def test_both_directions_e_value_threshold_med_max(self): results = detect_ts( self.raw_data, max_anoms=0.02, direction='both', threshold="med_max", e_value=True) eq_(len(results['anoms'].columns), 3) eq_(len(results['anoms'].iloc[:, 1]), 4)
def test_both_directions_with_plot(self): results = detect_ts( self.raw_data, max_anoms=0.02, direction='both', only_last='day', plot=False) eq_(len(results['anoms'].columns), 2) eq_(len(results['anoms'].iloc[:, 1]), 21)
def test_both_directions_e_value_longterm(self): results = detect_ts( self.raw_data, max_anoms=0.02, direction='both', longterm=True, plot=False, e_value=True) eq_(len(results['anoms'].columns), 3) eq_(len(results['anoms'].iloc[:, 1]), 114)
def test_handling_of_leading_trailing_nas(self): for i in list(range(10)) + [len(self.raw_data) - 1]: self.raw_data.set_value(i, 'count', np.nan) results = detect_ts(self.raw_data, max_anoms=0.02, direction='both', plot=False) eq_(len(results['anoms'].columns), 2) eq_(len(results['anoms'].iloc[:, 1]), 114)
def test_check_midnight_date_format(self): data = pd.read_csv(os.path.join(self.path, 'midnight_test_data.csv'), usecols=['date', 'value']) data.date = date_format(data.date, "%Y-%m-%d %H:%M:%S") results = detect_ts(data, max_anoms=0.2, threshold=None, direction='both', plot=False, only_last="day", e_value=True) eq_(len(results['anoms'].anoms), len(results['anoms'].expected_value))
def test_handling_of_middle_nas(self): self.raw_data.set_value(len(self.raw_data) / 2, 'count', np.nan) detect_ts(self.raw_data, max_anoms=0.02, direction='both')