def load_chrono_terrain_from_json(system: 'WAChronoSystem', filename: str):
    """Load a ChTerrain from a json specification file

    Args:
        filename (str): the relative path to a terrain json file
        system (WAChronoSystem): the chrono system used to handle the terrain

    Returns:
        ChTerrain: The loaded terrain
    """
    j = _load_json(filename)

    # Validate the json file
    _check_field(j, 'Terrain', field_type=dict)

    t = j['Terrain']
    _check_field(t, 'Input File', field_type=str)
    _check_field(t, 'Texture', field_type=str, optional=True)

    terrain = veh.RigidTerrain(system._system, chrono.GetChronoDataFile(t['Input File']))  # noqa

    # Add texture to the terrain, if desired
    if 'Texture' in t:
        texture_filename = chrono.GetChronoDataFile(t['Texture'])

        vis_mat = chrono.ChVisualMaterial()
        vis_mat.SetKdTexture(texture_filename)
        vis_mat.SetSpecularColor(chrono.ChVectorF(0.0, 0.0, 0.0))
        vis_mat.SetFresnelMin(0)
        vis_mat.SetFresnelMax(0.1)

        patch_asset = terrain.GetPatches()[0].GetGroundBody().GetAssets()[0]
        patch_visual_asset = chrono.CastToChVisualization(patch_asset)
        patch_visual_asset.material_list.append(vis_mat)

    return terrain
예제 #2
0
def main():
    # print("Copyright (c) 2017 projectchrono.org\nChrono version: ", CHRONO_VERSION , "\n\n")

    # ---------
    # Load path
    # ---------
    path_file = "../data/paths/loop2.txt"
    path = np.genfromtxt(path_file, delimiter=",")

    ds = 5  # [m] distance of each intepolated points
    sp = Spline2D(path[:, 0], path[:, 1])
    s = np.arange(0, sp.s[-1], ds)

    px, py = [], []
    for i_s in s:
        ix, iy = sp.calc_position(i_s)
        px.append(ix)
        py.append(iy)
    px.append(px[0])
    py.append(py[0])

    initLoc = chrono.ChVectorD(px[0], py[0], 0.5)

    # --------------------------
    # Create the various modules
    # --------------------------

    # Create the vehicle system
    vehicle = veh.WheeledVehicle(vehicle_file, chrono.ChMaterialSurface.NSC)
    vehicle.Initialize(chrono.ChCoordsysD(initLoc, initRot))
    # vehicle.GetChassis().SetFixed(True)
    vehicle.SetStepsize(step_size)
    vehicle.SetChassisVisualizationType(veh.VisualizationType_PRIMITIVES)
    vehicle.SetSuspensionVisualizationType(veh.VisualizationType_PRIMITIVES)
    vehicle.SetSteeringVisualizationType(veh.VisualizationType_PRIMITIVES)
    vehicle.SetWheelVisualizationType(veh.VisualizationType_NONE)

    # Create the ground
    terrain = veh.RigidTerrain(vehicle.GetSystem(), rigidterrain_file)

    # Create and initialize the powertrain system
    powertrain = veh.SimplePowertrain(simplepowertrain_file)
    vehicle.InitializePowertrain(powertrain)

    # Create and initialize the tires
    for axle in vehicle.GetAxles():
        tireL = veh.RigidTire(rigidtire_file)
        vehicle.InitializeTire(tireL, axle.m_wheels[0],
                               veh.VisualizationType_MESH)
        tireR = veh.RigidTire(rigidtire_file)
        vehicle.InitializeTire(tireR, axle.m_wheels[1],
                               veh.VisualizationType_MESH)

    # -------------
    # Create driver
    # -------------
    driver = Driver(vehicle)

    # Set the time response for steering and throttle inputs.
    # NOTE: this is not exact, since we do not render quite at the specified FPS.
    steering_time = 1.0
    # time to go from 0 to +1 (or from 0 to -1)
    throttle_time = 1.0
    # time to go from 0 to +1
    braking_time = 0.3
    # time to go from 0 to +1
    driver.SetSteeringDelta(render_step_size / steering_time)
    driver.SetThrottleDelta(render_step_size / throttle_time)
    driver.SetBrakingDelta(render_step_size / braking_time)

    # ------------------
    # Draw path
    # ------------------
    if irrlicht:
        road = vehicle.GetSystem().NewBody()
        road.SetBodyFixed(True)
        vehicle.GetSystem().AddBody(road)

        num_points = len(px)
        lines = chrono.ChLinePath()
        for i in range(num_points - 1):
            lines.AddSubLine(
                chrono.ChLineSegment(
                    chrono.ChVectorD(px[i], py[i], 0.1),
                    chrono.ChVectorD(px[i + 1], py[i + 1], 0.1)))

        path_asset = chrono.ChLineShape()
        path_asset.SetLineGeometry(lines)
        path_asset.SetColor(chrono.ChColor(0.0, 0.8, 0.0))
        path_asset.SetNumRenderPoints(max(2 * num_points, 400))
        road.AddAsset(path_asset)

    # --------------------
    # Create controller(s)
    # --------------------
    controller = MPCController(vehicle, driver, path)

    # -----------------------
    # Initialize irrlicht app
    # -----------------------
    if irrlicht:
        app = veh.ChVehicleIrrApp(vehicle)

        app.SetHUDLocation(500, 20)
        app.SetSkyBox()
        app.AddTypicalLogo()
        app.AddTypicalLights(
            chronoirr.vector3df(-150.0, -150.0, 200.0),
            chronoirr.vector3df(-150.0, 150.0, 200.0),
            100,
            100,
        )
        app.AddTypicalLights(
            chronoirr.vector3df(150.0, -150.0, 200.0),
            chronoirr.vector3df(150.0, 150.0, 200.0),
            100,
            100,
        )
        app.EnableGrid(False)
        app.SetChaseCamera(trackPoint, 6.0, 0.5)

        app.SetTimestep(step_size)

        app.AssetBindAll()
        app.AssetUpdateAll()

    # -----------------
    # Initialize output
    # -----------------
    if output:
        try:
            os.mkdir(out_dir)
        except:
            print("Error creating directory ")

        # Generate JSON information with available output channels
        out_json = vehicle.ExportComponentList()
        print(out_json)
        vehicle.ExportComponentList(out_dir + "/component_list.json")

    # ---------------
    # Simulation loop
    # ---------------

    # Number of simulation steps between miscellaneous events
    render_steps = int(math.ceil(render_step_size / step_size))

    # Initialize simulation frame counter and simulation time
    step_number = 0
    time = 0

    if irrlicht:
        while app.GetDevice().run():

            # Render scene
            if step_number % render_steps == 0:
                app.BeginScene(True, True,
                               chronoirr.SColor(255, 140, 161, 192))
                app.DrawAll()
                app.EndScene()

            # Collect output data from modules (for inter-module communication)
            driver_inputs = driver.GetInputs()

            # Update modules (process inputs from other modules)
            time = vehicle.GetSystem().GetChTime()

            driver.Synchronize(time)
            vehicle.Synchronize(time, driver_inputs, terrain)
            terrain.Synchronize(time)
            app.Synchronize("", driver_inputs)

            # Advance simulation for one timestep for all modules
            step = step_size

            # Update controllers
            controller.Advance(step)

            driver.Advance(step)
            vehicle.Advance(step)
            terrain.Advance(step)
            app.Advance(step)

            # Increment frame number
            step_number += 1
    else:
        while True:
            # Collect output data from modules (for inter-module communication)
            driver_inputs = driver.GetInputs()

            # Update modules (process inputs from other modules)
            time = vehicle.GetSystem().GetChTime()

            driver.Synchronize(time)
            vehicle.Synchronize(time, driver_inputs, terrain)
            terrain.Synchronize(time)

            # Advance simulation for one timestep for all modules
            step = step_size

            # Update controllers
            steering_controller.Advance(step)
            throttle_controller.Advance(step)

            driver.Advance(step)
            vehicle.Advance(step)
            terrain.Advance(step)
            vis.Advance(step)

            # Increment frame number
            step_number += 1
예제 #3
0
def main():
    #print("Copyright (c) 2017 projectchrono.org\nChrono version: ", CHRONO_VERSION , "\n\n")

    # --------------------------
    # Create the various modules
    # --------------------------

    # Create the vehicle system
    vehicle = veh.WheeledVehicle(vehicle_file, chrono.ChContactMethod_NSC)
    vehicle.Initialize(chrono.ChCoordsysD(initLoc, initRot))
    #vehicle.GetChassis().SetFixed(True)
    vehicle.SetChassisVisualizationType(veh.VisualizationType_MESH)
    vehicle.SetSuspensionVisualizationType(veh.VisualizationType_PRIMITIVES)
    vehicle.SetSteeringVisualizationType(veh.VisualizationType_PRIMITIVES)
    vehicle.SetWheelVisualizationType(veh.VisualizationType_MESH)

    # Create and initialize the vehicle tires
    for axle in vehicle.GetAxles():
        tireL = veh.TMeasyTire(vehicle_tire_file)
        vehicle.InitializeTire(tireL, axle.m_wheels[0],
                               veh.VisualizationType_MESH)
        tireR = veh.TMeasyTire(vehicle_tire_file)
        vehicle.InitializeTire(tireR, axle.m_wheels[1],
                               veh.VisualizationType_MESH)

    # Create and initialize the powertrain system
    powertrain = veh.SimpleMapPowertrain(vehicle_powertrain_file)
    vehicle.InitializePowertrain(powertrain)

    # Create and initialize the trailer
    trailer = veh.WheeledTrailer(vehicle.GetSystem(), trailer_file)
    trailer.Initialize(vehicle.GetChassis())
    trailer.SetChassisVisualizationType(veh.VisualizationType_PRIMITIVES)
    trailer.SetSuspensionVisualizationType(veh.VisualizationType_PRIMITIVES)
    trailer.SetWheelVisualizationType(veh.VisualizationType_NONE)

    # Create abd initialize the trailer tires
    for axle in trailer.GetAxles():
        tireL = veh.TMeasyTire(trailer_tire_file)
        trailer.InitializeTire(tireL, axle.m_wheels[0],
                               veh.VisualizationType_PRIMITIVES)
        tireR = veh.TMeasyTire(trailer_tire_file)
        trailer.InitializeTire(tireR, axle.m_wheels[1],
                               veh.VisualizationType_PRIMITIVES)

    # Create the ground
    terrain = veh.RigidTerrain(vehicle.GetSystem(), rigidterrain_file)

    app = veh.ChVehicleIrrApp(vehicle, 'Sedan+Trailer (JSON specification)',
                              irr.dimension2du(1000, 800))
    app.SetSkyBox()
    app.AddTypicalLights(irr.vector3df(30, -30, 100),
                         irr.vector3df(30, 50, 100), 250, 130)
    app.AddTypicalLogo(chrono.GetChronoDataFile('logo_pychrono_alpha.png'))
    app.SetChaseCamera(trackPoint, 6.0, 0.5)
    app.SetTimestep(step_size)
    app.AssetBindAll()
    app.AssetUpdateAll()

    driver = veh.ChIrrGuiDriver(app)

    # Set the time response for steering and throttle keyboard inputs.
    # NOTE: this is not exact, since we do not render quite at the specified FPS.
    steering_time = 1.0
    # time to go from 0 to +1 (or from 0 to -1)
    throttle_time = 1.0
    # time to go from 0 to +1
    braking_time = 0.3
    # time to go from 0 to +1
    driver.SetSteeringDelta(render_step_size / steering_time)
    driver.SetThrottleDelta(render_step_size / throttle_time)
    driver.SetBrakingDelta(render_step_size / braking_time)

    driver.Initialize()

    # ---------------
    # Simulation loop
    # ---------------

    realtime_timer = chrono.ChRealtimeStepTimer()
    while (app.GetDevice().run()):

        # Render scene
        app.BeginScene(True, True, irr.SColor(255, 140, 161, 192))
        app.DrawAll()
        app.EndScene()

        # Collect output data from modules (for inter-module communication)
        driver_inputs = driver.GetInputs()

        # Update modules (process inputs from other modules)
        time = vehicle.GetSystem().GetChTime()
        driver.Synchronize(time)
        vehicle.Synchronize(time, driver_inputs, terrain)
        trailer.Synchronize(time, driver_inputs.m_braking, terrain)
        terrain.Synchronize(time)
        app.Synchronize(driver.GetInputModeAsString(), driver_inputs)

        # Advance simulation for one timestep for all modules
        driver.Advance(step_size)
        vehicle.Advance(step_size)
        trailer.Advance(step_size)
        terrain.Advance(step_size)
        app.Advance(step_size)

        # Spin in place for real time to catch up
        realtime_timer.Spin(step_size)
예제 #4
0
    def reset(self):
        n = 2 * np.random.randint(0, 4)
        b1 = 0
        b2 = 0
        r1 = n
        r2 = n
        r3 = n
        r4 = n
        r5 = n
        t1 = 0
        t2 = 0
        t3 = 0
        c = 0
        self.assets = AssetList(b1, b2, r1, r2, r3, r4, r5, t1, t2, t3, c)
        # Create systems
        self.system = chrono.ChSystemNSC()
        self.system.Set_G_acc(chrono.ChVectorD(0, 0, -9.81))
        self.system.SetSolverType(chrono.ChSolver.Type_BARZILAIBORWEIN)
        self.system.SetSolverMaxIterations(150)
        self.system.SetMaxPenetrationRecoverySpeed(4.0)

        # Create the terrain
        rigid_terrain = True
        self.terrain = veh.RigidTerrain(self.system)
        if rigid_terrain:
            patch_mat = chrono.ChMaterialSurfaceNSC()
            patch_mat.SetFriction(0.9)
            patch_mat.SetRestitution(0.01)
            patch = self.terrain.AddPatch(patch_mat, chrono.ChVectorD(0, 0, 0),
                                          chrono.ChVectorD(0, 0, 1),
                                          self.terrain_length * 1.5,
                                          self.terrain_width * 1.5)
        else:
            self.bitmap_file = os.path.dirname(
                os.path.realpath(__file__)) + "/../utils/height_map.bmp"
            self.bitmap_file_backup = os.path.dirname(
                os.path.realpath(__file__)) + "/../utils/height_map_backup.bmp"
            shape = (252, 252)
            generate_random_bitmap(shape=shape,
                                   resolutions=[(2, 2)],
                                   mappings=[(-1.5, 1.5)],
                                   file_name=self.bitmap_file)
            try:
                patch = self.terrain.AddPatch(
                    chrono.CSYSNORM,  # position
                    self.bitmap_file,  # heightmap file (.bmp)
                    "test",  # mesh name
                    self.terrain_length * 1.5,  # sizeX
                    self.terrain_width * 1.5,  # sizeY
                    self.min_terrain_height,  # hMin
                    self.max_terrain_height)  # hMax
            except Exception:
                print('Corrupt Bitmap File')
                patch = self.terrain.AddPatch(
                    chrono.CSYSNORM,  # position
                    self.bitmap_file_backup,  # heightmap file (.bmp)
                    "test",  # mesh name
                    self.terrain_length * 1.5,  # sizeX
                    self.terrain_width * 1.5,  # sizeY
                    self.min_terrain_height,  # hMin
                    self.max_terrain_height)  # hMax
        patch.SetTexture(veh.GetDataFile("terrain/textures/grass.jpg"), 200,
                         200)

        patch.SetColor(chrono.ChColor(0.8, 0.8, 0.5))
        self.terrain.Initialize()

        ground_body = patch.GetGroundBody()
        ground_asset = ground_body.GetAssets()[0]
        visual_asset = chrono.CastToChVisualization(ground_asset)
        visual_asset.SetStatic(True)
        vis_mat = chrono.ChVisualMaterial()
        vis_mat.SetKdTexture(veh.GetDataFile("terrain/textures/grass.jpg"))
        visual_asset.material_list.append(vis_mat)

        theta = random.random() * 2 * np.pi
        x, y = self.terrain_length * 0.5 * np.cos(
            theta), self.terrain_width * 0.5 * np.sin(theta)
        z = self.terrain.GetHeight(chrono.ChVectorD(x, y, 0)) + 0.25
        ang = np.pi + theta
        self.initLoc = chrono.ChVectorD(x, y, z)
        self.initRot = chrono.Q_from_AngZ(ang)

        self.vehicle = veh.Gator(self.system)
        self.vehicle.SetContactMethod(chrono.ChContactMethod_NSC)
        self.vehicle.SetChassisCollisionType(veh.ChassisCollisionType_NONE)
        self.vehicle.SetChassisFixed(False)
        self.m_inputs = veh.Inputs()
        self.vehicle.SetInitPosition(
            chrono.ChCoordsysD(self.initLoc, self.initRot))
        self.vehicle.SetTireType(veh.TireModelType_TMEASY)
        self.vehicle.SetTireStepSize(self.timestep)
        self.vehicle.Initialize()

        if self.play_mode:
            self.vehicle.SetChassisVisualizationType(
                veh.VisualizationType_MESH)
            self.vehicle.SetWheelVisualizationType(veh.VisualizationType_MESH)
            self.vehicle.SetTireVisualizationType(veh.VisualizationType_MESH)
        else:
            self.vehicle.SetChassisVisualizationType(
                veh.VisualizationType_PRIMITIVES)
            self.vehicle.SetWheelVisualizationType(
                veh.VisualizationType_PRIMITIVES)
            self.vehicle.SetTireVisualizationType(
                veh.VisualizationType_PRIMITIVES)
        self.vehicle.SetSuspensionVisualizationType(
            veh.VisualizationType_PRIMITIVES)
        self.vehicle.SetSteeringVisualizationType(
            veh.VisualizationType_PRIMITIVES)
        self.chassis_body = self.vehicle.GetChassisBody()
        # self.chassis_body.GetCollisionModel().ClearModel()
        # size = chrono.ChVectorD(3,2,0.2)
        # self.chassis_body.GetCollisionModel().AddBox(0.5 * size.x, 0.5 * size.y, 0.5 * size.z)
        # self.chassis_body.GetCollisionModel().BuildModel()
        self.chassis_collision_box = chrono.ChVectorD(3, 2, 0.2)

        # Driver
        self.driver = veh.ChDriver(self.vehicle.GetVehicle())

        # create goal
        # pi/4 ang displ
        delta_theta = (random.random() - 0.5) * 1.0 * np.pi
        gx, gy = self.terrain_length * 0.5 * np.cos(
            theta + np.pi +
            delta_theta), self.terrain_width * 0.5 * np.sin(theta + np.pi +
                                                            delta_theta)
        self.goal = chrono.ChVectorD(
            gx, gy,
            self.terrain.GetHeight(chrono.ChVectorD(gx, gy, 0)) + 1.0)

        i = 0
        while (self.goal - self.initLoc).Length() < 15:
            gx = random.random() * self.terrain_length - self.terrain_length / 2
            gy = random.random() * self.terrain_width - self.terrain_width / 2
            self.goal = chrono.ChVectorD(gx, gy, self.max_terrain_height + 1)
            if i > 100:
                print('Break')
                break
            i += 1

        # self.goal = chrono.ChVectorD(75, 0, 0)
        # Origin in Madison WI
        self.origin = chrono.ChVectorD(43.073268, -89.400636, 260.0)
        self.goal_coord = chrono.ChVectorD(self.goal)
        sens.Cartesian2GPS(self.goal_coord, self.origin)

        self.goal_sphere = chrono.ChBodyEasySphere(.55, 1000, True, False)
        self.goal_sphere.SetBodyFixed(True)

        sphere_asset = self.goal_sphere.GetAssets()[0]
        visual_asset = chrono.CastToChVisualization(sphere_asset)

        vis_mat = chrono.ChVisualMaterial()
        vis_mat.SetAmbientColor(chrono.ChVectorF(0, 0, 0))
        vis_mat.SetDiffuseColor(chrono.ChVectorF(.2, .2, .9))
        vis_mat.SetSpecularColor(chrono.ChVectorF(.9, .9, .9))

        visual_asset.material_list.append(vis_mat)
        visual_asset.SetStatic(True)

        self.goal_sphere.SetPos(self.goal)
        if self.play_mode:
            self.system.Add(self.goal_sphere)

        # create obstacles
        # start = t.time()
        self.assets.Clear()
        self.assets.RandomlyPositionAssets(self.system,
                                           self.initLoc,
                                           self.goal,
                                           self.terrain,
                                           self.terrain_length * 1.5,
                                           self.terrain_width * 1.5,
                                           should_scale=False)

        # Set the time response for steering and throttle inputs.
        # NOTE: this is not exact, since we do not render quite at the specified FPS.
        steering_time = 0.75
        # time to go from 0 to +1 (or from 0 to -1)
        throttle_time = .5
        # time to go from 0 to +1
        braking_time = 0.3
        # time to go from 0 to +1
        self.SteeringDelta = (self.timestep / steering_time)
        self.ThrottleDelta = (self.timestep / throttle_time)
        self.BrakingDelta = (self.timestep / braking_time)

        self.manager = sens.ChSensorManager(self.system)
        self.manager.scene.AddPointLight(chrono.ChVectorF(100, 100, 100),
                                         chrono.ChVectorF(1, 1, 1), 5000.0)
        self.manager.scene.AddPointLight(chrono.ChVectorF(-100, -100, 100),
                                         chrono.ChVectorF(1, 1, 1), 5000.0)
        # Let's not, for the moment, give a different scenario during test
        """
        if self.play_mode:
            self.manager.scene.GetBackground().has_texture = True;
            self.manager.scene.GetBackground().env_tex = "sensor/textures/qwantani_8k.hdr"
            self.manager.scene.GetBackground().has_changed = True;
        """
        # -----------------------------------------------------
        # Create a self.camera and add it to the sensor manager
        # -----------------------------------------------------
        #chrono.ChFrameD(chrono.ChVectorD(1.5, 0, .875), chrono.Q_from_AngAxis(0, chrono.ChVectorD(0, 1, 0))),
        self.camera = sens.ChCameraSensor(
            self.chassis_body,  # body camera is attached to
            20,  # scanning rate in Hz
            chrono.ChFrameD(
                chrono.ChVectorD(.65, 0, .75),
                chrono.Q_from_AngAxis(0, chrono.ChVectorD(0, 1, 0))),
            # offset pose
            self.camera_width,  # number of horizontal samples
            self.camera_height,  # number of vertical channels
            chrono.CH_C_PI / 2,  # horizontal field of view
            6  # supersampling factor
        )
        self.camera.SetName("Camera Sensor")
        self.camera.PushFilter(sens.ChFilterRGBA8Access())
        if self.play_mode:
            self.camera.PushFilter(
                sens.ChFilterVisualize(self.camera_width, self.camera_height,
                                       "RGB Camera"))
        self.manager.AddSensor(self.camera)

        # -----------------------------------------------------
        # Create a self.gps and add it to the sensor manager
        # -----------------------------------------------------
        gps_noise_none = sens.ChGPSNoiseNone()
        self.gps = sens.ChGPSSensor(
            self.chassis_body, 15,
            chrono.ChFrameD(
                chrono.ChVectorD(0, 0, 0),
                chrono.Q_from_AngAxis(0, chrono.ChVectorD(0, 1, 0))),
            self.origin, gps_noise_none)
        self.gps.SetName("GPS Sensor")
        self.gps.PushFilter(sens.ChFilterGPSAccess())
        self.manager.AddSensor(self.gps)

        # have to reconstruct scene because sensor loads in meshes separately (ask Asher)
        # start = t.time()
        if self.assets.GetNum() > 0:
            # self.assets.TransformAgain()
            # start = t.time()
            for asset in self.assets.assets:
                if len(asset.frames) > 0:
                    self.manager.AddInstancedStaticSceneMeshes(
                        asset.frames, asset.mesh.shape)
            # self.manager.ReconstructScenes()
            # self.manager.AddInstancedStaticSceneMeshes(self.assets.frames, self.assets.shapes)
            # self.manager.Update()
            # print('Reconstruction :: ', t.time() - start)

        self.old_dist = (self.goal - self.initLoc).Length()

        self.step_number = 0
        self.c_f = 0
        self.isdone = False
        self.render_setup = False
        self.dist0 = (self.goal - self.chassis_body.GetPos()).Length()
        if self.play_mode:
            self.render()

        # print(self.get_ob()[1])
        return self.get_ob()
예제 #5
0
my_truck.SetChassisCollisionType(chassis_collision_type)
my_truck.SetChassisFixed(False)
my_truck.SetInitPosition(chrono.ChCoordsysD(initLoc, initRot))
my_truck.SetTireType(tire_model)
my_truck.SetTireStepSize(tire_step_size)
my_truck.SetShaftBasedDrivetrain(True)
my_truck.Initialize()

my_truck.SetChassisVisualizationType(chassis_vis_type)
my_truck.SetSuspensionVisualizationType(suspension_vis_type)
my_truck.SetSteeringVisualizationType(steering_vis_type)
my_truck.SetWheelVisualizationType(wheel_vis_type)
my_truck.SetTireVisualizationType(tire_vis_type)

# Create the terrain
terrain = veh.RigidTerrain(my_truck.GetSystem())
patch = terrain.AddPatch(
    chrono.ChCoordsysD(chrono.ChVectorD(0, 0, terrainHeight - 5),
                       chrono.QUNIT),
    chrono.ChVectorD(terrainLength, terrainWidth, 10))

patch.SetContactFrictionCoefficient(0.9)
patch.SetContactRestitutionCoefficient(0.01)
patch.SetContactMaterialProperties(2e7, 0.3)
patch.SetTexture(veh.GetDataFile("terrain/textures/tile4.jpg"), 200, 200)
patch.SetColor(chrono.ChColor(0.8, 0.8, 0.5))
terrain.Initialize()

# Create the vehicle Irrlicht interface
app = veh.ChWheeledVehicleIrrApp(my_truck.GetVehicle())
app.SetSkyBox()
예제 #6
0
my_bus.SetChassisFixed(False)
my_bus.SetInitPosition(chrono.ChCoordsysD(initLoc, initRot))
my_bus.SetTireType(tire_model)
my_bus.SetTireStepSize(tire_step_size)
my_bus.Initialize()

tire_vis_type = veh.VisualizationType_MESH  # : VisualizationType::PRIMITIVES

my_bus.SetChassisVisualizationType(chassis_vis_type)
my_bus.SetSuspensionVisualizationType(suspension_vis_type)
my_bus.SetSteeringVisualizationType(steering_vis_type)
my_bus.SetWheelVisualizationType(wheel_vis_type)
my_bus.SetTireVisualizationType(tire_vis_type)

# Create the terrain
terrain = veh.RigidTerrain(my_bus.GetSystem())
if (contact_method == chrono.ChContactMethod_NSC):
    patch_mat = chrono.ChMaterialSurfaceNSC()
    patch_mat.SetFriction(0.9)
    patch_mat.SetRestitution(0.01)
elif (contact_method == chrono.ChContactMethod_SMC):
    patch_mat = chrono.ChMaterialSurfaceSMC()
    patch_mat.SetFriction(0.9)
    patch_mat.SetRestitution(0.01)
    patch_mat.SetYoungModulus(2e7)
patch = terrain.AddPatch(patch_mat, chrono.ChVectorD(0, 0, 0),
                         chrono.ChVectorD(0, 0, 1), terrainLength,
                         terrainWidth)
patch.SetTexture(veh.GetDataFile("terrain/textures/tile4.jpg"), 200, 200)
patch.SetColor(chrono.ChColor(0.8, 0.8, 0.5))
terrain.Initialize()
예제 #7
0
suspR = veh.CastToChLeafspringAxle(uaz.GetVehicle().GetSuspension(1))
springRL = suspR.GetSpring(veh.LEFT)
shockRL = suspR.GetShock(veh.RIGHT)

print("Spring rest length rear: " + str(springRL.GetRestLength()) + "\n")
print("Shock rest length rear:  " + str(shockRL.GetRestLength()) + "\n")

print("Vehicle mass:               " + str(uaz.GetVehicle().GetVehicleMass()) +
      "\n")
print("Vehicle mass (with tires):  " + str(uaz.GetTotalMass()) + "\n")

# ------------------
# Create the terrain
# ------------------

terrain = veh.RigidTerrain(uaz.GetSystem())
patch_mat = chrono.ChMaterialSurfaceNSC()
patch_mat.SetFriction(0.9)
patch_mat.SetRestitution(0.01)
patch = terrain.AddPatch(patch_mat, chrono.ChVectorD(0, 0, 0),
                         chrono.ChVectorD(0, 0, 1), 600, 600)
patch.SetColor(chrono.ChColor(0.8, 0.8, 1.0))
patch.SetTexture(veh.GetDataFile("terrain/textures/tile4.jpg"), 1200, 1200)
terrain.Initialize()

# -------------------------------------
# Create the vehicle Irrlicht interface
# Create the driver system
# -------------------------------------

app = veh.ChWheeledVehicleIrrApp(uaz.GetVehicle(), 'UAZBUS',
예제 #8
0
my_hmmwv.SetTireStepSize(step_size)
my_hmmwv.Initialize()

my_hmmwv.SetChassisVisualizationType(veh.VisualizationType_PRIMITIVES)
my_hmmwv.SetSuspensionVisualizationType(veh.VisualizationType_PRIMITIVES)
my_hmmwv.SetSteeringVisualizationType(veh.VisualizationType_PRIMITIVES)
my_hmmwv.SetWheelVisualizationType(veh.VisualizationType_NONE)
my_hmmwv.SetTireVisualizationType(veh.VisualizationType_PRIMITIVES)

# Create the terrain
minfo = veh.MaterialInfo()
minfo.mu = 0.8
minfo.cr = 0.01
minfo.Y = 2e7
patch_mat = minfo.CreateMaterial(my_hmmwv.GetSystem().GetContactMethod())
terrain = veh.RigidTerrain(my_hmmwv.GetSystem())
patch = terrain.AddPatch(patch_mat, chrono.ChVectorD(0, 0, 0), chrono.ChVectorD(0, 0, 1), 200, 200)
patch.SetColor(chrono.ChColor(1, 1, 1))
patch.SetTexture(veh.GetDataFile("terrain/textures/tile4.jpg"), 200, 200)
terrain.Initialize()

# Left circle path
path = veh.CirclePath(chrono.ChVectorD(-75, 0, 0.6), 20, 40, True, 10)
npoints = path.getNumPoints()

path_asset = chrono.ChLineShape()
path_asset.SetLineGeometry(chrono.ChLineBezier(path))
path_asset.SetName("test path")
path_asset.SetNumRenderPoints(max(2 * npoints, 400))
patch.GetGroundBody().AddAsset(path_asset)
예제 #9
0
def main():
    #print("Copyright (c) 2017 projectchrono.org\nChrono version: ", CHRONO_VERSION , "\n\n")

    # --------------------------
    # Create the various modules
    # --------------------------

    # Create the vehicle system
    vehicle = veh.WheeledVehicle(vehicle_file, chrono.ChMaterialSurface.NSC)
    vehicle.Initialize(chrono.ChCoordsysD(initLoc, initRot))
    #vehicle.GetChassis().SetFixed(True)
    vehicle.SetStepsize(step_size)
    vehicle.SetChassisVisualizationType(veh.VisualizationType_PRIMITIVES)
    vehicle.SetSuspensionVisualizationType(veh.VisualizationType_PRIMITIVES)
    vehicle.SetSteeringVisualizationType(veh.VisualizationType_PRIMITIVES)
    vehicle.SetWheelVisualizationType(veh.VisualizationType_NONE)

    # Create the ground
    terrain = veh.RigidTerrain(vehicle.GetSystem(), rigidterrain_file)

    # Create and initialize the powertrain system
    powertrain = veh.SimplePowertrain(simplepowertrain_file)
    vehicle.InitializePowertrain(powertrain)

    # Create and initialize the tires
    for axle in vehicle.GetAxles():
        tireL = veh.RigidTire(rigidtire_file)
        vehicle.InitializeTire(tireL, axle.m_wheels[0],
                               veh.VisualizationType_MESH)
        tireR = veh.RigidTire(rigidtire_file)
        vehicle.InitializeTire(tireR, axle.m_wheels[1],
                               veh.VisualizationType_MESH)

    # -------------
    # Create driver
    # -------------
    driver = Driver(vehicle)

    # Set the time response for steering and throttle inputs.
    # NOTE: this is not exact, since we do not render quite at the specified FPS.
    steering_time = 1.0
    # time to go from 0 to +1 (or from 0 to -1)
    throttle_time = 1.0
    # time to go from 0 to +1
    braking_time = 0.3
    # time to go from 0 to +1
    driver.SetSteeringDelta(render_step_size / steering_time)
    driver.SetThrottleDelta(render_step_size / throttle_time)
    driver.SetBrakingDelta(render_step_size / braking_time)

    # ------------------
    # Load and draw path
    # ------------------
    # path_file = 'paths/straight.txt'
    # path_file = 'paths/curve.txt'
    path_file = 'paths/NATO_double_lane_change.txt'
    # path_file = 'paths/ISO_double_lane_change.txt'
    path = chrono.ChBezierCurve.read(veh.GetDataFile(path_file))

    if irrlicht:
        road = vehicle.GetSystem().NewBody()
        road.SetBodyFixed(True)
        vehicle.GetSystem().AddBody(road)

        num_points = path.getNumPoints()
        path_asset = chrono.ChLineShape()
        path_asset.SetLineGeometry(chrono.ChLineBezier(path))
        path_asset.SetColor(chrono.ChColor(0.0, 0.8, 0.0))
        path_asset.SetNumRenderPoints(max(2 * num_points, 400))
        road.AddAsset(path_asset)

    # --------------------
    # Create controller(s)
    # --------------------
    steering_controller = PIDSteeringController(vehicle, driver, path)
    steering_controller.SetGains(Kp=0.4, Ki=0, Kd=0.25)
    steering_controller.SetLookAheadDistance(dist=5.0)

    throttle_controller = PIDThrottleController(vehicle, driver)
    throttle_controller.SetGains(Kp=0.4, Ki=0, Kd=0)
    throttle_controller.SetTargetSpeed(target_speed)

    # -----------------------
    # Initialize irrlicht app
    # -----------------------
    if irrlicht:
        app = veh.ChVehicleIrrApp(vehicle)

        app.SetHUDLocation(500, 20)
        app.SetSkyBox()
        app.AddTypicalLogo()
        app.AddTypicalLights(chronoirr.vector3df(-150., -150., 200.),
                             chronoirr.vector3df(-150., 150., 200.), 100, 100)
        app.AddTypicalLights(chronoirr.vector3df(150., -150., 200.),
                             chronoirr.vector3df(150., 150., 200.), 100, 100)
        app.EnableGrid(False)
        app.SetChaseCamera(trackPoint, 6.0, 0.5)

        app.SetTimestep(step_size)

        app.AssetBindAll()
        app.AssetUpdateAll()

    # -----------------
    # Initialize output
    # -----------------
    if output:
        try:
            os.mkdir(out_dir)
        except:
            print("Error creating directory ")

        # Generate JSON information with available output channels
        out_json = vehicle.ExportComponentList()
        print(out_json)
        vehicle.ExportComponentList(out_dir + "/component_list.json")

    # ---------------
    # Simulation loop
    # ---------------

    # Number of simulation steps between miscellaneous events
    render_steps = int(math.ceil(render_step_size / step_size))

    # Initialize simulation frame counter and simulation time
    step_number = 0
    time = 0

    if irrlicht:
        while (app.GetDevice().run()):

            # Render scene
            if step_number % render_steps == 0:
                app.BeginScene(True, True,
                               chronoirr.SColor(255, 140, 161, 192))
                app.DrawAll()
                app.EndScene()

            # Collect output data from modules (for inter-module communication)
            driver_inputs = driver.GetInputs()

            # Update modules (process inputs from other modules)
            time = vehicle.GetSystem().GetChTime()

            driver.Synchronize(time)
            vehicle.Synchronize(time, driver_inputs, terrain)
            terrain.Synchronize(time)
            app.Synchronize("", driver_inputs)

            # Advance simulation for one timestep for all modules
            step = step_size

            # Update controllers
            steering_controller.Advance(step)
            throttle_controller.Advance(step)

            driver.Advance(step)
            vehicle.Advance(step)
            terrain.Advance(step)
            app.Advance(step)

            # Increment frame number
            step_number += 1
    else:
        while (True):
            vehicle.GetSystem().DoStepDynamics(step_size)

            # Collect output data from modules (for inter-module communication)
            driver_inputs = driver.GetInputs()

            # Update modules (process inputs from other modules)
            time = vehicle.GetSystem().GetChTime()

            driver.Synchronize(time)
            vehicle.Synchronize(time, driver_inputs, terrain)
            terrain.Synchronize(time)

            # Advance simulation for one timestep for all modules
            step = step_size

            # Update controllers
            steering_controller.Advance(step)
            throttle_controller.Advance(step)

            driver.Advance(step)
            vehicle.Advance(step)
            terrain.Advance(step)

            # Increment frame number
            step_number += 1
    def reset(self):
        del self.manager
        material = chrono.ChMaterialSurfaceNSC()
        self.vehicle = veh.HMMWV_Reduced()
        self.vehicle.SetContactMethod(chrono.ChContactMethod_NSC)
        self.vehicle.SetChassisCollisionType(
            veh.ChassisCollisionType_PRIMITIVES)

        self.vehicle.SetChassisFixed(False)
        self.vehicle.SetInitPosition(
            chrono.ChCoordsysD(self.initLoc, self.initRot))
        self.vehicle.SetPowertrainType(veh.PowertrainModelType_SHAFTS)
        self.vehicle.SetDriveType(veh.DrivelineType_AWD)
        #self.vehicle.SetSteeringType(veh.SteeringType_PITMAN_ARM)
        self.vehicle.SetTireType(veh.TireModelType_TMEASY)
        self.vehicle.SetTireStepSize(self.timestep)
        self.vehicle.Initialize()

        #self.vehicle.SetStepsize(self.timestep)
        if self.play_mode == True:
            self.vehicle.SetChassisVisualizationType(
                veh.VisualizationType_MESH)
            self.vehicle.SetWheelVisualizationType(veh.VisualizationType_MESH)
            self.vehicle.SetTireVisualizationType(veh.VisualizationType_MESH)
        else:
            self.vehicle.SetChassisVisualizationType(
                veh.VisualizationType_PRIMITIVES)
            self.vehicle.SetWheelVisualizationType(
                veh.VisualizationType_PRIMITIVES)
        self.vehicle.SetSuspensionVisualizationType(
            veh.VisualizationType_PRIMITIVES)
        self.vehicle.SetSteeringVisualizationType(
            veh.VisualizationType_PRIMITIVES)
        self.chassis_body = self.vehicle.GetChassisBody()
        self.chassis_body.GetCollisionModel().ClearModel()
        size = chrono.ChVectorD(3, 2, 0.2)
        self.chassis_body.GetCollisionModel().AddBox(material, 0.5 * size.x,
                                                     0.5 * size.y,
                                                     0.5 * size.z)
        self.chassis_body.GetCollisionModel().BuildModel()

        # Driver
        self.driver = veh.ChDriver(self.vehicle.GetVehicle())

        # Rigid terrain
        self.system = self.vehicle.GetSystem()
        self.terrain = veh.RigidTerrain(self.system)
        patch = self.terrain.AddPatch(
            material, chrono.ChVectorD(0, 0, self.terrainHeight - .5),
            chrono.VECT_Z, self.terrainLength, self.terrainWidth, 10)
        material.SetFriction(0.9)
        material.SetRestitution(0.01)
        #patch.SetContactMaterialProperties(2e7, 0.3)
        patch.SetTexture(veh.GetDataFile("terrain/textures/tile4.jpg"), 200,
                         200)
        patch.SetColor(chrono.ChColor(0.8, 0.8, 0.5))
        self.terrain.Initialize()

        ground_body = patch.GetGroundBody()
        ground_asset = ground_body.GetAssets()[0]
        visual_asset = chrono.CastToChVisualization(ground_asset)
        vis_mat = chrono.ChVisualMaterial()
        vis_mat.SetKdTexture(chrono.GetChronoDataFile("concrete.jpg"))
        visual_asset.material_list.append(vis_mat)

        # create obstacles
        self.boxes = []
        for i in range(3):
            box = chrono.ChBodyEasyBox(2, 2, 10, 1000, True, True)
            box.SetPos(
                chrono.ChVectorD(25 + 25 * i,
                                 (np.random.rand(1)[0] - 0.5) * 10, .05))
            box.SetBodyFixed(True)
            box_asset = box.GetAssets()[0]
            visual_asset = chrono.CastToChVisualization(box_asset)

            vis_mat = chrono.ChVisualMaterial()
            vis_mat.SetAmbientColor(chrono.ChVectorF(0, 0, 0))
            vis_mat.SetDiffuseColor(chrono.ChVectorF(.2, .2, .9))
            vis_mat.SetSpecularColor(chrono.ChVectorF(.9, .9, .9))

            visual_asset.material_list.append(vis_mat)
            visual_asset.SetStatic(True)
            self.boxes.append(box)
            self.system.Add(box)

        # Set the time response for steering and throttle inputs.
        # NOTE: this is not exact, since we do not render quite at the specified FPS.
        steering_time = 1.0
        # time to go from 0 to +1 (or from 0 to -1)
        throttle_time = .5
        # time to go from 0 to +1
        braking_time = 0.3
        # time to go from 0 to +1
        self.SteeringDelta = (self.timestep / steering_time)
        self.ThrottleDelta = (self.timestep / throttle_time)
        self.BrakingDelta = (self.timestep / braking_time)

        self.manager = sens.ChSensorManager(self.system)
        self.manager.scene.AddPointLight(chrono.ChVectorF(100, 100, 100),
                                         chrono.ChVectorF(1, 1, 1), 4000.0)
        self.manager.scene.AddPointLight(chrono.ChVectorF(-100, -100, 100),
                                         chrono.ChVectorF(1, 1, 1), 4000.0)
        # ------------------------------------------------
        # Create a self.camera and add it to the sensor manager
        # ------------------------------------------------
        self.camera = sens.ChCameraSensor(
            self.chassis_body,  # body camera is attached to
            50,  # scanning rate in Hz
            chrono.ChFrameD(chrono.ChVectorD(1.5, 0, .875)),
            # offset pose
            self.camera_width,  # number of horizontal samples
            self.camera_height,  # number of vertical channels
            chrono.CH_C_PI / 3,  # horizontal field of view
            #(self.camera_height / self.camera_width) * chrono.CH_C_PI / 3.  # vertical field of view
        )
        self.camera.SetName("Camera Sensor")
        self.camera.PushFilter(sens.ChFilterRGBA8Access())
        self.manager.AddSensor(self.camera)
        # -----------------------------------------------------------------
        # Create a filter graph for post-processing the data from the lidar
        # -----------------------------------------------------------------

        self.d_old = np.linalg.norm(self.Xtarg + self.Ytarg)
        self.step_number = 0
        self.c_f = 0
        self.isdone = False
        self.render_setup = False
        if self.play_mode:
            self.render()

        return self.get_ob()
def main():
    # ----------------------
    # Set path to data files
    # ----------------------

    # Path to Chrono data files (textures, etc.)
    chrono.SetChronoDataPath(CHRONO_DATA_DIR)

    # Path to the data files for this vehicle (JSON specification files)
    veh.SetDataPath("./data/")

    # --------------------------
    # Create the various modules
    # --------------------------

    # Create and initialize the vehicle system
    vehicle = veh.WheeledVehicle(veh.GetDataFile(vehicle_file), NSC_SMC)

    vehicle.Initialize(chrono.ChCoordsysD(initLoc, initRot))

    vehicle.SetSuspensionVisualizationType(veh.VisualizationType_PRIMITIVES)
    vehicle.SetSteeringVisualizationType(veh.VisualizationType_PRIMITIVES)
    vehicle.SetWheelVisualizationType(veh.VisualizationType_NONE)

    # Create the terrain
    terrain = veh.RigidTerrain(vehicle.GetSystem(),
                               veh.GetDataFile(rigidterrain_file))
    AddFixedObstacles(vehicle.GetSystem())
    AddMovingObstacles(vehicle.GetSystem())

    # Create and initialize the powertrain system
    powertrain = veh.SimplePowertrain(veh.GetDataFile(simplepowertrain_file))
    vehicle.InitializePowertrain(powertrain)

    # Create and initialize the tires
    for axle in vehicle.GetAxles():
        tireL = veh.RigidTire(veh.GetDataFile(rigidtire_file))
        tireR = veh.RigidTire(veh.GetDataFile(rigidtire_file))
        vehicle.InitializeTire(tireL, axle.m_wheels[0],
                               veh.VisualizationType_MESH)
        vehicle.InitializeTire(tireR, axle.m_wheels[1],
                               veh.VisualizationType_MESH)

    # Create the Irrlicht vehicle application
    app = veh.ChVehicleIrrApp(vehicle, "Vehicle Demo")

    app.SetSkyBox()
    app.AddTypicalLights(chronoirr.vector3df(30, -30, 100),
                         chronoirr.vector3df(30, 50, 100), 250, 130)
    app.SetChaseCamera(trackPoint, 6.0, 0.5)

    app.SetTimestep(step_size)

    app.AssetBindAll()
    app.AssetUpdateAll()

    # Create the driver system (interactive)
    driver = veh.ChIrrGuiDriver(app)

    # Set the time response for steering and throttle keyboard inputs.
    # NOTE: this is not exact, since we do not render quite at the specified FPS.
    steering_time = 1.0
    # time to go from 0 to +1 (or from 0 to -1)
    throttle_time = 1.0
    # time to go from 0 to +1
    braking_time = 0.3
    # time to go from 0 to +1
    driver.SetSteeringDelta(render_step_size / steering_time)
    driver.SetThrottleDelta(render_step_size / throttle_time)
    driver.SetBrakingDelta(render_step_size / braking_time)

    # -----------------
    # Initialize output
    # -----------------

    try:
        os.mkdir(out_dir)
    except:
        print("Error creating directory ")

    if (povray_output):
        try:
            os.mkdir(pov_dir)
        except:
            print("Error creating POV directory ")
        terrain.ExportMeshPovray(out_dir)

    # ---------------
    # Simulation loop
    # ---------------
    """driveshaft_speed
    powertrain_torque
    throttle_input
    steering_input
    braking_input"""

    # Number of simulation steps between two 3D view render frames
    render_steps = m.ceil(render_step_size / step_size)

    #Initialize simulation frame counter and simulation time
    step_number = 0
    frame_number = 0
    time = 0

    realtime_timer = chrono.ChRealtimeStepTimer()

    while (app.GetDevice().run()):
        # Render scene
        if (step_number % render_steps == 0):
            app.BeginScene(True, True, chronoirr.SColor(255, 140, 161, 192))
            app.DrawAll()
            app.EndScene()

            #char filename[100];
            #sprintf(filename, "%s/data_%03d.dat", pov_dir.c_str(), frame_number + 1);
            #utils::WriteShapesPovray(vehicle.GetSystem(), filename);

            frame_number += 1

        # Get driver inputs
        driver_inputs = driver.GetInputs()

        # Update modules (process inputs from other modules)
        time = vehicle.GetSystem().GetChTime()
        driver.Synchronize(time)
        vehicle.Synchronize(time, driver_inputs, terrain)
        terrain.Synchronize(time)
        app.Synchronize(driver.GetInputModeAsString(), driver_inputs)

        # Advance simulation for one timestep for all modules
        driver.Advance(step_size)
        vehicle.Advance(step_size)
        terrain.Advance(step_size)
        app.Advance(step_size)

        # Increment frame number
        step_number += 1
        # Spin in place for real time to catch up
        realtime_timer.Spin(step_size)

    return 0
예제 #12
0
def main() : 
    #print("Copyright (c) 2017 projectchrono.org\nChrono version: ", CHRONO_VERSION , "\n\n")

    # --------------------------
    # Create the various modules
    # --------------------------

    # Create the vehicle system
    vehicle = veh.WheeledVehicle(vehicle_file ,chrono.ChMaterialSurface.NSC)
    vehicle.Initialize(chrono.ChCoordsysD(initLoc, initRot))
    #vehicle.GetChassis().SetFixed(True)
    vehicle.SetStepsize(step_size)
    vehicle.SetChassisVisualizationType(veh.VisualizationType_PRIMITIVES)
    vehicle.SetSuspensionVisualizationType(veh.VisualizationType_PRIMITIVES)
    vehicle.SetSteeringVisualizationType(veh.VisualizationType_PRIMITIVES)
    vehicle.SetWheelVisualizationType(veh.VisualizationType_NONE)

    # Create the ground
    terrain = veh.RigidTerrain(vehicle.GetSystem(), rigidterrain_file)

    # Create and initialize the powertrain system
    powertrain = veh.SimplePowertrain(simplepowertrain_file)
    powertrain.Initialize(vehicle.GetChassisBody(), vehicle.GetDriveshaft())

    #// Create and initialize the tires
    num_axles = vehicle.GetNumberAxles()
    num_wheels = 2 * num_axles
    tires = [ veh.RigidTire(rigidtire_file) for i in range(num_wheels)]

    for i, t in enumerate(tires):
        #t = std::make_shared<vehicle::RigidTire>(vehicle::GetDataFile(rigidtire_file));
       s = [veh.LEFT, veh.RIGHT]
       t.Initialize(vehicle.GetWheelBody(veh.WheelID(i)), s[i % 2])
       t.SetVisualizationType(veh.VisualizationType_MESH)


    app = veh.ChVehicleIrrApp (vehicle, powertrain)

    app.SetSkyBox()
    app.AddTypicalLights(chronoirr.vector3df(30, -30, 100), chronoirr.vector3df(30, 50, 100), 250, 130)
    app.SetChaseCamera(trackPoint, 6.0, 0.5)

    app.SetTimestep(step_size)

    app.AssetBindAll()
    app.AssetUpdateAll()

    """
    bool do_shadows = false; // shadow map is experimental
    irr::scene::ILightSceneNode* mlight = 0;

    if (do_shadows) {
      mlight = application.AddLightWithShadow(
        irr::core::vector3df(10.f, 30.f, 60.f),
        irr::core::vector3df(0.f, 0.f, 0.f),
        150, 60, 80, 15, 512, irr::video::SColorf(1, 1, 1), false, false);
    } else {
      application.AddTypicalLights(
        irr::core::vector3df(30.f, -30.f, 100.f),
        irr::core::vector3df(30.f, 50.f, 100.f),
        250, 130);
    }

    if (do_shadows)
        application.AddShadowAll();
    """

    driver = veh.ChIrrGuiDriver(app)

    # Set the time response for steering and throttle keyboard inputs.
    # NOTE: this is not exact, since we do not render quite at the specified FPS.
    steering_time = 1.0;  # time to go from 0 to +1 (or from 0 to -1)
    throttle_time = 1.0;  # time to go from 0 to +1
    braking_time = 0.3;   # time to go from 0 to +1
    driver.SetSteeringDelta(render_step_size / steering_time)
    driver.SetThrottleDelta(render_step_size / throttle_time)
    driver.SetBrakingDelta(render_step_size / braking_time)

    # Set file with driver input time series
    driver.SetInputDataFile(driver_file)
    """
       #else
       
           ChDataDriver driver(vehicle, vehicle::GetDataFile(driver_file));
       
       #endif
    """
    driver.Initialize()

    # -----------------
    # Initialize output
    # -----------------

    try:
           os.mkdir(out_dir)
    except:
           print("Error creating directory " )
    
    """if (povray_output):
        try: 
            os.mkdir(pov_dir)
        except:
            print("Error creating POV directory ")
        terrain.ExportMeshPovray(out_dir)"""

    # Generate JSON information with available output channels
    out_json = vehicle.ExportComponentList()
    print(out_json)
    vehicle.ExportComponentList(out_dir + "/component_list.json")

    # ---------------
    # Simulation loop
    # ---------------

    # Inter-module communication data
    tire_forces = veh.TerrainForces(num_wheels)
    wheel_states = veh.WheelStates(num_wheels)

    # Initialize simulation frame counter and simulation time
    step_number = 0
    time = 0

#ifdef USE_IRRLICHT

    realtime_timer = chrono.ChRealtimeStepTimer()

    while (app.GetDevice().run()) :

        # Render scene
        app.BeginScene(True, True, chronoirr.SColor(255, 140, 161, 192))
        app.DrawAll()

        # Collect output data from modules (for inter-module communication)
        throttle_input = driver.GetThrottle()
        steering_input = driver.GetSteering()
        braking_input = driver.GetBraking()
        powertrain_torque = powertrain.GetOutputTorque()
        driveshaft_speed = vehicle.GetDriveshaftSpeed()
        for i in range (num_wheels) :
            tire_forces[i] = tires[i].GetTireForce()
            wheel_states[i] = vehicle.GetWheelState(veh.WheelID(i))

        # Update modules (process inputs from other modules)
        time = vehicle.GetSystem().GetChTime()
        driver.Synchronize(time)
        powertrain.Synchronize(time, throttle_input, driveshaft_speed)
        vehicle.Synchronize(time, steering_input, braking_input, powertrain_torque, tire_forces)
        terrain.Synchronize(time)
        for i in range (num_wheels):
            tires[i].Synchronize(time, wheel_states[i], terrain)
        app.Synchronize(driver.GetInputModeAsString(), steering_input, throttle_input, braking_input)

        # Advance simulation for one timestep for all modules
        step = realtime_timer.SuggestSimulationStep(step_size)
        driver.Advance(step)
        powertrain.Advance(step)
        vehicle.Advance(step)
        terrain.Advance(step)
        for i in range(num_wheels) :
            tires[i].Advance(step)
        app.Advance(step)

        # Increment frame number
        step_number += 1

        app.EndScene()
예제 #13
0
def main():
    print("Copyright (c) 2017 projectchrono.org" + "\n\n")

    # Create systems

    #  Create the HMMWV vehicle, set parameters, and initialize
    my_hmmwv = veh.HMMWV_Full()
    my_hmmwv.SetContactMethod(contact_method)
    my_hmmwv.SetChassisCollisionType(chassis_collision_type)
    my_hmmwv.SetChassisFixed(False)
    my_hmmwv.SetInitPosition(chrono.ChCoordsysD(initLoc, initRot))
    my_hmmwv.SetPowertrainType(powertrain_model)
    my_hmmwv.SetDriveType(drive_type)
    my_hmmwv.SetSteeringType(steering_type)
    my_hmmwv.SetTireType(tire_model)
    my_hmmwv.SetTireStepSize(tire_step_size)
    my_hmmwv.Initialize()

    my_hmmwv.SetChassisVisualizationType(chassis_vis_type)
    my_hmmwv.SetSuspensionVisualizationType(suspension_vis_type)
    my_hmmwv.SetSteeringVisualizationType(steering_vis_type)
    my_hmmwv.SetWheelVisualizationType(wheel_vis_type)
    my_hmmwv.SetTireVisualizationType(tire_vis_type)

    # Create the terrain

    terrain = veh.RigidTerrain(my_hmmwv.GetSystem())
    if (contact_method == chrono.ChContactMethod_NSC):
        patch_mat = chrono.ChMaterialSurfaceNSC()
        patch_mat.SetFriction(0.9)
        patch_mat.SetRestitution(0.01)
    elif (contact_method == chrono.ChContactMethod_SMC):
        patch_mat = chrono.ChMaterialSurfaceSMC()
        patch_mat.SetFriction(0.9)
        patch_mat.SetRestitution(0.01)
        patch_mat.SetYoungModulus(2e7)
    patch = terrain.AddPatch(patch_mat, chrono.ChVectorD(0, 0, 0),
                             chrono.ChVectorD(0, 0, 1), terrainLength,
                             terrainWidth)
    patch.SetTexture(veh.GetDataFile("terrain/textures/tile4.jpg"), 200, 200)
    patch.SetColor(chrono.ChColor(0.8, 0.8, 0.5))
    terrain.Initialize()

    # Create the vehicle Irrlicht interface
    app = veh.ChWheeledVehicleIrrApp(my_hmmwv.GetVehicle(), 'HMMWV',
                                     irr.dimension2du(1000, 800))

    app.SetSkyBox()
    app.AddTypicalLights(irr.vector3df(30, -30, 100),
                         irr.vector3df(30, 50, 100), 250, 130)
    app.AddTypicalLogo(chrono.GetChronoDataFile('logo_pychrono_alpha.png'))
    app.SetChaseCamera(trackPoint, 6.0, 0.5)
    app.SetTimestep(step_size)
    app.AssetBindAll()
    app.AssetUpdateAll()

    # Initialize output

    try:
        os.mkdir(out_dir)
    except:
        print("Error creating directory ")

    # Set up vehicle output
    my_hmmwv.GetVehicle().SetChassisOutput(True)
    my_hmmwv.GetVehicle().SetSuspensionOutput(0, True)
    my_hmmwv.GetVehicle().SetSteeringOutput(0, True)
    my_hmmwv.GetVehicle().SetOutput(veh.ChVehicleOutput.ASCII, out_dir,
                                    "output", 0.1)

    # Generate JSON information with available output channels
    my_hmmwv.GetVehicle().ExportComponentList(out_dir + "/component_list.json")

    # Create the interactive driver system
    driver = veh.ChIrrGuiDriver(app)

    # Set the time response for steering and throttle keyboard inputs.
    steering_time = 1.0  # time to go from 0 to +1 (or from 0 to -1)
    throttle_time = 1.0  # time to go from 0 to +1
    braking_time = 0.3  # time to go from 0 to +1
    driver.SetSteeringDelta(render_step_size / steering_time)
    driver.SetThrottleDelta(render_step_size / throttle_time)
    driver.SetBrakingDelta(render_step_size / braking_time)

    driver.Initialize()

    # Simulation loop

    # Number of simulation steps between miscellaneous events
    render_steps = m.ceil(render_step_size / step_size)
    debug_steps = m.ceil(debug_step_size / step_size)

    # Initialize simulation frame counter and simulation time
    step_number = 0
    render_frame = 0

    if (contact_vis):
        app.SetSymbolscale(1e-4)
        # app.SetContactsDrawMode(irr.eCh_ContactsDrawMode::CONTACT_FORCES);

    # ---------------------------------------------
    # Create a sensor manager and add a point light
    # ---------------------------------------------
    manager = sens.ChSensorManager(my_hmmwv.GetSystem())
    manager.scene.AddPointLight(chrono.ChVectorF(0, 0, 100),
                                chrono.ChVectorF(2, 2, 2), 5000)
    manager.SetKeyframeSizeFromTimeStep(.001, 1 / 5)

    # ------------------------------------------------
    # Create a camera and add it to the sensor manager
    # ------------------------------------------------
    fov = 1.408
    lag = 0
    update_rate = 5
    exposure_time = 1 / update_rate
    offset_pose = chrono.ChFrameD(chrono.ChVectorD(-5, 0, 2))
    cam = sens.ChCameraSensor(
        my_hmmwv.GetChassisBody(),  # body camera is attached to
        update_rate,  # update rate in Hz
        offset_pose,  # offset pose
        image_width,  # image width
        image_height,  # image height
        fov  # camera's horizontal field of view
    )
    cam.SetName("Camera Sensor")
    # cam.SetLag(0);
    # cam.SetCollectionWindow(0);

    # Visualizes the image
    if vis:
        cam.PushFilter(
            sens.ChFilterVisualize(image_width, image_height, "HMMWV Camera"))

    # Save the current image to a png file at the specified path
    if save:
        cam.PushFilter(sens.ChFilterSave(out_dir + "cam/"))

    # Add a camera to a sensor manager
    manager.AddSensor(cam)

    # ----------------------------------------------
    # Create an IMU sensor and add it to the manager
    # ----------------------------------------------
    offset_pose = chrono.ChFrameD(
        chrono.ChVectorD(-8, 0, 1),
        chrono.Q_from_AngAxis(0, chrono.ChVectorD(0, 1, 0)))
    imu = sens.ChIMUSensor(
        my_hmmwv.GetChassisBody(),  # body imu is attached to
        imu_update_rate,  # update rate in Hz
        offset_pose,  # offset pose
        imu_noise_none  # noise model
    )
    imu.SetName("IMU Sensor")
    imu.SetLag(imu_lag)
    imu.SetCollectionWindow(imu_collection_time)

    # Provides the host access to the imu data
    imu.PushFilter(sens.ChFilterIMUAccess())

    # Add the imu to the sensor manager
    manager.AddSensor(imu)

    # ----------------------------------------------
    # Create an GPS sensor and add it to the manager
    # ----------------------------------------------
    offset_pose = chrono.ChFrameD(
        chrono.ChVectorD(-8, 0, 1),
        chrono.Q_from_AngAxis(0, chrono.ChVectorD(0, 1, 0)))
    gps = sens.ChGPSSensor(
        my_hmmwv.GetChassisBody(),  # body imu is attached to
        gps_update_rate,  # update rate in Hz
        offset_pose,  # offset pose
        gps_reference,
        gps_noise_none  # noise model
    )
    gps.SetName("GPS Sensor")
    gps.SetLag(gps_lag)
    gps.SetCollectionWindow(gps_collection_time)

    # Provides the host access to the gps data
    gps.PushFilter(sens.ChFilterGPSAccess())

    # Add the gps to the sensor manager
    manager.AddSensor(gps)

    realtime_timer = chrono.ChRealtimeStepTimer()
    while (app.GetDevice().run()):
        time = my_hmmwv.GetSystem().GetChTime()

        #End simulation
        if (time >= t_end):
            break

        if (step_number % render_steps == 0):
            app.BeginScene(True, True, irr.SColor(255, 140, 161, 192))
            app.DrawAll()
            app.EndScene()

        #Debug logging
        if (debug_output and step_number % debug_steps == 0):
            print("\n\n============ System Information ============\n")
            print("Time = " << time << "\n\n")
            #my_hmmwv.DebugLog(OUT_SPRINGS | OUT_SHOCKS | OUT_CONSTRAINTS)

            marker_driver = my_hmmwv.GetChassis().GetMarkers()[0].GetAbsCoord(
            ).pos
            marker_com = my_hmmwv.GetChassis().GetMarkers()[1].GetAbsCoord(
            ).pos
            print("Markers\n")
            print("  Driver loc:      ", marker_driver.x, " ", marker_driver.y,
                  " ", marker_driver.z)
            print("  Chassis COM loc: ", marker_com.x, " ", marker_com.y, " ",
                  marker_com.z)

        # Get driver inputs
        driver_inputs = driver.GetInputs()

        # Update modules (process inputs from other modules)
        driver.Synchronize(time)
        terrain.Synchronize(time)
        my_hmmwv.Synchronize(time, driver_inputs, terrain)
        app.Synchronize(driver.GetInputModeAsString(), driver_inputs)

        # Advance simulation for one timestep for all modules
        driver.Advance(step_size)
        terrain.Advance(step_size)
        my_hmmwv.Advance(step_size)
        app.Advance(step_size)

        # Update sensor manager
        # Will render/save/filter automatically
        manager.Update()

        # Increment frame number
        step_number += 1

        # Spin in place for real time to catch up
        realtime_timer.Spin(step_size)

    return 0
예제 #14
0
def main():
    #print("Copyright (c) 2017 projectchrono.org\nChrono version: ", CHRONO_VERSION , "\n\n")

    #  Create the M113 vehicle
    # ------------------------

    vehicle = veh.M113_Vehicle(False, veh.TrackShoeType_SINGLE_PIN,
                               veh.BrakeType_SIMPLE,
                               chrono.ChContactMethod_SMC,
                               veh.CollisionType_NONE)

    vehicle.Initialize(chrono.ChCoordsysD(initLoc, initRot))

    vehicle.SetChassisVisualizationType(veh.VisualizationType_PRIMITIVES)
    vehicle.SetSprocketVisualizationType(veh.VisualizationType_MESH)
    vehicle.SetIdlerVisualizationType(veh.VisualizationType_MESH)
    vehicle.SetRoadWheelAssemblyVisualizationType(veh.VisualizationType_MESH)
    vehicle.SetRoadWheelVisualizationType(veh.VisualizationType_MESH)
    vehicle.SetTrackShoeVisualizationType(veh.VisualizationType_MESH)

    # Create the powertrain system
    # ----------------------------

    powertrain = veh.M113_SimpleCVTPowertrain("Powertrain")
    vehicle.InitializePowertrain(powertrain)

    # Create the terrain
    # ------------------

    terrain = veh.RigidTerrain(vehicle.GetSystem())
    if (contact_method == chrono.ChContactMethod_NSC):
        patch_mat = chrono.ChMaterialSurfaceNSC()
        patch_mat.SetFriction(0.9)
        patch_mat.SetRestitution(0.01)
    elif (contact_method == chrono.ChContactMethod_SMC):
        patch_mat = chrono.ChMaterialSurfaceSMC()
        patch_mat.SetFriction(0.9)
        patch_mat.SetRestitution(0.01)
        patch_mat.SetYoungModulus(2e7)
    patch = terrain.AddPatch(patch_mat, chrono.ChVectorD(0, 0, 0),
                             chrono.ChVectorD(0, 0, 1), terrainLength,
                             terrainWidth)
    patch.SetTexture(veh.GetDataFile("terrain/textures/tile4.jpg"), 200, 200)
    patch.SetColor(chrono.ChColor(0.5, 0.8, 0.5))
    terrain.Initialize()

    # Create the vehicle Irrlicht interface
    # -------------------------------------

    app = veh.ChTrackedVehicleIrrApp(vehicle, 'M113',
                                     irr.dimension2du(1000, 800))

    app.SetSkyBox()
    app.AddTypicalLights(irr.vector3df(30, -30, 100),
                         irr.vector3df(30, 50, 100), 250, 130)
    app.AddTypicalLogo(chrono.GetChronoDataFile('logo_pychrono_alpha.png'))
    app.SetChaseCamera(trackPoint, 6.0, 0.5)
    app.SetTimestep(step_size)
    app.AssetBindAll()
    app.AssetUpdateAll()

    # Create the interactive driver system
    # ------------------------------------

    driver = veh.ChIrrGuiDriver(app)

    # Set the time response for steering and throttle keyboard inputs.
    steering_time = 0.5  # time to go from 0 to +1 (or from 0 to -1)
    throttle_time = 1.0  # time to go from 0 to +1
    braking_time = 0.3  # time to go from 0 to +1
    driver.SetSteeringDelta(render_step_size / steering_time)
    driver.SetThrottleDelta(render_step_size / throttle_time)
    driver.SetBrakingDelta(render_step_size / braking_time)

    driver.Initialize()

    # Simulation loop
    # ---------------

    # Inter-module communication data
    shoe_forces_left = veh.TerrainForces(vehicle.GetNumTrackShoes(veh.LEFT))
    shoe_forces_right = veh.TerrainForces(vehicle.GetNumTrackShoes(veh.RIGHT))

    # Number of simulation steps between miscellaneous events
    render_steps = m.ceil(render_step_size / step_size)

    # Initialize simulation frame counter and simulation time
    step_number = 0

    realtime_timer = chrono.ChRealtimeStepTimer()
    while (app.GetDevice().run()):
        time = vehicle.GetSystem().GetChTime()

        app.BeginScene(True, True, irr.SColor(255, 140, 161, 192))
        app.DrawAll()
        app.EndScene()

        # Get driver inputs
        driver_inputs = driver.GetInputs()

        # Update modules (process inputs from other modules)
        driver.Synchronize(time)
        terrain.Synchronize(time)
        vehicle.Synchronize(time, driver_inputs, shoe_forces_left,
                            shoe_forces_right)
        app.Synchronize("", driver_inputs)

        # Advance simulation for one timestep for all modules
        driver.Advance(step_size)
        terrain.Advance(step_size)
        vehicle.Advance(step_size)
        app.Advance(step_size)

        # Increment frame number
        step_number += 1

        # Spin in place for real time to catch up
        realtime_timer.Spin(step_size)

    return 0
예제 #15
0
def main():
    #print("Copyright (c) 2017 projectchrono.org\nChrono version: ", CHRONO_VERSION , "\n\n")

    # Create systems

    #  Create the FEDA vehicle, set parameters, and initialize
    my_feda = veh.FEDA()
    my_feda.SetContactMethod(contact_method)
    my_feda.SetChassisCollisionType(chassis_collision_type)
    my_feda.SetChassisFixed(False)
    my_feda.SetInitPosition(chrono.ChCoordsysD(initLoc, initRot))
    my_feda.SetPowertrainType(powertrain_model)
    my_feda.SetTireType(tire_model)
    my_feda.SetTireStepSize(tire_step_size)
    my_feda.Initialize()

    my_feda.SetChassisVisualizationType(chassis_vis_type)
    my_feda.SetSuspensionVisualizationType(suspension_vis_type)
    my_feda.SetSteeringVisualizationType(steering_vis_type)
    my_feda.SetWheelVisualizationType(wheel_vis_type)
    my_feda.SetTireVisualizationType(tire_vis_type)

    # Create the terrain

    terrain = veh.RigidTerrain(my_feda.GetSystem())
    if (contact_method == chrono.ChContactMethod_NSC):
        patch_mat = chrono.ChMaterialSurfaceNSC()
        patch_mat.SetFriction(0.9)
        patch_mat.SetRestitution(0.01)
    elif (contact_method == chrono.ChContactMethod_SMC):
        patch_mat = chrono.ChMaterialSurfaceSMC()
        patch_mat.SetFriction(0.9)
        patch_mat.SetRestitution(0.01)
        patch_mat.SetYoungModulus(2e7)
    patch = terrain.AddPatch(patch_mat, chrono.ChVectorD(0, 0, 0),
                             chrono.ChVectorD(0, 0, 1), terrainLength,
                             terrainWidth)
    patch.SetTexture(veh.GetDataFile("terrain/textures/tile4.jpg"), 200, 200)
    patch.SetColor(chrono.ChColor(0.8, 0.8, 0.5))
    terrain.Initialize()

    # Create the vehicle Irrlicht interface
    app = veh.ChWheeledVehicleIrrApp(my_feda.GetVehicle(), 'HMMWV',
                                     irr.dimension2du(1000, 800))

    app.SetSkyBox()
    app.AddTypicalLights(irr.vector3df(30, -30, 100),
                         irr.vector3df(30, 50, 100), 250, 130)
    app.AddTypicalLogo(chrono.GetChronoDataFile('logo_pychrono_alpha.png'))
    app.SetChaseCamera(trackPoint, 6.0, 0.5)
    app.SetTimestep(step_size)
    app.AssetBindAll()
    app.AssetUpdateAll()

    # Create the interactive driver system
    driver = veh.ChIrrGuiDriver(app)

    # Set the time response for steering and throttle keyboard inputs.
    steering_time = 1.0  # time to go from 0 to +1 (or from 0 to -1)
    throttle_time = 1.0  # time to go from 0 to +1
    braking_time = 0.3  # time to go from 0 to +1
    driver.SetSteeringDelta(10 * step_size / steering_time)
    driver.SetThrottleDelta(10 * step_size / throttle_time)
    driver.SetBrakingDelta(10 * step_size / braking_time)

    driver.Initialize()

    # Simulation loop
    realtime_timer = chrono.ChRealtimeStepTimer()
    while (app.GetDevice().run()):
        time = my_feda.GetSystem().GetChTime()

        app.BeginScene(True, True, irr.SColor(255, 140, 161, 192))
        app.DrawAll()
        app.EndScene()

        # Get driver inputs
        driver_inputs = driver.GetInputs()

        # Update modules (process inputs from other modules)
        driver.Synchronize(time)
        terrain.Synchronize(time)
        my_feda.Synchronize(time, driver_inputs, terrain)
        app.Synchronize(driver.GetInputModeAsString(), driver_inputs)

        # Advance simulation for one timestep for all modules
        driver.Advance(step_size)
        terrain.Advance(step_size)
        my_feda.Advance(step_size)
        app.Advance(step_size)

        # Spin in place for real time to catch up
        realtime_timer.Spin(step_size)

    return 0
예제 #16
0
    def reset(self):
        self.generate_track()

        self.vehicle = veh.Sedan()
        self.vehicle.SetContactMethod(chrono.ChMaterialSurface.NSC)
        self.vehicle.SetChassisCollisionType(veh.ChassisCollisionType_NONE)
        self.vehicle.SetChassisFixed(False)
        self.vehicle.SetInitPosition(
            chrono.ChCoordsysD(self.initLoc, self.initRot))
        self.vehicle.SetTireType(veh.TireModelType_RIGID)
        self.vehicle.SetTireStepSize(self.timestep)
        self.vehicle.Initialize()

        self.vehicle.SetChassisVisualizationType(
            veh.VisualizationType_PRIMITIVES)
        self.vehicle.SetWheelVisualizationType(
            veh.VisualizationType_PRIMITIVES)
        self.vehicle.SetSuspensionVisualizationType(
            veh.VisualizationType_PRIMITIVES)
        self.vehicle.SetSteeringVisualizationType(
            veh.VisualizationType_PRIMITIVES)
        self.vehicle.SetTireVisualizationType(veh.VisualizationType_PRIMITIVES)
        self.system = self.vehicle.GetSystem()
        self.chassis_body = self.vehicle.GetChassisBody()

        # Create contact model
        self.chassis_body.GetCollisionModel().ClearModel()
        size = chrono.ChVectorD(3, 2, 0.2)
        self.chassis_body.GetCollisionModel().AddBox(0.5 * size.x,
                                                     0.5 * size.y,
                                                     0.5 * size.z)
        self.chassis_body.GetCollisionModel().BuildModel()

        # Driver
        self.driver = Driver(self.vehicle.GetVehicle())

        # Throttle controller
        #self.throttle_controller = PIDThrottleController()
        #self.throttle_controller.SetGains(Kp=0.4, Ki=0, Kd=0)
        #self.throttle_controller.SetTargetSpeed(speed=self.target_speed)

        # Rigid terrain
        self.terrain = veh.RigidTerrain(self.system)
        patch = self.terrain.AddPatch(
            chrono.ChCoordsysD(chrono.ChVectorD(0, 0, self.terrainHeight - 5),
                               chrono.QUNIT),
            chrono.ChVectorD(self.terrainLength, self.terrainWidth, 10))
        patch.SetContactFrictionCoefficient(0.9)
        patch.SetContactRestitutionCoefficient(0.01)
        patch.SetContactMaterialProperties(2e7, 0.3)
        patch.SetTexture(veh.GetDataFile("terrain/textures/tile4.jpg"), 200,
                         200)
        patch.SetColor(chrono.ChColor(0.8, 0.8, 0.5))
        self.terrain.Initialize()

        ground_body = patch.GetGroundBody()
        ground_asset = ground_body.GetAssets()[0]
        visual_asset = chrono.CastToChVisualization(ground_asset)
        vis_mat = chrono.ChVisualMaterial()
        vis_mat.SetKdTexture(chrono.GetChronoDataFile("concrete.jpg"))
        visual_asset.material_list.append(vis_mat)

        # create barriers
        self.barriers = []
        self.DrawBarriers(self.track.left.points)
        self.DrawBarriers(self.track.right.points)

        # Set the time response for steering and throttle inputs.
        # NOTE: this is not exact, since we do not render quite at the specified FPS.
        steering_time = 0.5
        # time to go from 0 to +1 (or from 0 to -1)
        throttle_time = 0.5
        # time to go from 0 to +1
        braking_time = 0.3
        # time to go from 0 to +1
        self.driver.SetSteeringDelta(self.timestep / steering_time)
        self.driver.SetThrottleDelta(self.timestep / throttle_time)
        self.driver.SetBrakingDelta(self.timestep / braking_time)

        self.manager = sens.ChSensorManager(self.system)
        self.manager.scene.AddPointLight(chrono.ChVectorF(100, 100, 100),
                                         chrono.ChVectorF(1, 1, 1), 500.0)
        self.manager.scene.AddPointLight(chrono.ChVectorF(-100, -100, 100),
                                         chrono.ChVectorF(1, 1, 1), 500.0)

        # -----------------------------------------------------
        # Create a self.camera and add it to the sensor manager
        # -----------------------------------------------------
        self.camera = sens.ChCameraSensor(
            self.chassis_body,  # body camera is attached to
            50,  # scanning rate in Hz
            chrono.ChFrameD(
                chrono.ChVectorD(1.5, 0, .875),
                chrono.Q_from_AngAxis(0, chrono.ChVectorD(0, 1, 0))),
            # offset pose
            self.camera_width,  # number of horizontal samples
            self.camera_height,  # number of vertical channels
            chrono.CH_C_PI / 2,  # horizontal field of view
            (self.camera_height / self.camera_width) * chrono.CH_C_PI /
            3.  # vertical field of view
        )
        self.camera.SetName("Camera Sensor")
        self.camera.FilterList().append(sens.ChFilterRGBA8Access())
        self.manager.AddSensor(self.camera)

        self.old_dist = self.track.center.calcDistance(
            self.chassis_body.GetPos())

        self.step_number = 0
        self.c_f = 0
        self.isdone = False
        self.render_setup = False
        if self.play_mode:
            self.render()

        return self.get_ob()
예제 #17
0
def main():

    # Create systems

    #  Create the HMMWV vehicle, set parameters, and initialize
    my_hmmwv = veh.HMMWV_Full()
    my_hmmwv.SetContactMethod(contact_method)
    my_hmmwv.SetChassisCollisionType(chassis_collision_type)
    my_hmmwv.SetChassisFixed(False)
    my_hmmwv.SetInitPosition(chrono.ChCoordsysD(initLoc, initRot))
    my_hmmwv.SetPowertrainType(powertrain_model)
    my_hmmwv.SetDriveType(drive_type)
    my_hmmwv.SetSteeringType(steering_type)
    my_hmmwv.SetTireType(tire_model)
    my_hmmwv.SetTireStepSize(tire_step_size)
    my_hmmwv.SetVehicleStepSize(step_size)
    my_hmmwv.Initialize()

    #VisualizationType tire_vis_type =
    #   (tire_model == TireModelType::RIGID_MESH) ? VisualizationType::MESH : VisualizationType::NONE;

    tire_vis_type = veh.VisualizationType_MESH  # if tire_model == veh.TireModelType_RIGID_MESH else tire_vis_type = veh.VisualizationType_NONE

    my_hmmwv.SetChassisVisualizationType(chassis_vis_type)
    my_hmmwv.SetSuspensionVisualizationType(suspension_vis_type)
    my_hmmwv.SetSteeringVisualizationType(steering_vis_type)
    my_hmmwv.SetWheelVisualizationType(wheel_vis_type)
    my_hmmwv.SetTireVisualizationType(tire_vis_type)

    # Create the terrain

    terrain = veh.RigidTerrain(my_hmmwv.GetSystem())
    #patch = veh.Patch()
    """
    switch (terrain_model) {
        case RigidTerrain::BOX:
            patch = terrain.AddPatch(ChCoordsys<>(ChVector<>(0, 0, terrainHeight - 5), QUNIT),
                                     ChVector<>(terrainLength, terrainWidth, 10));
            patch->SetTexture(vehicle::GetDataFile("terrain/textures/tile4.jpg"), 200, 200);
            break;
        case RigidTerrain::HEIGHT_MAP:
            patch = terrain.AddPatch(CSYSNORM, vehicle::GetDataFile("terrain/height_maps/test64.bmp"), "test64", 128,
                                     128, 0, 4);
            patch->SetTexture(vehicle::GetDataFile("terrain/textures/grass.jpg"), 16, 16);
            break;
        case RigidTerrain::MESH:
            patch = terrain.AddPatch(CSYSNORM, vehicle::GetDataFile("terrain/meshes/test.obj"), "test_mesh");
            patch->SetTexture(vehicle::GetDataFile("terrain/textures/grass.jpg"), 100, 100);
            break;
    }
    """
    patch = terrain.AddPatch(
        chrono.ChCoordsysD(chrono.ChVectorD(0, 0, terrainHeight - 5),
                           chrono.QUNIT),
        chrono.ChVectorD(terrainLength, terrainWidth, 10))

    patch.SetContactFrictionCoefficient(0.9)
    patch.SetContactRestitutionCoefficient(0.01)
    patch.SetContactMaterialProperties(2e7, 0.3)
    patch.SetColor(chrono.ChColor(0.8, 0.8, 0.5))
    terrain.Initialize()

    # Create the vehicle Irrlicht interface
    # please note that wchar_t conversion requres some workaround
    app = veh.ChWheeledVehicleIrrApp(
        my_hmmwv.GetVehicle(), my_hmmwv.GetPowertrain())  #, "HMMWV Demo")

    app.SetSkyBox()
    app.AddTypicalLights(chronoirr.vector3df(30, -30, 100),
                         chronoirr.vector3df(30, 50, 100), 250, 130)

    app.SetChaseCamera(trackPoint, 6.0, 0.5)
    app.SetTimestep(step_size)
    app.AssetBindAll()
    app.AssetUpdateAll()

    # Initialize output

    try:
        os.mkdir(out_dir)
    except:
        print("Error creating directory ")

    if (povray_output):
        try:
            os.mkdir(pov_dir)
        except:
            print("Error creating POV directory ")
        terrain.ExportMeshPovray(out_dir)

    # Initialize output file for driver inputs
    #driver_file = out_dir + "/driver_inputs.txt"
    # no RECORD so far
    #utils::CSV_writer driver_csv(" ");

    # Set up vehicle output
    my_hmmwv.GetVehicle().SetChassisOutput(True)
    my_hmmwv.GetVehicle().SetSuspensionOutput(0, True)
    my_hmmwv.GetVehicle().SetSteeringOutput(0, True)
    my_hmmwv.GetVehicle().SetOutput(veh.ChVehicleOutput.ASCII, out_dir,
                                    "output", 0.1)

    # Generate JSON information with available output channels
    my_hmmwv.GetVehicle().ExportComponentList(out_dir + "/component_list.json")

    # Create the driver system

    # Create the interactive driver system
    driver = veh.ChIrrGuiDriver(app)

    # Set the time response for steering and throttle keyboard inputs.
    steering_time = 1.0  # time to go from 0 to +1 (or from 0 to -1)
    throttle_time = 1.0  # time to go from 0 to +1
    braking_time = 0.3  # time to go from 0 to +1
    driver.SetSteeringDelta(render_step_size / steering_time)
    driver.SetThrottleDelta(render_step_size / throttle_time)
    driver.SetBrakingDelta(render_step_size / braking_time)

    # If in playback mode, attach the data file to the driver system and
    # force it to playback the driver inputs.
    if (driver_mode == "PLAYBACK"):
        #driver.SetInputDataFile(driver_file)
        driver.SetInputMode(veh.ChIrrGuiDriver.DATAFILE)

    driver.Initialize()

    # Simulation loop
    """
    if (debug_output) :
        GetLog() << "\n\n============ System Configuration ============\n"
        my_hmmwv.LogHardpointLocations()"""

    # Number of simulation steps between miscellaneous events
    render_steps = m.ceil(render_step_size / step_size)
    debug_steps = m.ceil(debug_step_size / step_size)

    # Initialize simulation frame counter and simulation time
    realtime_timer = chrono.ChRealtimeStepTimer()
    step_number = 0
    render_frame = 0
    time = 0

    if (contact_vis):
        app.SetSymbolscale(1e-4)
        #app.SetContactsDrawMode(chronoirr.eCh_ContactsDrawMode::CONTACT_FORCES);

    while (app.GetDevice().run()):
        time = my_hmmwv.GetSystem().GetChTime()

        #End simulation
        if (time >= t_end):
            break

        app.BeginScene(True, True, chronoirr.SColor(255, 140, 161, 192))
        app.DrawAll()
        app.AddTypicalLogo(chrono.GetChronoDataPath() +
                           'logo_pychrono_alpha.png')

        # Output POV-Ray data
        if (povray_output and step_number % render_steps == 0):
            #char filename[100];
            print('filename', "%s/data_%03d.dat", pov_dir.c_str(),
                  render_frame + 1)
            #utils::WriteShapesPovray(my_hmmwv.GetSystem(), filename);
            #render_frame++;

        #Debug logging
        if (debug_output and step_number % debug_steps == 0):
            print("\n\n============ System Information ============\n")
            print("Time = " << time << "\n\n")
            #my_hmmwv.DebugLog(OUT_SPRINGS | OUT_SHOCKS | OUT_CONSTRAINTS)

            marker_driver = my_hmmwv.GetChassis().GetMarkers()[0].GetAbsCoord(
            ).pos
            marker_com = my_hmmwv.GetChassis().GetMarkers()[1].GetAbsCoord(
            ).pos
            print("Markers\n")
            print("  Driver loc:      ", marker_driver.x, " ", marker_driver.y,
                  " ", marker_driver.z)
            print("  Chassis COM loc: ", marker_com.x, " ", marker_com.y, " ",
                  marker_com.z)

        # Collect output data from modules (for inter-module communication)
        throttle_input = driver.GetThrottle()
        steering_input = driver.GetSteering()
        braking_input = driver.GetBraking()

        # Driver output
        """
        if (driver_mode == RECORD) {
            driver_csv << time << steering_input << throttle_input << braking_input << std::endl;
        }"""

        # Update modules (process inputs from other modules)
        driver.Synchronize(time)
        terrain.Synchronize(time)
        my_hmmwv.Synchronize(time, steering_input, braking_input,
                             throttle_input, terrain)
        app.Synchronize(driver.GetInputModeAsString(), steering_input,
                        throttle_input, braking_input)

        # Advance simulation for one timestep for all modules
        step = realtime_timer.SuggestSimulationStep(step_size)
        driver.Advance(step)
        terrain.Advance(step)
        my_hmmwv.Advance(step)
        app.Advance(step)

        # Increment frame number
        step_number += 1

        app.EndScene()
    """    
    if (driver_mode == RECORD) {
        driver_csv.write_to_file(driver_file);
    }"""
    return 0
예제 #18
0
    def reset(self):
        x_half_length = 90
        y_half_length = 40
        self.path = BezierPath(x_half_length, y_half_length, 0.5,
                               self.interval)
        pos, rot = self.path.getPosRot(self.path.current_t - self.interval)
        self.initLoc = chrono.ChVectorD(pos)
        self.initRot = chrono.ChQuaternionD(rot)

        self.vehicle = veh.HMMWV_Reduced()
        self.vehicle.SetContactMethod(chrono.ChContactMethod_NSC)
        self.surf_material = chrono.ChMaterialSurfaceNSC()
        self.vehicle.SetChassisCollisionType(
            veh.ChassisCollisionType_PRIMITIVES)

        self.vehicle.SetChassisFixed(False)
        self.vehicle.SetInitPosition(
            chrono.ChCoordsysD(self.initLoc, self.initRot))
        self.vehicle.SetPowertrainType(veh.PowertrainModelType_SHAFTS)
        self.vehicle.SetDriveType(veh.DrivelineType_AWD)
        # self.vehicle.SetSteeringType(veh.SteeringType_PITMAN_ARM)
        self.vehicle.SetTireType(veh.TireModelType_TMEASY)
        self.vehicle.SetTireStepSize(self.timestep)
        self.vehicle.Initialize()
        if self.play_mode == True:
            # self.vehicle.SetChassisVisualizationType(veh.VisualizationType_MESH)
            self.vehicle.SetChassisVisualizationType(
                veh.VisualizationType_PRIMITIVES)
            self.vehicle.SetWheelVisualizationType(veh.VisualizationType_MESH)
            self.vehicle.SetTireVisualizationType(veh.VisualizationType_MESH)
        else:
            self.vehicle.SetChassisVisualizationType(
                veh.VisualizationType_PRIMITIVES)
            self.vehicle.SetWheelVisualizationType(
                veh.VisualizationType_PRIMITIVES)
        self.vehicle.SetSuspensionVisualizationType(
            veh.VisualizationType_PRIMITIVES)
        self.vehicle.SetSteeringVisualizationType(
            veh.VisualizationType_PRIMITIVES)
        self.chassis_body = self.vehicle.GetChassisBody()
        self.chassis_body.GetCollisionModel().ClearModel()
        size = chrono.ChVectorD(3, 2, 0.2)
        self.chassis_body.GetCollisionModel().AddBox(self.surf_material,
                                                     0.5 * size.x,
                                                     0.5 * size.y,
                                                     0.5 * size.z)
        self.chassis_body.GetCollisionModel().BuildModel()
        self.m_inputs = veh.Inputs()
        self.system = self.vehicle.GetVehicle().GetSystem()
        self.manager = sens.ChSensorManager(self.system)
        self.manager.scene.AddPointLight(chrono.ChVectorF(100, 100, 100),
                                         chrono.ChVectorF(1, 1, 1), 5000.0)
        self.manager.scene.AddPointLight(chrono.ChVectorF(-100, -100, 100),
                                         chrono.ChVectorF(1, 1, 1), 5000.0)
        # Driver
        #self.driver = veh.ChDriver(self.vehicle.GetVehicle())

        self.terrain = veh.RigidTerrain(self.system)
        patch_mat = chrono.ChMaterialSurfaceNSC()
        patch_mat.SetFriction(0.9)
        patch_mat.SetRestitution(0.01)
        patch = self.terrain.AddPatch(patch_mat, chrono.ChVectorD(0, 0, 0),
                                      chrono.ChVectorD(0, 0, 1),
                                      self.terrainLength * 1.5,
                                      self.terrainWidth * 1.5)
        patch.SetTexture(veh.GetDataFile("terrain/textures/grass.jpg"), 200,
                         200)
        patch.SetColor(chrono.ChColor(0.8, 0.8, 0.5))
        self.terrain.Initialize()
        self.groundBody = patch.GetGroundBody()
        ground_asset = self.groundBody.GetAssets()[0]
        visual_asset = chrono.CastToChVisualization(ground_asset)
        vis_mat = chrono.ChVisualMaterial()
        vis_mat.SetKdTexture(veh.GetDataFile("terrain/textures/grass.jpg"))
        visual_asset.material_list.append(vis_mat)
        self.leaders.addLeaders(self.system, self.path)
        self.leader_box = self.leaders.getBBox()
        self.lead_pos = (self.chassis_body.GetPos() -
                         self.leaders[0].GetPos()).Length()
        # Add obstacles:
        self.obstacles = []
        self.placeObstacle(8)
        # for leader in self.leaders:

        # ------------------------------------------------
        # Create a self.camera and add it to the sensor manager
        # ------------------------------------------------
        self.camera = sens.ChCameraSensor(
            self.chassis_body,  # body camera is attached to
            10,  # scanning rate in Hz
            chrono.ChFrameD(chrono.ChVectorD(1.5, 0, .875)),
            # offset pose
            self.camera_width,  # number of horizontal samples
            self.camera_height,  # number of vertical channels
            chrono.CH_C_PI / 2,  # horizontal field of view
            6)
        self.camera.SetName("Camera Sensor")
        self.camera.PushFilter(sens.ChFilterRGBA8Access())
        self.manager.AddSensor(self.camera)
        # -----------------------------------------------------
        # Create a self.gps and add it to the sensor manager
        # -----------------------------------------------------
        gps_noise_none = sens.ChGPSNoiseNone()
        self.AgentGPS = sens.ChGPSSensor(
            self.chassis_body, 10,
            chrono.ChFrameD(
                chrono.ChVectorD(0, 0, 0),
                chrono.Q_from_AngAxis(0, chrono.ChVectorD(0, 1, 0))),
            self.origin, gps_noise_none)
        self.AgentGPS.SetName("AgentGPS Sensor")
        self.AgentGPS.PushFilter(sens.ChFilterGPSAccess())
        self.manager.AddSensor(self.AgentGPS)
        ### Target GPS
        self.TargetGPS = sens.ChGPSSensor(
            self.leaders[0], 10,
            chrono.ChFrameD(
                chrono.ChVectorD(0, 0, 0),
                chrono.Q_from_AngAxis(0, chrono.ChVectorD(0, 1, 0))),
            self.origin, gps_noise_none)
        self.TargetGPS.SetName("TargetGPS Sensor")
        self.TargetGPS.PushFilter(sens.ChFilterGPSAccess())
        self.manager.AddSensor(self.TargetGPS)

        self.step_number = 0
        self.num_frames = 0
        self.num_updates = 0
        self.c_f = 0
        self.old_ac = [0, 0]
        self.isdone = False
        self.render_setup = False
        if self.play_mode:
            self.render()

        return self.get_ob()
예제 #19
0
def main():
    #print("Copyright (c) 2017 projectchrono.org\nChrono version: ", CHRONO_VERSION , "\n\n")

    step_size = 0.005

    sys = chrono.ChSystemNSC()
    sys.Set_G_acc(chrono.ChVectorD(0, 0, -9.81))
    sys.SetSolverType(chrono.ChSolver.Type_BARZILAIBORWEIN)
    sys.SetSolverMaxIterations(150)
    sys.SetMaxPenetrationRecoverySpeed(4.0)

    # Create the terrain
    terrain = veh.RigidTerrain(sys)
    patch_mat = chrono.ChMaterialSurfaceNSC()
    patch_mat.SetFriction(0.9)
    patch_mat.SetRestitution(0.01)
    patch = terrain.AddPatch(patch_mat, chrono.ChVectorD(0, 0, 0),
                             chrono.ChVectorD(0, 0, 1), 200, 100)
    patch.SetColor(chrono.ChColor(0.8, 0.8, 0.5))
    patch.SetTexture(veh.GetDataFile("terrain/textures/tile4.jpg"), 200, 200)
    terrain.Initialize()

    # Create and initialize the first vehicle
    hmmwv_1 = veh.HMMWV_Reduced(sys)
    hmmwv_1.SetInitPosition(
        chrono.ChCoordsysD(chrono.ChVectorD(0, -1.5, 1.0),
                           chrono.ChQuaternionD(1, 0, 0, 0)))
    hmmwv_1.SetPowertrainType(veh.PowertrainModelType_SIMPLE)
    hmmwv_1.SetDriveType(veh.DrivelineType_RWD)
    hmmwv_1.SetTireType(veh.TireModelType_RIGID)
    hmmwv_1.Initialize()
    hmmwv_1.SetChassisVisualizationType(veh.VisualizationType_PRIMITIVES)
    hmmwv_1.SetSuspensionVisualizationType(veh.VisualizationType_PRIMITIVES)
    hmmwv_1.SetSteeringVisualizationType(veh.VisualizationType_PRIMITIVES)
    hmmwv_1.SetWheelVisualizationType(veh.VisualizationType_NONE)
    hmmwv_1.SetTireVisualizationType(veh.VisualizationType_PRIMITIVES)

    driver_data_1 = veh.vector_Entry([
        veh.DataDriverEntry(0.0, 0.0, 0.0, 0.0),
        veh.DataDriverEntry(0.5, 0.0, 0.0, 0.0),
        veh.DataDriverEntry(0.7, 0.3, 0.7, 0.0),
        veh.DataDriverEntry(1.0, 0.3, 0.7, 0.0),
        veh.DataDriverEntry(3.0, 0.5, 0.1, 0.0)
    ])
    driver_1 = veh.ChDataDriver(hmmwv_1.GetVehicle(), driver_data_1)
    driver_1.Initialize()

    # Create and initialize the second vehicle
    hmmwv_2 = veh.HMMWV_Reduced(sys)
    hmmwv_2.SetInitPosition(
        chrono.ChCoordsysD(chrono.ChVectorD(7, 1.5, 1.0),
                           chrono.ChQuaternionD(1, 0, 0, 0)))
    hmmwv_2.SetPowertrainType(veh.PowertrainModelType_SIMPLE)
    hmmwv_2.SetDriveType(veh.DrivelineType_RWD)
    hmmwv_2.SetTireType(veh.TireModelType_RIGID)
    hmmwv_2.Initialize()
    hmmwv_2.SetChassisVisualizationType(veh.VisualizationType_PRIMITIVES)
    hmmwv_2.SetSuspensionVisualizationType(veh.VisualizationType_PRIMITIVES)
    hmmwv_2.SetSteeringVisualizationType(veh.VisualizationType_PRIMITIVES)
    hmmwv_2.SetWheelVisualizationType(veh.VisualizationType_NONE)
    hmmwv_2.SetTireVisualizationType(veh.VisualizationType_PRIMITIVES)

    driver_data_2 = veh.vector_Entry([
        veh.DataDriverEntry(0.0, 0.0, 0.0, 0.0),
        veh.DataDriverEntry(0.5, 0.0, 0.0, 0.0),
        veh.DataDriverEntry(0.7, -0.3, 0.7, 0.0),
        veh.DataDriverEntry(1.0, -0.3, 0.7, 0.0),
        veh.DataDriverEntry(3.0, -0.5, 0.1, 0.0)
    ])
    driver_2 = veh.ChDataDriver(hmmwv_2.GetVehicle(), driver_data_2)
    driver_2.Initialize()

    # Create the vehicle Irrlicht interface
    app = veh.ChWheeledVehicleIrrApp(hmmwv_1.GetVehicle(), 'Two Car Demo',
                                     irr.dimension2du(1000, 800))

    app.SetSkyBox()
    app.AddTypicalLights(irr.vector3df(30, -30, 100),
                         irr.vector3df(30, 50, 100), 250, 130)
    app.AddTypicalLogo(chrono.GetChronoDataFile('logo_pychrono_alpha.png'))
    app.SetChaseCamera(chrono.ChVectorD(0.0, 0.0, 0.75), 6.0, 0.5)
    app.SetChaseCameraState(veh.ChChaseCamera.Track)
    app.SetChaseCameraPosition(chrono.ChVectorD(-15, 0, 2.0))
    app.SetTimestep(step_size)
    app.AssetBindAll()
    app.AssetUpdateAll()

    # Simulation loop
    realtime_timer = chrono.ChRealtimeStepTimer()
    while (app.GetDevice().run()):
        time = hmmwv_1.GetSystem().GetChTime()

        app.BeginScene(True, True, irr.SColor(255, 140, 161, 192))
        app.DrawAll()
        app.EndScene()

        # Get driver inputs
        driver_inputs_1 = driver_1.GetInputs()
        driver_inputs_2 = driver_2.GetInputs()

        # Update modules (process inputs from other modules)
        driver_1.Synchronize(time)
        driver_2.Synchronize(time)
        hmmwv_1.Synchronize(time, driver_inputs_1, terrain)
        hmmwv_2.Synchronize(time, driver_inputs_2, terrain)
        terrain.Synchronize(time)
        app.Synchronize("", driver_inputs_1)

        # Advance simulation for one timestep for all modules
        driver_1.Advance(step_size)
        driver_2.Advance(step_size)
        hmmwv_1.Advance(step_size)
        hmmwv_2.Advance(step_size)
        terrain.Advance(step_size)
        app.Advance(step_size)

        # Advance state of entire system (containing both vehicles)
        sys.DoStepDynamics(step_size)

        # Spin in place for real time to catch up
        realtime_timer.Spin(step_size)
    return 0
예제 #20
0
gator.SetSteeringVisualizationType(steering_vis_type)
gator.SetWheelVisualizationType(wheel_vis_type)
gator.SetTireVisualizationType(tire_vis_type)

print("Vehicle mass:               " + str(gator.GetVehicle().GetVehicleMass()))
print("Vehicle mass (with tires):  " + str(gator.GetTotalMass()))
print("Driveline type: " + gator.GetVehicle().GetDriveline().GetTemplateName())
print("Brake type:     " + gator.GetVehicle().GetBrake(1, veh.LEFT).GetTemplateName())
print("Tire type:      " + gator.GetVehicle().GetTire(1, veh.LEFT).GetTemplateName())
print("\n")

# ------------------
# Create the terrain
# ------------------

terrain = veh.RigidTerrain(gator.GetSystem())
patch_mat = chrono.ChMaterialSurfaceNSC()
patch_mat.SetFriction(0.9)
patch_mat.SetRestitution(0.01)
patch = terrain.AddPatch(patch_mat, 
                         chrono.ChVectorD(0, 0, 0), chrono.ChVectorD(0, 0, 1), 
                         600, 600)
patch.SetColor(chrono.ChColor(0.8, 0.8, 1.0))
patch.SetTexture(veh.GetDataFile("terrain/textures/tile4.jpg"), 1200, 1200)
terrain.Initialize()

# -------------------------------------
# Create the vehicle Irrlicht interface
# Create the driver system
# -------------------------------------
예제 #21
0
    def __init__(self, step_size, sys, irrlicht=False, terrain_type='json', height=-0.5, width=300, length=300):
        # Chrono parameters
        self.step_size = step_size
        self.irrlicht = irrlicht
        self.step_number = 0

        # Rigid terrain dimensions
        self.height = height
        self.length = length  # size in X direction
        self.width = width  # size in Y direction

        self.sys = sys

        if terrain_type == 'json':
            import os
            # JSON files for terrain
            self.rigidterrain_file = veh.GetDataPath() + os.path.join('terrain', 'RigidPlane.json')
            checkFile(self.rigidterrain_file)

            # Create the ground
            self.terrain = veh.RigidTerrain(self.sys, self.rigidterrain_file)

        elif terrain_type == 'concrete':
            # Create the terrain
            self.terrain = veh.RigidTerrain(self.sys)
            patch = self.terrain.AddPatch(chrono.ChCoordsysD(chrono.ChVectorD(0, 0, self.height - 5), chrono.QUNIT),
                                     chrono.ChVectorD(self.width, self.length, 10))

            patch.SetContactFrictionCoefficient(0.9)
            patch.SetContactRestitutionCoefficient(0.01)
            patch.SetContactMaterialProperties(2e7, 0.3)
            patch.SetTexture(chrono.GetChronoDataFile("concrete.jpg"), self.length, self.width)
            patch.SetColor(chrono.ChColor(0.8, 0.8, 0.5))
            self.terrain.Initialize()

            try:
                ground_body = patch.GetGroundBody()
                ground_asset = ground_body.GetAssets()[0]
                visual_asset = chrono.CastToChVisualization(ground_asset)
                vis_mat = chrono.ChVisualMaterial()
                vis_mat.SetKdTexture(chrono.GetChronoDataFile("concrete.jpg"))
                vis_mat.SetFresnelMax(0);
                visual_asset.material_list.append(vis_mat)
            except:
                print("Not Visual Material")

        elif terrain_type == 'hallway':
            y_max = 5.65
            x_max = 23
            offset = chrono.ChVectorD(-x_max/2, -y_max/2, .21)
            offsetF = chrono.ChVectorF(offset.x, offset.y, offset.z)

            self.terrain = veh.RigidTerrain(self.sys)
            coord_sys = chrono.ChCoordsysD(offset, chrono.ChQuaternionD(1,0,0,0))
            patch = self.terrain.AddPatch(coord_sys, chrono.GetChronoDataFile("sensor/textures/hallway.obj"), "mesh", 0.01, False)


            vis_mesh = chrono.ChTriangleMeshConnected()
            vis_mesh.LoadWavefrontMesh(chrono.GetChronoDataFile("sensor/textures/hallway.obj"), True, True)

            trimesh_shape = chrono.ChTriangleMeshShape()
            trimesh_shape.SetMesh(vis_mesh)
            trimesh_shape.SetName("mesh_name")
            trimesh_shape.SetStatic(True)

            patch.GetGroundBody().AddAsset(trimesh_shape)

            patch.SetContactFrictionCoefficient(0.9)
            patch.SetContactRestitutionCoefficient(0.01)
            patch.SetContactMaterialProperties(2e7, 0.3)

            self.terrain.Initialize()
예제 #22
0
def main() : 
    #print("Copyright (c) 2017 projectchrono.org\nChrono version: ", CHRONO_VERSION , "\n\n")

    # --------------------------
    # Create the various modules
    # --------------------------

    # Create the vehicle system
    vehicle = veh.WheeledVehicle(vehicle_file ,chrono.ChMaterialSurface.NSC)
    vehicle.Initialize(chrono.ChCoordsysD(initLoc, initRot))
    #vehicle.GetChassis().SetFixed(True)
    vehicle.SetChassisVisualizationType(veh.VisualizationType_PRIMITIVES)
    vehicle.SetSuspensionVisualizationType(veh.VisualizationType_PRIMITIVES)
    vehicle.SetSteeringVisualizationType(veh.VisualizationType_PRIMITIVES)
    vehicle.SetWheelVisualizationType(veh.VisualizationType_NONE)

    # Create the ground
    terrain = veh.RigidTerrain(vehicle.GetSystem(), rigidterrain_file)

    # Create and initialize the powertrain system
    powertrain = veh.SimplePowertrain(simplepowertrain_file)
    vehicle.InitializePowertrain(powertrain)

    # Create and initialize the tires
    for axle in vehicle.GetAxles() :
        tireL = veh.RigidTire(rigidtire_file)
        vehicle.InitializeTire(tireL, axle.m_wheels[0], veh.VisualizationType_MESH)
        tireR = veh.RigidTire(rigidtire_file)
        vehicle.InitializeTire(tireR, axle.m_wheels[1], veh.VisualizationType_MESH)

    app = veh.ChVehicleIrrApp(vehicle)

    app.SetSkyBox()
    app.AddTypicalLights(chronoirr.vector3df(30, -30, 100), chronoirr.vector3df(30, 50, 100), 250, 130)
    app.AddTypicalLogo(chrono.GetChronoDataPath() + 'logo_pychrono_alpha.png')
    app.SetChaseCamera(trackPoint, 6.0, 0.5)
    app.SetTimestep(step_size)
    app.AssetBindAll()
    app.AssetUpdateAll()

    driver = veh.ChIrrGuiDriver(app)

    # Set the time response for steering and throttle keyboard inputs.
    # NOTE: this is not exact, since we do not render quite at the specified FPS.
    steering_time = 1.0;  # time to go from 0 to +1 (or from 0 to -1)
    throttle_time = 1.0;  # time to go from 0 to +1
    braking_time = 0.3;   # time to go from 0 to +1
    driver.SetSteeringDelta(render_step_size / steering_time)
    driver.SetThrottleDelta(render_step_size / throttle_time)
    driver.SetBrakingDelta(render_step_size / braking_time)

    driver.Initialize()

    # -----------------
    # Initialize output
    # -----------------

    try:
           os.mkdir(out_dir)
    except:
           print("Error creating directory " )

    # Generate JSON information with available output channels
    out_json = vehicle.ExportComponentList()
    print(out_json)
    vehicle.ExportComponentList(out_dir + "/component_list.json")

    # ---------------
    # Simulation loop
    # ---------------

    realtime_timer = chrono.ChRealtimeStepTimer()
    while (app.GetDevice().run()) :

        # Render scene
        app.BeginScene(True, True, chronoirr.SColor(255, 140, 161, 192))
        app.DrawAll()
        app.EndScene()

        # Collect output data from modules (for inter-module communication)
        driver_inputs = driver.GetInputs()

        # Update modules (process inputs from other modules)
        time = vehicle.GetSystem().GetChTime()
        driver.Synchronize(time)
        vehicle.Synchronize(time, driver_inputs, terrain)
        terrain.Synchronize(time)
        app.Synchronize(driver.GetInputModeAsString(), driver_inputs)

        # Advance simulation for one timestep for all modules
        driver.Advance(step_size)
        vehicle.Advance(step_size)
        terrain.Advance(step_size)
        app.Advance(step_size)

        # Spin in place for real time to catch up
        realtime_timer.Spin(step_size)
예제 #23
0
my_rccar.SetSteeringVisualizationType(steering_vis_type)
my_rccar.SetWheelVisualizationType(wheel_vis_type)
my_rccar.SetTireVisualizationType(tire_vis_type)

chassis_asset = my_rccar.GetChassisBody().GetAssets()[0]
visual_asset = chrono.CastToChVisualization(chassis_asset)
vis_mat = chrono.ChVisualMaterial()
vis_mat.SetAmbientColor(chrono.ChVectorF(0, 0, 0))
vis_mat.SetDiffuseColor(chrono.ChVectorF(.5, .5, .5))
vis_mat.SetSpecularColor(chrono.ChVectorF(1, 1, 1))
vis_mat.SetFresnelMin(0)
vis_mat.SetFresnelMax(1)
visual_asset.material_list.append(vis_mat)

# Create the terrain
terrain = veh.RigidTerrain(my_rccar.GetSystem())
if (contact_method == chrono.ChContactMethod_NSC):
    patch_mat = chrono.ChMaterialSurfaceNSC()
    patch_mat.SetFriction(0.9)
    patch_mat.SetRestitution(0.01)
elif (contact_method == chrono.ChContactMethod_SMC):
    patch_mat = chrono.ChMaterialSurfaceSMC()
    patch_mat.SetFriction(0.9)
    patch_mat.SetRestitution(0.01)
    patch_mat.SetYoungModulus(2e7)
patch = terrain.AddPatch(patch_mat,
                         chrono.ChVectorD(0, 0, 0), chrono.ChVectorD(0, 0, 1),
                         terrainLength, terrainWidth)
patch.SetTexture(veh.GetDataFile("terrain/textures/tile4.jpg"), 200, 200)
patch.SetColor(chrono.ChColor(0.8, 0.8, 0.5))
terrain.Initialize()
예제 #24
0
def main():
    #print("Copyright (c) 2017 projectchrono.org\nChrono version: ", CHRONO_VERSION , "\n\n")

    #  Create the HMMWV vehicle, set parameters, and initialize
    my_hmmwv = veh.HMMWV_Full()
    my_hmmwv.SetContactMethod(contact_method)
    my_hmmwv.SetChassisFixed(False)
    my_hmmwv.SetInitPosition(
        chrono.ChCoordsysD(initLoc, chrono.ChQuaternionD(1, 0, 0, 0)))
    my_hmmwv.SetPowertrainType(powertrain_model)
    my_hmmwv.SetDriveType(drive_type)
    my_hmmwv.SetSteeringType(steering_type)
    my_hmmwv.SetTireType(tire_model)
    my_hmmwv.SetTireStepSize(tire_step_size)
    my_hmmwv.Initialize()

    my_hmmwv.SetChassisVisualizationType(chassis_vis_type)
    my_hmmwv.SetSuspensionVisualizationType(suspension_vis_type)
    my_hmmwv.SetSteeringVisualizationType(steering_vis_type)
    my_hmmwv.SetWheelVisualizationType(wheel_vis_type)
    my_hmmwv.SetTireVisualizationType(tire_vis_type)

    # Create the terrain

    terrain = veh.RigidTerrain(my_hmmwv.GetSystem())
    if (contact_method == chrono.ChContactMethod_NSC):
        patch_mat = chrono.ChMaterialSurfaceNSC()
        patch_mat.SetFriction(0.9)
        patch_mat.SetRestitution(0.01)
    elif (contact_method == chrono.ChContactMethod_SMC):
        patch_mat = chrono.ChMaterialSurfaceSMC()
        patch_mat.SetFriction(0.9)
        patch_mat.SetRestitution(0.01)
        patch_mat.SetYoungModulus(2e7)
    patch = terrain.AddPatch(patch_mat, chrono.ChVectorD(0, 0, 0),
                             chrono.ChVectorD(0, 0, 1), 300, 50)
    patch.SetTexture(veh.GetDataFile("terrain/textures/tile4.jpg"), 200, 200)
    patch.SetColor(chrono.ChColor(0.8, 0.8, 0.5))
    terrain.Initialize()

    # Create the path-follower, cruise-control driver
    # Use a parameterized ISO double lane change (to left)
    path = veh.DoubleLaneChangePath(initLoc, 13.5, 4.0, 11.0, 50.0, True)
    driver = veh.ChPathFollowerDriver(my_hmmwv.GetVehicle(), path, "my_path",
                                      target_speed)
    driver.GetSteeringController().SetLookAheadDistance(5)
    driver.GetSteeringController().SetGains(0.8, 0, 0)
    driver.GetSpeedController().SetGains(0.4, 0, 0)
    driver.Initialize()

    # Create the vehicle Irrlicht interface
    app = veh.ChWheeledVehicleIrrApp(my_hmmwv.GetVehicle(), 'HMMWV',
                                     irr.dimension2du(1000, 800))
    app.SetSkyBox()
    app.AddTypicalLights(irr.vector3df(-60, -30, 100),
                         irr.vector3df(60, 30, 100), 250, 130)
    app.AddTypicalLogo(chrono.GetChronoDataFile('logo_pychrono_alpha.png'))
    app.SetChaseCamera(chrono.ChVectorD(0.0, 0.0, 1.75), 6.0, 0.5)
    app.SetTimestep(step_size)
    app.AssetBindAll()
    app.AssetUpdateAll()

    # Visualization of controller points (sentinel & target)
    ballS = app.GetSceneManager().addSphereSceneNode(0.1)
    ballT = app.GetSceneManager().addSphereSceneNode(0.1)
    ballS.getMaterial(0).EmissiveColor = irr.SColor(0, 255, 0, 0)
    ballT.getMaterial(0).EmissiveColor = irr.SColor(0, 0, 255, 0)

    # Simulation loop
    realtime_timer = chrono.ChRealtimeStepTimer()
    while (app.GetDevice().run()):
        time = my_hmmwv.GetSystem().GetChTime()

        # End simulation
        if (time >= t_end):
            break

        # Update sentinel and target location markers for the path-follower controller.
        pS = driver.GetSteeringController().GetSentinelLocation()
        pT = driver.GetSteeringController().GetTargetLocation()
        ballS.setPosition(irr.vector3df(pS.x, pS.y, pS.z))
        ballT.setPosition(irr.vector3df(pT.x, pT.y, pT.z))

        # Draw scene
        app.BeginScene(True, True, irr.SColor(255, 140, 161, 192))
        app.DrawAll()
        app.EndScene()

        # Get driver inputs
        driver_inputs = driver.GetInputs()

        # Update modules (process inputs from other modules)
        driver.Synchronize(time)
        terrain.Synchronize(time)
        my_hmmwv.Synchronize(time, driver_inputs, terrain)
        app.Synchronize("", driver_inputs)

        # Advance simulation for one timestep for all modules
        driver.Advance(step_size)
        terrain.Advance(step_size)
        my_hmmwv.Advance(step_size)
        app.Advance(step_size)

        # Spin in place for real time to catch up
        realtime_timer.Spin(step_size)

    return 0
예제 #25
0
    def reset(self):
        print("reset")

        self.generator.generatePath(difficulty=50, seed=randint(1, 1000))
        self.path = Path(self.generator)
        self.path_tracker = PathTracker(self.path)
        self.initLoc = self.path_tracker.GetInitLoc()
        self.initRot = self.path_tracker.GetInitRot()

        self.vehicle = veh.WheeledVehicle(self.vehicle_file,
                                          chrono.ChMaterialSurface.NSC)
        self.vehicle.Initialize(chrono.ChCoordsysD(self.initLoc, self.initRot))
        self.vehicle.SetStepsize(self.timestep)
        self.vehicle.SetChassisVisualizationType(
            veh.VisualizationType_PRIMITIVES)
        self.vehicle.SetSuspensionVisualizationType(
            veh.VisualizationType_PRIMITIVES)
        self.vehicle.SetSteeringVisualizationType(
            veh.VisualizationType_PRIMITIVES)
        self.vehicle.SetWheelVisualizationType(veh.VisualizationType_NONE)

        # Create and initialize the powertrain system
        self.powertrain = veh.SimplePowertrain(self.simplepowertrain_file)
        self.vehicle.InitializePowertrain(self.powertrain)

        # Create the ground
        self.terrain = veh.RigidTerrain(self.vehicle.GetSystem(),
                                        self.rigidterrain_file)

        for axle in self.vehicle.GetAxles():
            tireL = veh.RigidTire(self.rigidtire_file)
            self.vehicle.InitializeTire(tireL, axle.m_wheels[0],
                                        veh.VisualizationType_MESH)
            tireR = veh.RigidTire(self.rigidtire_file)
            self.vehicle.InitializeTire(tireR, axle.m_wheels[1],
                                        veh.VisualizationType_MESH)

        # -------------
        # Create driver
        # -------------
        self.driver = Driver(self.vehicle)
        # Time interval between two render frames
        render_step_size = 1.0 / 60  # FPS = 60
        # Set the time response for steering and throttle inputs.
        # NOTE: this is not exact, since we do not render quite at the specified FPS.
        steering_time = 1.0
        # time to go from 0 to +1 (or from 0 to -1)
        throttle_time = 1.0
        # time to go from 0 to +1
        braking_time = 0.3
        # time to go from 0 to +1
        self.driver.SetSteeringDelta(render_step_size / steering_time)
        self.driver.SetThrottleDelta(render_step_size / throttle_time)
        self.driver.SetBrakingDelta(render_step_size / braking_time)

        vec = chrono.ChVectorD(0, 0, 0)
        self.path_tracker.calcClosestPoint(self.vehicle.GetVehiclePos(), vec)
        self.last_dist = vec.Length()
        self.last_throttle, self.last_braking, self.last_steering = 0, 0, 0

        if self.render:
            road = self.vehicle.GetSystem().NewBody()
            road.SetBodyFixed(True)
            self.vehicle.GetSystem().AddBody(road)

            num_points = self.path.getNumPoints()
            path_asset = chrono.ChLineShape()
            path_asset.SetLineGeometry(
                chrono.ChLineBezier(self.path_tracker.path))
            path_asset.SetColor(chrono.ChColor(0.0, 0.8, 0.0))
            path_asset.SetNumRenderPoints(max(2 * num_points, 400))
            road.AddAsset(path_asset)

        if self.render:
            self.app = veh.ChVehicleIrrApp(self.vehicle)
            self.app.SetHUDLocation(500, 20)
            self.app.SetSkyBox()
            self.app.AddTypicalLogo()
            self.app.AddTypicalLights(chronoirr.vector3df(-150., -150., 200.),
                                      chronoirr.vector3df(-150., 150., 200.),
                                      100, 100)
            self.app.AddTypicalLights(chronoirr.vector3df(150., -150., 200.),
                                      chronoirr.vector3df(150., 150., 200.),
                                      100, 100)
            self.app.EnableGrid(False)
            self.app.SetChaseCamera(self.trackPoint, 6.0, 0.5)

            self.app.SetTimestep(self.timestep)
            # ---------------------------------------------------------------------
            #
            #  Create an Irrlicht application to visualize the system
            #
            # ==IMPORTANT!== Use this function for adding a ChIrrNodeAsset to all items
            # in the system. These ChIrrNodeAsset assets are 'proxies' to the Irrlicht meshes.
            # If you need a finer control on which item really needs a visualization proxy
            # Irrlicht, just use application.AssetBind(myitem); on a per-item basis.

            self.app.AssetBindAll()

            # ==IMPORTANT!== Use this function for 'converting' into Irrlicht meshes the assets
            # that you added to the bodies into 3D shapes, they can be visualized by Irrlicht!

            self.app.AssetUpdateAll()

        self.isdone = False
        self.steps = 0
        self.step(np.zeros(3))
        self.tracknum = self.tracknum = 0 if self.tracknum >= 3 else self.tracknum + 1
        # self.tracknum = self.tracknum + 1
        return self.get_ob()
예제 #26
0
def main():
    #print("Copyright (c) 2017 projectchrono.org\nChrono version: ", CHRONO_VERSION , "\n\n")

    # Create systems

    #  Create the HMMWV vehicle, set parameters, and initialize
    my_hmmwv = veh.HMMWV_Full()
    my_hmmwv.SetContactMethod(contact_method)
    my_hmmwv.SetChassisCollisionType(chassis_collision_type)
    my_hmmwv.SetChassisFixed(False) 
    my_hmmwv.SetInitPosition(chrono.ChCoordsysD(initLoc, initRot))
    my_hmmwv.SetPowertrainType(powertrain_model)
    my_hmmwv.SetDriveType(drive_type)
    my_hmmwv.SetSteeringType(steering_type)
    my_hmmwv.SetTireType(tire_model)
    my_hmmwv.SetTireStepSize(tire_step_size)
    my_hmmwv.Initialize()

    my_hmmwv.SetChassisVisualizationType(chassis_vis_type)
    my_hmmwv.SetSuspensionVisualizationType(suspension_vis_type)
    my_hmmwv.SetSteeringVisualizationType(steering_vis_type)
    my_hmmwv.SetWheelVisualizationType(wheel_vis_type)
    my_hmmwv.SetTireVisualizationType(tire_vis_type)

    # Create the terrain

    terrain = veh.RigidTerrain(my_hmmwv.GetSystem())
    patch = terrain.AddPatch(chrono.ChCoordsysD(chrono.ChVectorD(0, 0, terrainHeight - 5), chrono.QUNIT), chrono.ChVectorD(terrainLength, terrainWidth, 10))

    patch.SetContactFrictionCoefficient(0.9)
    patch.SetContactRestitutionCoefficient(0.01)
    patch.SetContactMaterialProperties(2e7, 0.3)
    patch.SetTexture(veh.GetDataFile("terrain/textures/tile4.jpg"), 200, 200)
    patch.SetColor(chrono.ChColor(0.8, 0.8, 0.5))
    terrain.Initialize()

    # Create the vehicle Irrlicht interface
    # please note that wchar_t conversion requres some workaround
    app = veh.ChWheeledVehicleIrrApp(my_hmmwv.GetVehicle())

    app.SetSkyBox()
    app.AddTypicalLights(chronoirr.vector3df(30, -30, 100), chronoirr.vector3df(30, 50, 100), 250, 130)
    app.AddTypicalLogo(chrono.GetChronoDataFile('logo_pychrono_alpha.png'))
    app.SetChaseCamera(trackPoint, 6.0, 0.5)
    app.SetTimestep(step_size)
    app.AssetBindAll()
    app.AssetUpdateAll()

    # Initialize output

    try:
           os.mkdir(out_dir)
    except:
           print("Error creating directory " )

    # Set up vehicle output
    my_hmmwv.GetVehicle().SetChassisOutput(True);
    my_hmmwv.GetVehicle().SetSuspensionOutput(0, True);
    my_hmmwv.GetVehicle().SetSteeringOutput(0, True);
    my_hmmwv.GetVehicle().SetOutput(veh.ChVehicleOutput.ASCII , out_dir, "output", 0.1);

    # Generate JSON information with available output channels
    my_hmmwv.GetVehicle().ExportComponentList(out_dir + "/component_list.json");

    # Create the interactive driver system
    driver = veh.ChIrrGuiDriver(app)

    # Set the time response for steering and throttle keyboard inputs.
    steering_time = 1.0  # time to go from 0 to +1 (or from 0 to -1)
    throttle_time = 1.0  # time to go from 0 to +1
    braking_time = 0.3   # time to go from 0 to +1
    driver.SetSteeringDelta(render_step_size / steering_time)
    driver.SetThrottleDelta(render_step_size / throttle_time)
    driver.SetBrakingDelta(render_step_size / braking_time)

    driver.Initialize()


    # Simulation loop


    # Number of simulation steps between miscellaneous events
    render_steps = m.ceil(render_step_size / step_size)
    debug_steps = m.ceil(debug_step_size / step_size)

    # Initialize simulation frame counter and simulation time
    step_number = 0
    render_frame = 0

    if (contact_vis):
        app.SetSymbolscale(1e-4);
        #app.SetContactsDrawMode(chronoirr.eCh_ContactsDrawMode::CONTACT_FORCES);

    realtime_timer = chrono.ChRealtimeStepTimer()
    while (app.GetDevice().run()):
        time = my_hmmwv.GetSystem().GetChTime()

        #End simulation
        if (time >= t_end):
            break

        app.BeginScene(True, True, chronoirr.SColor(255, 140, 161, 192))
        app.DrawAll()
        app.EndScene()

        #Debug logging
        if (debug_output and step_number % debug_steps == 0) :
            print("\n\n============ System Information ============\n")
            print( "Time = " << time << "\n\n")
            #my_hmmwv.DebugLog(OUT_SPRINGS | OUT_SHOCKS | OUT_CONSTRAINTS)

            marker_driver = my_hmmwv.GetChassis().GetMarkers()[0].GetAbsCoord().pos
            marker_com = my_hmmwv.GetChassis().GetMarkers()[1].GetAbsCoord().pos
            print( "Markers\n")
            print( "  Driver loc:      " , marker_driver.x , " " , marker_driver.y , " " , marker_driver.z)
            print( "  Chassis COM loc: " , marker_com.x, " ", marker_com.y, " ",marker_com.z)

        # Get driver inputs
        driver_inputs = driver.GetInputs()

        # Update modules (process inputs from other modules)
        driver.Synchronize(time)
        terrain.Synchronize(time)
        my_hmmwv.Synchronize(time, driver_inputs, terrain)
        app.Synchronize(driver.GetInputModeAsString(), driver_inputs)

        # Advance simulation for one timestep for all modules
        driver.Advance(step_size)
        terrain.Advance(step_size)
        my_hmmwv.Advance(step_size)
        app.Advance(step_size)

        # Increment frame number
        step_number += 1

        # Spin in place for real time to catch up
        realtime_timer.Spin(step_size)

    return 0
예제 #27
0
    def reset(self):
        self.generate_track(starting_index=350, z=.40)

        self.vehicle = veh.RCCar()
        self.vehicle.SetContactMethod(chrono.ChMaterialSurface.NSC)
        self.vehicle.SetChassisCollisionType(veh.ChassisCollisionType_NONE)

        self.vehicle.SetChassisFixed(False)
        self.vehicle.SetInitPosition(
            chrono.ChCoordsysD(self.initLoc, self.initRot))
        self.vehicle.SetTireType(veh.TireModelType_RIGID)
        self.vehicle.SetTireStepSize(self.timestep)
        self.vehicle.Initialize()

        self.vehicle.SetChassisVisualizationType(
            veh.VisualizationType_PRIMITIVES)
        self.vehicle.SetWheelVisualizationType(
            veh.VisualizationType_PRIMITIVES)
        self.vehicle.SetSuspensionVisualizationType(
            veh.VisualizationType_PRIMITIVES)
        self.vehicle.SetSteeringVisualizationType(
            veh.VisualizationType_PRIMITIVES)
        self.vehicle.SetTireVisualizationType(veh.VisualizationType_PRIMITIVES)
        self.chassis_body = self.vehicle.GetChassisBody()
        self.system = self.vehicle.GetVehicle().GetSystem()

        # Driver
        self.driver = Driver(self.vehicle.GetVehicle())

        # Set the time response for steering and throttle inputs.
        # NOTE: this is not exact, since we do not render quite at the specified FPS.
        steering_time = .65
        # time to go from 0 to +1 (or from 0 to -1)
        throttle_time = .5
        # time to go from 0 to +1
        braking_time = 0.3
        # time to go from 0 to +1
        self.driver.SetSteeringDelta(self.timestep / steering_time)
        self.driver.SetThrottleDelta(self.timestep / throttle_time)
        self.driver.SetBrakingDelta(self.timestep / braking_time)

        # Longitudinal controller (throttle and braking)
        self.long_controller = PIDLongitudinalController(
            self.vehicle, self.driver)
        self.long_controller.SetGains(Kp=0.4, Ki=0, Kd=0)
        self.long_controller.SetTargetSpeed(speed=self.target_speed)

        # Mesh hallway
        y_max = 5.65
        x_max = 23
        offset = chrono.ChVectorD(-x_max / 2, -y_max / 2, .21)
        offsetF = chrono.ChVectorF(offset.x, offset.y, offset.z)

        self.terrain = veh.RigidTerrain(self.system)
        coord_sys = chrono.ChCoordsysD(offset,
                                       chrono.ChQuaternionD(1, 0, 0, 0))
        patch = self.terrain.AddPatch(
            coord_sys,
            chrono.GetChronoDataFile("sensor/textures/hallway_contact.obj"),
            "mesh", 0.01, False)

        vis_mesh = chrono.ChTriangleMeshConnected()
        vis_mesh.LoadWavefrontMesh(
            chrono.GetChronoDataFile("sensor/textures/hallway.obj"), True,
            True)

        trimesh_shape = chrono.ChTriangleMeshShape()
        trimesh_shape.SetMesh(vis_mesh)
        trimesh_shape.SetName("mesh_name")
        trimesh_shape.SetStatic(True)

        patch.GetGroundBody().AddAsset(trimesh_shape)

        patch.SetContactFrictionCoefficient(0.9)
        patch.SetContactRestitutionCoefficient(0.01)
        patch.SetContactMaterialProperties(2e7, 0.3)

        self.terrain.Initialize()
        f = 0
        start_light = 0
        end_light = 8
        self.manager = sens.ChSensorManager(self.system)
        for i in range(8):
            f += 3
            if i < start_light or i > end_light:
                continue
            self.manager.scene.AddPointLight(
                chrono.ChVectorF(f, 1.25, 2.3) + offsetF,
                chrono.ChVectorF(1, 1, 1), 5)
            self.manager.scene.AddPointLight(
                chrono.ChVectorF(f, 3.75, 2.3) + offsetF,
                chrono.ChVectorF(1, 1, 1), 5)

        # -----------------------------------------------------
        # Create a self.camera and add it to the sensor manager
        # -----------------------------------------------------
        self.camera = sens.ChCameraSensor(
            self.chassis_body,  # body camera is attached to
            50,  # scanning rate in Hz
            chrono.ChFrameD(
                chrono.ChVectorD(-.075, 0, .15),
                chrono.Q_from_AngAxis(0, chrono.ChVectorD(0, 1, 0))),
            # offset pose
            self.camera_width,  # number of horizontal samples
            self.camera_height,  # number of vertical channels
            chrono.CH_C_PI / 2,  # horizontal field of view
            (self.camera_height / self.camera_width) * chrono.CH_C_PI /
            3.  # vertical field of view
        )
        self.camera.SetName("Camera Sensor")
        self.camera.FilterList().append(sens.ChFilterRGBA8Access())
        self.manager.AddSensor(self.camera)

        # create obstacles
        self.cones = []
        self.DrawCones(self.track.left.points, 'green', z=.31)
        self.DrawCones(self.track.right.points, 'red', z=.31)

        self.old_dist = self.track.center.calcDistance(
            self.chassis_body.GetPos())

        self.step_number = 0

        self.isdone = False
        self.render_setup = False
        if self.play_mode:
            self.render()

        return self.get_ob()