_link'
    world_from_obstacle = get_pose(
        obstacle
    )  # Returns the pose of the origin of obstacle wrt the world frame
    obstacle_aabb = get_subtree_aabb(obstacle)
    draw_aabb(obstacle_aabb)

    random.seed(0)  # Sets the random number generator state
    handles = []
    for i in range(10):
        for handle in handles:
            remove_debug(handle)
        print('\nIteration: {}'.format(i))
        x = random.uniform(-floor_width / 2., floor_width / 2.)
        set_joint_position(robot, x_joint,
                           x)  # Sets the current value of the x joint
        y = random.uniform(-floor_width / 2., floor_width / 2.)
        set_joint_position(robot, y_joint,
                           y)  # Sets the current value of the y joint
        yaw = random.uniform(-np.pi, np.pi)
        set_joint_position(robot, theta_joint,
                           yaw)  # Sets the current value of the theta joint
        values = get_joint_positions(
            robot,
            joints)  # Obtains the current values for the specified joints
        print('Joint values: [x={:.3f}, y={:.3f}, yaw={:.3f}]'.format(*values))

        world_from_robot = get_link_pose(
            robot,
            base_link)  # Returns the pose of base_link wrt the world frame
        position, quaternion = world_from_robot  # Decomposing pose into position and orientation (quaternion)
        x, y, z = position  # Decomposing position into x, y, z
        print('Base link position: [x={:.3f}, y={:.3f}, z={:.3f}]'.format(
            x, y, z))
        euler = euler_from_quat(
            quaternion)  # Converting from quaternion to euler angles
        roll, pitch, yaw = euler  # Decomposing orientation into roll, pitch, yaw
        print('Base link orientation: [roll={:.3f}, pitch={:.3f}, yaw={:.3f}]'.
              format(roll, pitch, yaw))
        handles.extend(
            draw_pose(world_from_robot, length=0.5)
        )  # # Draws the base coordinate system (x:RED, y:GREEN, z:BLUE)
        obstacle_from_robot = multiply(
            invert(world_from_obstacle),
            world_from_robot)  # Relative transformation from robot to obstacle

        robot_aabb = get_subtree_aabb(
            robot,
            base_link)  # Computes the robot's axis-aligned bounding box (AABB)
        lower, upper = robot_aabb  # Decomposing the AABB into the lower and upper extrema
        center = (lower + upper) / 2.  # Computing the center of the AABB
        extent = upper - lower  # Computing the dimensions of the AABB
        handles.extend(draw_aabb(robot_aabb))

        collision = pairwise_collision(
            robot, obstacle
        )  # Checks whether robot is currently colliding with obstacle
        print('Collision: {}'.format(collision))
        wait_for_duration(1.0)  # Like sleep() but also updates the viewer
    wait_for_user()  # Like raw_input() but also updates the viewer

    # Destroys the pybullet world
    disconnect()
예제 #27
0
def visualize_vector_field(learner, bowl_type='blue_bowl', cup_type='red_cup',
                           num=500, delta=False, alpha=0.5):
    print(learner, len(learner.results))
    xx, yy, ww = learner.xx, learner.yy, learner.weights
    learner.hyperparameters = get_parameters(learner.model)
    print(learner.hyperparameters)
    learner.query_type = REJECTION  # BEST | REJECTION | STRADDLE

    world = create_world()
    world.bodies[bowl_type] = load_cup_bowl(bowl_type)
    world.bodies[cup_type] = load_cup_bowl(cup_type)
    feature = get_pour_feature(world, bowl_type, cup_type)
    set_point(world.bodies[cup_type], np.array([0.2, 0, 0]))

    # TODO: visualize training data as well
    # TODO: artificially limit training data to make a low-confidence region
    # TODO: visualize mean and var at the same time using intensity and hue
    print('Feature:', feature)
    with LockRenderer():
        #for parameter in islice(learner.parameter_generator(world, feature, valid=True), num):
        parameters = []
        while len(parameters) < num:
            parameter = learner.sample_parameter()
            # TODO: special color if invalid
            if is_valid_pour(world, feature, parameter):
                parameters.append(parameter)

    center, _ = approximate_as_prism(world.get_body(cup_type))
    bodies = []
    with LockRenderer():
        for parameter in parameters:
            path, _ = pour_path_from_parameter(world, feature, parameter)
            pose = path[0]
            body = create_cylinder(radius=0.001, height=0.02, color=apply_alpha(GREY, alpha))
            set_pose(body, multiply(pose, Pose(point=center)))
            bodies.append(body)

    #train_sizes = inclusive_range(10, 100, 1)
    #train_sizes = inclusive_range(10, 100, 10)
    #train_sizes = inclusive_range(100, 1000, 100)
    #train_sizes = [1000]
    train_sizes = [None]

    # training_poses = []
    # for result in learner.results[:train_sizes[-1]]:
    #     path, _ = pour_path_from_parameter(world, feature, result['parameter'])
    #     pose = path[0]
    #     training_poses.append(pose)

    # TODO: draw the example as well
    scores_per_size = []
    for train_size in train_sizes:
        if train_size is not None:
            learner.xx, learner.yy, learner.weights = xx[:train_size], yy[:train_size],  ww[:train_size]
            learner.retrain()
        X = np.array([learner.func.x_from_feature_parameter(feature, parameter) for parameter in parameters])
        predictions = learner.predict_x(X, noise=False) # Noise is just a constant
        scores_per_size.append([prediction['mean'] for prediction in predictions]) # mean | variance
        #scores_per_size.append([1./np.sqrt(prediction['variance']) for prediction in predictions])
        #scores_per_size.append([prediction['mean'] / np.sqrt(prediction['variance']) for prediction in predictions])
        #plt.hist(scores_per_size[-1])
        #plt.show()
        #scores_per_size.append([scipy.stats.norm.interval(alpha=0.95, loc=prediction['mean'],
        #                                                  scale=np.sqrt(prediction['variance']))[0]
        #                         for prediction in predictions]) # mean | variance
        # score = learner.score(feature, parameter)

    if delta:
        scores_per_size = [np.array(s2) - np.array(s1) for s1, s2 in zip(scores_per_size, scores_per_size[1:])]
        train_sizes = train_sizes[1:]

    all_scores = [score for scores in scores_per_size for score in scores]
    #interval = (min(all_scores), max(all_scores))
    interval = scipy.stats.norm.interval(alpha=0.95, loc=np.mean(all_scores), scale=np.std(all_scores))
    #interval = DEFAULT_INTERVAL
    print('Interval:', interval)
    print('Mean: {:.3f} | Stdev: {:.3f}'.format(np.mean(all_scores), np.std(all_scores)))

    #train_body = create_cylinder(radius=0.002, height=0.02, color=apply_alpha(BLACK, 1.0))
    for i, (train_size, scores) in enumerate(zip(train_sizes, scores_per_size)):
        print('Train size: {} | Average: {:.3f} | Min: {:.3f} | Max: {:.3f}'.format(
            train_size, np.mean(scores), min(scores), max(scores)))
        handles = []
        # TODO: visualize delta
        with LockRenderer():
            #if train_size is None:
            #    train_size = len(learner.results)
            #set_pose(train_body, multiply(training_poses[train_size-1], Pose(point=center)))
            #set_pose(world.bodies[cup_type], training_poses[train_size-1])
            for score, body in zip(scores, bodies):
                score = clip(score, *interval)
                fraction = rescale(score, interval, new_interval=(0, 1))
                color = interpolate_hue(fraction)
                #color = (1 - fraction) * np.array(RED) + fraction * np.array(GREEN) # TODO: convex combination
                set_color(body, apply_alpha(color, alpha))
                #set_pose(world.bodies[cup_type], pose)
                #draw_pose(pose, length=0.05)
                #handles.extend(draw_point(tform_point(pose, center), color=color))
                #extent = np.array([0, 0, 0.01])
                #start = tform_point(pose, center - extent/2)
                #end = tform_point(pose, center + extent/2)
                #handles.append(add_line(start, end, color=color, width=1))
        wait_for_duration(0.5)
        # TODO: test on boundaries
    wait_for_user()
예제 #28
0
def main(num_iterations=10):
    # The URDF loader seems robust to package:// and slightly wrong relative paths?
    connect(use_gui=True)
    add_data_path()
    plane = p.loadURDF("plane.urdf")
    side = 0.05
    block = create_box(w=side, l=side, h=side, color=RED)

    start_time = time.time()
    with LockRenderer():
        with HideOutput():
            # TODO: MOVO must be loaded last
            robot = load_model(MOVO_URDF, fixed_base=True)
        #set_all_color(robot, color=MOVO_COLOR)
        assign_link_colors(robot)
        base_joints = joints_from_names(robot, BASE_JOINTS)
        draw_base_limits((get_min_limits(
            robot, base_joints), get_max_limits(robot, base_joints)),
                         z=1e-2)
    print('Load time: {:.3f}'.format(elapsed_time(start_time)))

    dump_body(robot)
    #print(get_colliding(robot))
    #for arm in ARMS:
    #    test_close_gripper(robot, arm)
    #test_grasps(robot, block)

    arm = RIGHT
    tool_link = link_from_name(robot, TOOL_LINK.format(arm))

    #joint_names = HEAD_JOINTS
    #joints = joints_from_names(robot, joint_names)
    joints = base_joints + get_arm_joints(robot, arm)
    #joints = get_movable_joints(robot)
    print('Joints:', get_joint_names(robot, joints))

    ik_info = MOVO_INFOS[arm]
    print_ik_warning(ik_info)

    ik_joints = get_ik_joints(robot, ik_info, tool_link)
    #fixed_joints = []
    fixed_joints = ik_joints[:1]
    #fixed_joints = ik_joints

    wait_if_gui('Start?')
    sample_fn = get_sample_fn(robot, joints)
    handles = []
    for i in range(num_iterations):
        conf = sample_fn()
        print('Iteration: {}/{} | Conf: {}'.format(i + 1, num_iterations,
                                                   np.array(conf)))
        set_joint_positions(robot, joints, conf)
        tool_pose = get_link_pose(robot, tool_link)
        remove_handles(handles)
        handles = draw_pose(tool_pose)
        wait_if_gui()

        #conf = next(ikfast_inverse_kinematics(robot, MOVO_INFOS[arm], tool_link, tool_pose,
        #                                      fixed_joints=fixed_joints, max_time=0.1), None)
        #if conf is not None:
        #    set_joint_positions(robot, ik_joints, conf)
        #wait_if_gui()
        test_retraction(robot,
                        ik_info,
                        tool_link,
                        fixed_joints=fixed_joints,
                        max_time=0.05,
                        max_candidates=100)
    disconnect()
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('-c', '--cfree', action='store_true',
                        help='When enabled, disables collision checking.')
    # parser.add_argument('-p', '--problem', default='test_pour', choices=sorted(problem_fn_from_name),
    #                     help='The name of the problem to solve.')
    parser.add_argument('--holonomic', action='store_true', # '-h',
                        help='')
    parser.add_argument('-l', '--lock', action='store_false',
                        help='')
    parser.add_argument('-s', '--seed', default=None, type=int,
                        help='The random seed to use.')
    parser.add_argument('-v', '--viewer', action='store_false',
                        help='')
    args = parser.parse_args()
    connect(use_gui=args.viewer)

    seed = args.seed
    #seed = 0
    #seed = time.time()
    set_random_seed(seed=seed) # None: 2147483648 = 2**31
    set_numpy_seed(seed=seed)
    print('Random seed:', get_random_seed(), random.random())
    print('Numpy seed:', get_numpy_seed(), np.random.random())

    #########################

    robot, base_limits, goal_conf, obstacles = problem1()
    draw_base_limits(base_limits)
    custom_limits = create_custom_base_limits(robot, base_limits)
    base_joints = joints_from_names(robot, BASE_JOINTS)
    base_link = link_from_name(robot, BASE_LINK_NAME)
    if args.cfree:
        obstacles = []
    # for obstacle in obstacles:
    #     draw_aabb(get_aabb(obstacle)) # Updates automatically
    resolutions = None
    #resolutions = np.array([0.05, 0.05, math.radians(10)])
    set_all_static() # Doesn't seem to affect

    region_aabb = AABB(lower=-np.ones(3), upper=+np.ones(3))
    draw_aabb(region_aabb)
    step_simulation() # Need to call before get_bodies_in_region
    #update_scene() # TODO: https://github.com/bulletphysics/bullet3/pull/3331
    bodies = get_bodies_in_region(region_aabb)
    print(len(bodies), bodies)
    # https://github.com/bulletphysics/bullet3/search?q=broadphase
    # https://github.com/bulletphysics/bullet3/search?p=1&q=getCachedOverlappingObjects&type=&utf8=%E2%9C%93
    # https://andysomogyi.github.io/mechanica/bullet.html
    # http://www.cs.kent.edu/~ruttan/GameEngines/lectures/Bullet_User_Manual

    #draw_pose(get_link_pose(robot, base_link), length=0.5)
    for conf in [get_joint_positions(robot, base_joints), goal_conf]:
        draw_pose(pose_from_pose2d(conf, z=DRAW_Z), length=DRAW_LENGTH)
    aabb = get_aabb(robot)
    #aabb = get_subtree_aabb(robot, base_link)
    draw_aabb(aabb)

    for link in [BASE_LINK, base_link]:
        print(link, get_collision_data(robot, link), pairwise_link_collision(robot, link, robot, link))

    #########################

    saver = WorldSaver()
    start_time = time.time()
    profiler = Profiler(field='tottime', num=50) # tottime | cumtime | None
    profiler.save()
    with LockRenderer(lock=args.lock):
        path = plan_motion(robot, base_joints, goal_conf, holonomic=args.holonomic, obstacles=obstacles,
                           custom_limits=custom_limits, resolutions=resolutions,
                           use_aabb=True, cache=True, max_distance=0.,
                           restarts=2, iterations=20, smooth=20) # 20 | None
        saver.restore()
    #wait_for_duration(duration=1e-3)
    profiler.restore()

    #########################

    solved = path is not None
    length = INF if path is None else len(path)
    cost = sum(get_distance_fn(robot, base_joints, weights=resolutions)(*pair) for pair in get_pairs(path))
    print('Solved: {} | Length: {} | Cost: {:.3f} | Runtime: {:.3f} sec'.format(
        solved, length, cost, elapsed_time(start_time)))
    if path is None:
        disconnect()
        return
    iterate_path(robot, base_joints, path)
    disconnect()
예제 #30
0
def main():
    parser = argparse.ArgumentParser()  # Automatically includes help
    parser.add_argument('-viewer', action='store_true', help='enable viewer.')
    args = parser.parse_args()

    connect(use_gui=True)
    #ycb_path = os.path.join(DRAKE_PATH, DRAKE_YCB)
    #ycb_path = os.path.join(YCB_PATH, YCB_TEMPLATE.format('003_cracker_box'))
    #print(ycb_path)
    #load_pybullet(ycb_path)

    with LockRenderer():
        draw_pose(unit_pose(), length=1, width=1)
        floor = create_floor()
        set_point(floor, Point(z=-EPSILON))
        table = create_table(width=TABLE_WIDTH,
                             length=TABLE_WIDTH / 2,
                             height=TABLE_WIDTH / 2,
                             top_color=TAN,
                             cylinder=False)
        #set_euler(table, Euler(yaw=np.pi/2))
        with HideOutput(False):
            # data_path = add_data_path()
            # robot_path = os.path.join(data_path, WSG_GRIPPER)
            robot_path = get_model_path(
                WSG_50_URDF)  # WSG_50_URDF | PANDA_HAND_URDF
            #robot_path = get_file_path(__file__, 'mit_arch_suction_gripper/mit_arch_suction_gripper.urdf')
            robot = load_pybullet(robot_path, fixed_base=True)
            #dump_body(robot)
            #robot = create_cylinder(radius=0.5*BLOCK_SIDE, height=4*BLOCK_SIDE) # vacuum gripper

        block1 = create_box(w=BLOCK_SIDE,
                            l=BLOCK_SIDE,
                            h=BLOCK_SIDE,
                            color=RED)
        block_z = stable_z(block1, table)
        set_point(block1, Point(z=block_z))

        block2 = create_box(w=BLOCK_SIDE,
                            l=BLOCK_SIDE,
                            h=BLOCK_SIDE,
                            color=GREEN)
        set_point(block2, Point(x=+0.25, z=block_z))

        block3 = create_box(w=BLOCK_SIDE,
                            l=BLOCK_SIDE,
                            h=BLOCK_SIDE,
                            color=BLUE)
        set_point(block3, Point(x=-0.15, z=block_z))

        blocks = [block1, block2, block3]

        add_line(Point(x=-TABLE_WIDTH / 2,
                       z=block_z - BLOCK_SIDE / 2 + EPSILON),
                 Point(x=+TABLE_WIDTH / 2,
                       z=block_z - BLOCK_SIDE / 2 + EPSILON),
                 color=RED)
        set_camera_pose(camera_point=Point(y=-1, z=block_z + 1),
                        target_point=Point(z=block_z))

    wait_for_user()
    block_pose = get_pose(block1)
    open_gripper(robot)
    tool_link = link_from_name(robot, 'tool_link')
    base_from_tool = get_relative_pose(robot, tool_link)
    #draw_pose(unit_pose(), parent=robot, parent_link=tool_link)

    y_grasp, x_grasp = get_top_grasps(block1,
                                      tool_pose=unit_pose(),
                                      grasp_length=0.03,
                                      under=False)
    grasp = y_grasp  # fingers won't collide
    gripper_pose = multiply(block_pose, invert(grasp))
    set_pose(robot, multiply(gripper_pose, invert(base_from_tool)))
    wait_for_user('Finish?')
    disconnect()