예제 #1
0
    def predict_pmf(self,
                    input,
                    batch_size=8224,
                    numpy=None,
                    eval_=True,
                    to_cpu=False,
                    num_workers=0):
        """Predict the probability mass function (PMF) for `input`.

        Arguments:
            input {tuple, np.ndarray, or torch.tensor} -- Input to net.
        
        Keyword Arguments:
            batch_size {int} -- Batch size (default: {8224})
            numpy {bool} -- 'False' gives tensor, 'True' gives numpy, and None give same as input
                (default: {None})
            eval_ {bool} -- If 'True', use 'eval' mode on net. (default: {True})
            grads {bool} -- If gradients should be computed (default: {False})
            to_cpu {bool} -- For larger data sets we need to move the results to cpu
                (default: {False})
            num_workers {int} -- Number of workers in created dataloader (default: {0})
        
        Returns:
            [np.ndarray or tensor] -- Predictions
        """
        preds = self.predict(input, batch_size, False, eval_, False, to_cpu,
                             num_workers)
        pmf = pad_col(preds).softmax(1)[:, :-1]
        return array_or_tensor(pmf, numpy, input)
예제 #2
0
 def _hazard_const_haz(self,
                       input,
                       batch_size=8224,
                       numpy=None,
                       eval_=True,
                       to_cpu=False,
                       num_workers=0):
     """Computes the continuous-time constant hazard interpolation.
     Essentially we what the discrete survival estimates to match the continuous time at the knots.
     So essentially we want
         $$S(tau_j) = prod_{k=1}^j [1 - h_k] = prod_{k=1}{j} exp[-eta_k].$$
     where $h_k$ is the discrete hazard estimates and $eta_k$ continuous time hazards multiplied
     with the length of the duration interval as they are defined for the PC-Hazard method.
     Thus we get 
         $$eta_k = - log[1 - h_k]$$
     which can be divided by the length of the time interval to get the continuous time hazards.
     """
     haz_orig = self.model.predict_hazard(input, batch_size, False, eval_,
                                          to_cpu, num_workers)
     haz = (1 - haz_orig).add(
         self.epsilon).log().mul(-1).relu()[:, 1:].contiguous()
     n = haz.shape[0]
     haz = haz.view(-1, 1).repeat(1, self.sub).view(n, -1).div(self.sub)
     haz = utils.pad_col(haz, where='start')
     haz[:, 0] = haz_orig[:, 0]
     return utils.array_or_tensor(haz, numpy, input)
예제 #3
0
파일: cox.py 프로젝트: yushu-liu/pycox
    def predict_surv(self,
                     input,
                     max_duration=None,
                     batch_size=8224,
                     numpy=None,
                     verbose=False,
                     baseline_hazards_=None,
                     eval_=True,
                     num_workers=0):
        """Predict survival function for `input`. S(x, t) = exp(-H(x, t))
        Require compueted baseline hazards.

        Arguments:
            input {np.array, tensor or tuple} -- Input x passed to net.

        Keyword Arguments:
            max_duration {float} -- Don't compute estimates for duration higher (default: {None})
            batch_size {int} -- Batch size (default: {8224})
            numpy {bool} -- 'False' gives tensor, 'True' gives numpy, and None give same as input
                (default: {None})
            baseline_hazards_ {pd.Series} -- Baseline hazards. If `None` used `model.baseline_hazards_` (default: {None})
            eval_ {bool} -- If 'True', use 'eval' mode on net. (default: {True})
            num_workers {int} -- Number of workers in created dataloader (default: {0})

        Returns:
            pd.DataFrame -- Survival estimates. One columns for each individual.
        """
        surv = self.predict_surv_df(input, max_duration, batch_size, verbose,
                                    baseline_hazards_, eval_, num_workers)
        surv = torch.from_numpy(surv.values.transpose())
        return array_or_tensor(surv, numpy, input)
예제 #4
0
    def predict_hazard(self,
                       input,
                       batch_size=8224,
                       numpy=None,
                       eval_=True,
                       to_cpu=False,
                       num_workers=0):
        """Predict the hazard function for `input`.

        Arguments:
            input {tuple, np.ndarra, or torch.tensor} -- Input to net.
        
        Keyword Arguments:
            batch_size {int} -- Batch size (default: {8224})
            numpy {bool} -- 'False' gives tensor, 'True' gives numpy, and None give same as input
                (default: {None})
            eval_ {bool} -- If 'True', use 'eval' mode on net. (default: {True})
            to_cpu {bool} -- For larger data sets we need to move the results to cpu
                (default: {False})
            num_workers {int} -- Number of workers in created dataloader (default: {0})
        
        Returns:
            [np.ndarray or tensor] -- Predicted hazards
        """
        preds = self.predict(input, batch_size, False, eval_, False, to_cpu,
                             num_workers)
        n = preds.shape[0]
        hazard = F.softplus(preds).view(-1, 1).repeat(1, self.sub).view(
            n, -1).div(self.sub)
        hazard = pad_col(hazard, where='start')
        return array_or_tensor(hazard, numpy, input)
예제 #5
0
 def predict_surv(self,
                  input,
                  batch_size=8224,
                  numpy=None,
                  eval_=True,
                  to_cpu=False,
                  num_workers=0):
     pmf = self.predict_pmf(input, batch_size, False, eval_, to_cpu,
                            num_workers)
     surv = 1 - pmf.cumsum(1)
     return array_or_tensor(surv, numpy, input)
예제 #6
0
 def predict_surv(self,
                  input,
                  batch_size=8224,
                  numpy=None,
                  eval_=True,
                  to_cpu=False,
                  num_workers=0):
     hazard = self.predict_hazard(input, batch_size, False, eval_, to_cpu,
                                  num_workers)
     surv = hazard.cumsum(1).mul(-1).exp()
     return array_or_tensor(surv, numpy, input)
예제 #7
0
파일: mtlr.py 프로젝트: yushu-liu/pycox
 def predict_pmf(self,
                 input,
                 batch_size=8224,
                 numpy=None,
                 eval_=True,
                 to_cpu=False,
                 num_workers=0):
     preds = self.predict(input, batch_size, False, eval_, False, to_cpu,
                          num_workers)
     preds = utils.cumsum_reverse(preds, dim=1)
     pmf = utils.pad_col(preds).softmax(1)[:, :-1]
     return utils.array_or_tensor(pmf, numpy, input)
예제 #8
0
 def _surv_const_haz(self,
                     input,
                     batch_size=8224,
                     numpy=None,
                     eval_=True,
                     to_cpu=False,
                     num_workers=0):
     haz = self._hazard_const_haz(input, batch_size, False, eval_, to_cpu,
                                  num_workers)
     surv_0 = 1 - haz[:, :1]
     surv = utils.pad_col(haz[:, 1:],
                          where='start').cumsum(1).mul(-1).exp().mul(surv_0)
     return utils.array_or_tensor(surv, numpy, input)
예제 #9
0
 def predict_pmf(self,
                 input,
                 batch_size=8224,
                 numpy=None,
                 eval_=True,
                 to_cpu=False,
                 num_workers=0):
     if not self.scheme in ['const_pdf', 'lin_surv']:
         raise NotImplementedError
     pmf = self.model.predict_pmf(input, batch_size, False, eval_, to_cpu,
                                  num_workers)
     n, m = pmf.shape
     pmf_cdi = pmf[:, 1:].contiguous().view(-1, 1).repeat(1, self.sub).div(
         self.sub).view(n, -1)
     pmf_cdi = utils.pad_col(pmf_cdi, where='start')
     pmf_cdi[:, 0] = pmf[:, 0]
     return utils.array_or_tensor(pmf_cdi, numpy, input)
예제 #10
0
    def _surv_const_pdf(self,
                        input,
                        batch_size=8224,
                        numpy=None,
                        eval_=True,
                        to_cpu=False,
                        num_workers=0):
        """Basic method for constant PDF interpolation that use `self.model.predict_surv`.

        Arguments:
            input {tuple, np.ndarray, or torch.tensor} -- Input to net.
        
        Keyword Arguments:
            batch_size {int} -- Batch size (default: {8224})
            numpy {bool} -- 'False' gives tensor, 'True' gives numpy, and None give same as input
                (default: {None})
            eval_ {bool} -- If 'True', use 'eval' mode on net. (default: {True})
            to_cpu {bool} -- For larger data sets we need to move the results to cpu
                (default: {False})
            num_workers {int} -- Number of workers in created dataloader (default: {0})
        
        Returns:
            [np.ndarray or tensor] -- Predictions
        """
        s = self.model.predict_surv(input, batch_size, False, eval_, to_cpu,
                                    num_workers)
        n, m = s.shape
        device = s.device
        diff = (s[:, 1:] - s[:, :-1]).contiguous().view(-1, 1).repeat(
            1, self.sub).view(n, -1)
        rho = torch.linspace(0, 1, self.sub + 1,
                             device=device)[:-1].contiguous().repeat(n, m - 1)
        s_prev = s[:, :-1].contiguous().view(-1,
                                             1).repeat(1,
                                                       self.sub).view(n, -1)
        surv = torch.zeros(n, int((m - 1) * self.sub + 1))
        surv[:, :-1] = diff * rho + s_prev
        surv[:, -1] = s[:, -1]
        return utils.array_or_tensor(surv, numpy, input)
예제 #11
0
    def predict_cif(self, input, batch_size=8224, numpy=None, eval_=True,
                     to_cpu=False, num_workers=0):
        """Predict the cumulative incidence function (cif) for `input`.

        Arguments:
            input {tuple, np.ndarray, or torch.tensor} -- Input to net.
        
        Keyword Arguments:
            batch_size {int} -- Batch size (default: {8224})
            numpy {bool} -- 'False' gives tensor, 'True' gives numpy, and None give same as input
                (default: {None})
            eval_ {bool} -- If 'True', use 'eval' mode on net. (default: {True})
            to_cpu {bool} -- For larger data sets we need to move the results to cpu
                (default: {False})
            num_workers {int} -- Number of workers in created dataloader (default: {0})
        
        Returns:
            [np.ndarray or tensor] -- Predictions
        """
        pmf = self.predict_pmf(input, batch_size, False, eval_, to_cpu, num_workers)
        cif = pmf.cumsum(1)
        return array_or_tensor(cif, numpy, input)
예제 #12
0
    def predict_surv(self, input, batch_size=8224, numpy=None, eval_=True,
                     to_cpu=False, num_workers=0):
        """Predict the survival function for `input`, i.e., survive all of the event types.
        See `prediction_surv_df` to return a DataFrame instead.

        Arguments:
            input {tuple, np.ndarra, or torch.tensor} -- Input to net.
        
        Keyword Arguments:
            batch_size {int} -- Batch size (default: {8224})
            numpy {bool} -- 'False' gives tensor, 'True' gives numpy, and None give same as input
                (default: {None})
            eval_ {bool} -- If 'True', use 'eval' modede on net. (default: {True})
            to_cpu {bool} -- For larger data sets we need to move the results to cpu
                (default: {False})
            num_workers {int} -- Number of workes in created dataloader (default: {0})
        
        Returns:
            [TupleTree, np.ndarray or tensor] -- Predictions
        """
        cif = self.predict_cif(input, batch_size, False, eval_, to_cpu, num_workers)
        surv = 1. - cif.sum(0)
        return array_or_tensor(surv, numpy, input)