def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument("--bert_model_dir", default=config.bert_model_dir, type=str, help="Bert pre-trained model dir") args = parser.parse_args() nlp = pipeline( 'fill-mask', model=args.bert_model_dir, tokenizer=args.bert_model_dir, device=0, # gpu device id ) i = nlp('hi lili, What is the name of the [MASK] ?') print(i) i = nlp('今天[MASK]情很好') print(i) i = nlp('少先队员[MASK]该为老人让座') print(i) i = nlp('[MASK]七学习是人工智能领遇最能体现智能的一个分知') print(i) i = nlp('机[MASK]学习是人工智能领遇最能体现智能的一个分知') print(i)
def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument("--bert_model_dir", default=os.path.join( pwd_path, '../data/bert_models/chinese_finetuned_lm/'), type=str, help="Bert pre-trained model dir") args = parser.parse_args() nlp = pipeline('fill-mask', model=args.bert_model_dir, tokenizer=args.bert_model_dir) i = nlp('hi lili, What is the name of the [MASK] ?') print(i) i = nlp('今天[MASK]情很好') print(i) i = nlp('少先队员[MASK]该为老人让座') print(i) i = nlp('[MASK]七学习是人工智能领遇最能体现智能的一个分知') print(i) i = nlp('机[MASK]学习是人工智能领遇最能体现智能的一个分知') print(i)
def __init__(self, d_model_dir=D_model_dir, g_model_dir=G_model_dir): super(ElectraCorrector, self).__init__() self.name = 'electra_corrector' t1 = time.time() self.g_model = pipeline("fill-mask", model=g_model_dir, tokenizer=g_model_dir) self.d_model = ElectraForPreTraining.from_pretrained(d_model_dir) if self.g_model: self.mask = self.g_model.tokenizer.mask_token logger.debug('Loaded electra model: %s, spend: %.3f s.' % (g_model_dir, time.time() - t1))
def __init__(self, bert_model_dir=config.bert_model_dir): super(BertCorrector, self).__init__() self.name = 'bert_corrector' t1 = time.time() self.model = pipeline( 'fill-mask', model=bert_model_dir, tokenizer=bert_model_dir, device=0, # gpu device id ) if self.model: self.mask = self.model.tokenizer.mask_token logger.debug('Loaded bert model: %s, spend: %.3f s.' % (bert_model_dir, time.time() - t1))
def fill_mask_demo(): nlp = pipeline( "fill-mask", model=G_model_dir, tokenizer=G_model_dir ) print(nlp.tokenizer.mask_token) print( nlp(f"HuggingFace is creating a {nlp.tokenizer.mask_token} that the community uses to solve NLP tasks.") ) i = nlp('hi, What is your [MASK] ?') print(i) i = nlp('今天[MASK]情很好') print(i)
def __init__(self, bert_model_dir=os.path.join( pwd_path, '../data/bert_models/chinese_finetuned_lm/')): super(BertCorrector, self).__init__() self.name = 'bert_corrector' t1 = time.time() self.model = pipeline( 'fill-mask', model=bert_model_dir, tokenizer=bert_model_dir, device=0, # gpu device id ) if self.model: self.mask = self.model.tokenizer.mask_token logger.debug('Loaded bert model: %s, spend: %.3f s.' % (bert_model_dir, time.time() - t1))