def setup(self): thermo_method = self.options['thermo_method'] thermo_data = self.options['thermo_data'] nozzType = self.options['nozzType'] lossCoef = self.options['lossCoef'] # elements = self.options['elements'] composition = self.Fl_I_data['Fl_I'] self.add_subsystem('mach_choked', om.IndepVarComp( 'MN', 1.000, )) # Create inlet flow station in_flow = FlowIn(fl_name="Fl_I") self.add_subsystem('in_flow', in_flow, promotes_inputs=['Fl_I:*']) # PR_bal = self.add_subsystem('PR_bal', BalanceComp()) # PR_bal.add_balance('PR', units=None, eq_units='lbf/inch**2', lower=1.001) # self.connect('PR_bal.PR', 'PR') # self.connect('Ps_exhaust', 'PR_bal.lhs:PR') # self.connect('Ps_calc', 'PR_bal.rhs:PR') self.add_subsystem('PR_bal', PR_bal(), promotes_inputs=['*'], promotes_outputs=['*']) # Calculate pressure at the throat prom_in = [('Pt_in', 'Fl_I:tot:P'), 'PR', 'dPqP'] self.add_subsystem('press_calcs', PressureCalcs(), promotes_inputs=prom_in, promotes_outputs=['Ps_calc']) # Calculate throat total flow properties throat_total = Thermo(mode='total_hP', fl_name='Fl_O:tot', method=thermo_method, thermo_kwargs={ 'composition': composition, 'spec': thermo_data }) prom_in = [('h', 'Fl_I:tot:h'), ('composition', 'Fl_I:tot:composition')] self.add_subsystem('throat_total', throat_total, promotes_inputs=prom_in, promotes_outputs=['Fl_O:*']) self.connect('press_calcs.Pt_th', 'throat_total.P') # Calculate static properties for sonic flow throat_static_MN = Thermo(mode='static_MN', method=thermo_method, thermo_kwargs={ 'composition': composition, 'spec': thermo_data }) prom_in = [('ht', 'Fl_I:tot:h'), ('W', 'Fl_I:stat:W'), ('composition', 'Fl_I:tot:composition')] self.add_subsystem('staticMN', throat_static_MN, promotes_inputs=prom_in) self.connect('throat_total.S', 'staticMN.S') self.connect('mach_choked.MN', 'staticMN.MN') self.connect('press_calcs.Pt_th', 'staticMN.guess:Pt') self.connect('throat_total.gamma', 'staticMN.guess:gamt') # self.connect('Fl_I.flow:flow_products','staticMN.init_prod_amounts') # Calculate static properties based on exit static pressure throat_static_Ps = Thermo(mode='static_Ps', method=thermo_method, thermo_kwargs={ 'composition': composition, 'spec': thermo_data }) prom_in = [('ht', 'Fl_I:tot:h'), ('W', 'Fl_I:stat:W'), ('Ps', 'Ps_calc'), ('composition', 'Fl_I:tot:composition')] self.add_subsystem('staticPs', throat_static_Ps, promotes_inputs=prom_in) self.connect('throat_total.S', 'staticPs.S') # self.connect('press_calcs.Ps_calc', 'staticPs.Ps') # self.connect('Fl_I.flow:flow_products','staticPs.init_prod_amounts') # Calculate ideal exit flow properties ideal_flow = Thermo(mode='static_Ps', method=thermo_method, thermo_kwargs={ 'composition': composition, 'spec': thermo_data }) prom_in = [('ht', 'Fl_I:tot:h'), ('S', 'Fl_I:tot:S'), ('W', 'Fl_I:stat:W'), ('Ps', 'Ps_calc'), ('composition', 'Fl_I:tot:composition')] self.add_subsystem('ideal_flow', ideal_flow, promotes_inputs=prom_in) # self.connect('press_calcs.Ps_calc', 'ideal_flow.Ps') # self.connect('Fl_I.flow:flow_products','ideal_flow.init_prod_amounts') # Determine throat and exit flow properties based on nozzle type and exit static pressure mux = Mux(nozzType=nozzType, fl_out_name='Fl_O') prom_in = [('Ps:W', 'Fl_I:stat:W'), ('MN:W', 'Fl_I:stat:W'), ('Ps:P', 'Ps_calc'), 'Ps_calc'] self.add_subsystem('mux', mux, promotes_inputs=prom_in, promotes_outputs=['*:stat:*']) self.connect('throat_total.S', 'mux.S') self.connect('staticPs.h', 'mux.Ps:h') self.connect('staticPs.T', 'mux.Ps:T') self.connect('staticPs.rho', 'mux.Ps:rho') self.connect('staticPs.gamma', 'mux.Ps:gamma') self.connect('staticPs.Cp', 'mux.Ps:Cp') self.connect('staticPs.Cv', 'mux.Ps:Cv') self.connect('staticPs.V', 'mux.Ps:V') self.connect('staticPs.Vsonic', 'mux.Ps:Vsonic') self.connect('staticPs.MN', 'mux.Ps:MN') self.connect('staticPs.area', 'mux.Ps:area') self.connect('staticMN.h', 'mux.MN:h') self.connect('staticMN.T', 'mux.MN:T') self.connect('staticMN.Ps', 'mux.MN:P') self.connect('staticMN.rho', 'mux.MN:rho') self.connect('staticMN.gamma', 'mux.MN:gamma') self.connect('staticMN.Cp', 'mux.MN:Cp') self.connect('staticMN.Cv', 'mux.MN:Cv') self.connect('staticMN.V', 'mux.MN:V') self.connect('staticMN.Vsonic', 'mux.MN:Vsonic') self.connect('mach_choked.MN', 'mux.MN:MN') self.connect('staticMN.area', 'mux.MN:area') # Calculate nozzle performance paramters based on perf_calcs = PerformanceCalcs(lossCoef=lossCoef) if lossCoef == "Cv": other_inputs = ['Cv', 'Ps_calc'] else: other_inputs = ['Cfg', 'Ps_calc'] prom_in = [('W_in', 'Fl_I:stat:W')] + other_inputs self.add_subsystem('perf_calcs', perf_calcs, promotes_inputs=prom_in, promotes_outputs=['Fg']) self.connect('ideal_flow.V', 'perf_calcs.V_ideal') # self.connect('ideal_flow.area', 'perf_calcs.A_ideal') if lossCoef == 'Cv': self.connect('Fl_O:stat:V', 'perf_calcs.V_actual') self.connect('Fl_O:stat:area', 'perf_calcs.A_actual') self.connect('Fl_O:stat:P', 'perf_calcs.Ps_actual') if self.options['internal_solver']: newton = self.nonlinear_solver = om.NewtonSolver() newton.options['atol'] = 1e-10 newton.options['rtol'] = 1e-10 newton.options['maxiter'] = 20 newton.options['iprint'] = 2 newton.options['solve_subsystems'] = True newton.options['reraise_child_analysiserror'] = False newton.linesearch = om.BoundsEnforceLS() newton.linesearch.options['bound_enforcement'] = 'scalar' newton.linesearch.options['iprint'] = -1 self.linear_solver = om.DirectSolver(assemble_jac=True) super().setup()
def test_set_total_equivalence(self): p_TP = om.Problem() p_TP.model = Thermo(mode='total_TP', method='CEA', thermo_kwargs={ 'elements': constants.AIR_ELEMENTS, 'spec': species_data.janaf }) p_TP.setup() p_TP.set_solver_print(level=-1) p_hP = om.Problem() p_hP.model = Thermo(mode='total_hP', method='CEA', thermo_kwargs={ 'elements': constants.AIR_ELEMENTS, 'spec': species_data.janaf }) p_hP.setup() p_hP.set_solver_print(level=-1) p_SP = om.Problem() p_SP.model = Thermo(mode='total_SP', method='CEA', thermo_kwargs={ 'elements': constants.AIR_ELEMENTS, 'spec': species_data.janaf }) p_SP.setup() p_SP.set_solver_print(level=-1) def check(T, P): p_TP.set_val('T', T, units='degR') p_TP.set_val('P', P, units='psi') # print('TP check') p_TP.run_model() h_from_TP = p_TP.get_val('flow:h', units='cal/g') S_from_TP = p_TP.get_val('flow:S', units='cal/(g*degK)') p_hP.set_val('h', h_from_TP, units='cal/g') p_hP.set_val('P', P, units='psi') # print('hp check') p_hP.run_model() assert_near_equal(p_hP['flow:T'], p_TP['flow:T'], 1e-4) p_SP.set_val('S', S_from_TP, units='cal/(g*degK)') p_SP.set_val('P', P, units='psi') # print('SP check') p_SP.run_model() assert_near_equal(p_SP['flow:T'], p_TP['flow:T'], 1e-4) check(518., 14.7) check(3000., 30.) check(1500., 80.)
def setup(self): thermo_method = self.options['thermo_method'] thermo_data = self.options['thermo_data'] if thermo_data is None: thermo_data = THERMO_DEFAULT_COMPOSITIONS[thermo_method] main_flow_composition = self.options['main_flow_composition'] bld_flow_composition = self.options['bld_flow_composition'] mix_flow_composition = self.options['mix_flow_composition'] self.add_subsystem('cooling_calcs', CoolingCalcs(n_stages=self.options['n_stages'], i_row=self.options['i_row'], T_safety=self.options['T_safety'], T_metal=self.options['T_metal']), promotes_inputs=[ 'Pt_in', 'Pt_out', 'W_primary', 'Tt_primary', 'Tt_cool', 'ht_primary', 'ht_cool', 'x_factor', 'turb_pwr' ], promotes_outputs=['W_cool']) consts = self.add_subsystem( 'consts', om.IndepVarComp()) # values that should not be changed ever consts.add_output('bld_frac_P', val=1) self.add_subsystem('mix_n', ThermoAdd(method=thermo_method, mix_mode='flow', mix_names='cool', thermo_kwargs={ 'spec': thermo_data, 'inflow_composition': main_flow_composition, 'mix_composition': bld_flow_composition, }), promotes_inputs=[('Fl_I:stat:W', 'W_primary'), ('Fl_I:tot:composition', 'composition_primary'), 'cool:composition'], promotes_outputs=[ ('Wout', 'W_out'), ]) mixed_flow = Thermo(mode='total_hP', fl_name='Fl_O:tot', method=thermo_method, thermo_kwargs={ 'composition': mix_flow_composition, 'spec': thermo_data }) self.add_subsystem('mixed_flow', mixed_flow, promotes_outputs=['Fl_O:tot:*']) # promoted # self.connect('', 'mix_n.Pt_in') # self.connect('', 'mix_n.Pt_out') # self.connect('', 'mix_n.W_primary') # self.connect('', 'mix_n.n_in') # self.connect('', 'mix_n.cool:n') self.connect('W_cool', 'mix_n.cool:W') # self.connect('consts.bld_frac_P', 'mix_n.cool:frac_P') self.connect('mix_n.composition_out', 'mixed_flow.composition') self.connect('cooling_calcs.ht_out', 'mixed_flow.h') self.connect('cooling_calcs.Pt_stage', 'mixed_flow.P')
def setup(self): thermo_data = self.options['thermo_data'] elements = self.options['elements'] statics = self.options['statics'] design = self.options['design'] num_element = len(elements) # Create inlet flow station flow_in = FlowIn(fl_name='Fl_I') self.add_subsystem('flow_in', flow_in, promotes=['Fl_I:tot:*', 'Fl_I:stat:*']) # Perform inlet engineering calculations self.add_subsystem('calcs_inlet', Calcs(), promotes_inputs=['ram_recovery', ('Pt_in', 'Fl_I:tot:P'), ('V_in', 'Fl_I:stat:V'), ('W_in', 'Fl_I:stat:W')], promotes_outputs=['F_ram']) # Calculate real flow station properties real_flow = Thermo(mode='total_TP', fl_name='Fl_O:tot', method='CEA', thermo_kwargs={'elements':elements, 'spec':thermo_data}) self.add_subsystem('real_flow', real_flow, promotes_inputs=[('T', 'Fl_I:tot:T'), ('composition', 'Fl_I:tot:composition')], promotes_outputs=['Fl_O:*']) self.connect("calcs_inlet.Pt_out", "real_flow.P") if statics: if design: # Calculate static properties out_stat = Thermo(mode='static_MN', fl_name='Fl_O:stat', method='CEA', thermo_kwargs={'elements':elements, 'spec':thermo_data}) self.add_subsystem('out_stat', out_stat, promotes_inputs=[('composition', 'Fl_I:tot:composition'), ('W', 'Fl_I:stat:W'), 'MN'], promotes_outputs=['Fl_O:stat:*']) self.connect('Fl_O:tot:S', 'out_stat.S') self.connect('Fl_O:tot:h', 'out_stat.ht') self.connect('Fl_O:tot:P', 'out_stat.guess:Pt') self.connect('Fl_O:tot:gamma', 'out_stat.guess:gamt') else: # Calculate static properties out_stat = Thermo(mode='static_A', fl_name='Fl_O:stat', method='CEA', thermo_kwargs={'elements':elements, 'spec':thermo_data}) prom_in = [('composition', 'Fl_I:tot:composition'), ('W', 'Fl_I:stat:W'), 'area'] prom_out = ['Fl_O:stat:*'] self.add_subsystem('out_stat', out_stat, promotes_inputs=prom_in, promotes_outputs=prom_out) self.connect('Fl_O:tot:S', 'out_stat.S') self.connect('Fl_O:tot:h', 'out_stat.ht') self.connect('Fl_O:tot:P', 'out_stat.guess:Pt') self.connect('Fl_O:tot:gamma', 'out_stat.guess:gamt') else: self.add_subsystem('W_passthru', PassThrough('Fl_I:stat:W', 'Fl_O:stat:W', 0.0, units= "lbm/s"), promotes=['*'])
def test_set_total_SP(self): # p = om.Problem() p.model = Thermo(mode='total_SP', method='CEA', thermo_kwargs={ 'elements': constants.CO2_CO_O2_ELEMENTS, 'spec': species_data.co2_co_o2 }) r = p.model p.setup(check=False) # NOTE: This case is very touchy and requires weird solver settings p.model.nonlinear_solver.options['solve_subsystems'] = True p.model.base_thermo.chem_eq.nonlinear_solver.options['maxiter'] = 1 p.model.base_thermo.chem_eq.nonlinear_solver.linesearch = om.ArmijoGoldsteinLS( ) p.model.base_thermo.chem_eq.nonlinear_solver.linesearch.options[ 'maxiter'] = 2 p.set_solver_print(level=2) p.final_setup() # p.model.nonlinear_solver.options['maxiter'] = 0 p.set_val('S', 2.35711010759, units="Btu/(lbm*degR)") p.set_val('P', 1.034210, units="bar") p.run_model() expected_concentrations = np.array( [0.62003271, 0.06995092, 0.31001638]) n = p['n'] n_moles = p['n_moles'] concentrations = n / n_moles assert_near_equal(concentrations, expected_concentrations, 1e-4) expected_n_moles = 0.0329313730421 assert_near_equal(n_moles, expected_n_moles, 1e-4) assert_near_equal(p['gamma'], 1.19054696779, 1e-4) # 1500K p['T'] = 4000. p['S'] = 1.5852424435 p.run_model() expected_concentrations = np.array( [3.58768646e-04, 9.99461847e-01, 1.79384323e-04]) n = p['n'] n_moles = p['n_moles'] concentrations = n / n_moles assert_near_equal(concentrations, expected_concentrations, 1e-4) expected_n_moles = 0.022726185333 assert_near_equal(n_moles, expected_n_moles, 1e-4) assert_near_equal(p['gamma'], 1.16396871, 1e-4)
def setup(self): thermo_data = self.options['thermo_data'] elements = self.options['elements'] statics = self.options['statics'] design = self.options['design'] bleeds = self.options['bleed_names'] num_element = len(elements) # Create inlet flowstation flow_in = FlowIn(fl_name='Fl_I') self.add_subsystem('flow_in', flow_in, promotes=['Fl_I:tot:*', 'Fl_I:stat:*']) # Bleed flow calculations blds = BleedCalcs(bleed_names=bleeds) bld_port_globs = ['{}:*'.format(bn) for bn in bleeds] self.add_subsystem('bld_calcs', blds, promotes_inputs=[('W_in', 'Fl_I:stat:W'), '*:frac_W'], promotes_outputs=['W_out'] + bld_port_globs) bleed_names = [] for BN in bleeds: bleed_names.append(BN + '_flow') bleed_flow = Thermo(mode='total_TP', fl_name=BN + ":tot", method='CEA', thermo_kwargs={ 'elements': elements, 'spec': thermo_data }) self.add_subsystem(BN + '_flow', bleed_flow, promotes_inputs=[('composition', 'Fl_I:tot:composition'), ('T', 'Fl_I:tot:T'), ('P', 'Fl_I:tot:P')], promotes_outputs=['{}:tot:*'.format(BN)]) # Total Calc real_flow = Thermo(mode='total_TP', fl_name="Fl_O:tot", method='CEA', thermo_kwargs={ 'elements': elements, 'spec': thermo_data }) prom_in = [('composition', 'Fl_I:tot:composition'), ('T', 'Fl_I:tot:T'), ('P', 'Fl_I:tot:P')] self.add_subsystem('real_flow', real_flow, promotes_inputs=prom_in, promotes_outputs=['Fl_O:*']) if statics: if design: # Calculate static properties out_stat = Thermo(mode='static_MN', fl_name="Fl_O:stat", method='CEA', thermo_kwargs={ 'elements': elements, 'spec': thermo_data }) prom_in = [('composition', 'Fl_I:tot:composition'), 'MN'] prom_out = ['Fl_O:stat:*'] self.add_subsystem('out_stat', out_stat, promotes_inputs=prom_in, promotes_outputs=prom_out) self.connect('Fl_O:tot:S', 'out_stat.S') self.connect('Fl_O:tot:h', 'out_stat.ht') self.connect('Fl_O:tot:P', 'out_stat.guess:Pt') self.connect('Fl_O:tot:gamma', 'out_stat.guess:gamt') self.connect('W_out', 'out_stat.W') else: # Calculate static properties out_stat = Thermo(mode='static_A', fl_name="Fl_O:stat", method='CEA', thermo_kwargs={ 'elements': elements, 'spec': thermo_data }) prom_in = [('composition', 'Fl_I:tot:composition'), 'area'] prom_out = ['Fl_O:stat:*'] self.add_subsystem('out_stat', out_stat, promotes_inputs=prom_in, promotes_outputs=prom_out) self.connect('Fl_O:tot:S', 'out_stat.S') self.connect('Fl_O:tot:h', 'out_stat.ht') self.connect('Fl_O:tot:P', 'out_stat.guess:Pt') self.connect('Fl_O:tot:gamma', 'out_stat.guess:gamt') self.connect('W_out', 'out_stat.W') else: self.add_subsystem('W_passthru', PassThrough('W_out', 'Fl_O:stat:W', 1.0, units="lbm/s"), promotes=['*'])
def setup(self): thermo_method = self.options['thermo_method'] thermo_data = self.options['thermo_data'] inflow_composition = self.Fl_I_data['Fl_I'] air_fuel_composition = self.Fl_O_data['Fl_O'] design = self.options['design'] statics = self.options['statics'] # Create combustor flow station in_flow = FlowIn(fl_name='Fl_I') self.add_subsystem('in_flow', in_flow, promotes=['Fl_I:tot:*', 'Fl_I:stat:*']) self.add_subsystem('mix_fuel', self.thermo_add_comp, promotes=[ 'Fl_I:stat:W', ('mix:ratio', 'Fl_I:FAR'), 'Fl_I:tot:composition', 'Fl_I:tot:h', ('mix:W', 'Wfuel'), 'Wout' ]) # Pressure loss prom_in = [('Pt_in', 'Fl_I:tot:P'), 'dPqP'] self.add_subsystem('p_loss', PressureLoss(), promotes_inputs=prom_in) # Calculate vitiated flow station properties vit_flow = Thermo(mode='total_hP', fl_name='Fl_O:tot', method=thermo_method, thermo_kwargs={ 'composition': air_fuel_composition, 'spec': thermo_data }) self.add_subsystem('vitiated_flow', vit_flow, promotes_outputs=['Fl_O:*']) self.connect("mix_fuel.mass_avg_h", "vitiated_flow.h") self.connect("mix_fuel.composition_out", "vitiated_flow.composition") self.connect("p_loss.Pt_out", "vitiated_flow.P") if statics: if design: # Calculate static properties. out_stat = Thermo(mode='static_MN', fl_name='Fl_O:stat', method=thermo_method, thermo_kwargs={ 'composition': air_fuel_composition, 'spec': thermo_data }) prom_in = ['MN'] prom_out = ['Fl_O:stat:*'] self.add_subsystem('out_stat', out_stat, promotes_inputs=prom_in, promotes_outputs=prom_out) self.connect("mix_fuel.composition_out", "out_stat.composition") self.connect('Fl_O:tot:S', 'out_stat.S') self.connect('Fl_O:tot:h', 'out_stat.ht') self.connect('Fl_O:tot:P', 'out_stat.guess:Pt') self.connect('Fl_O:tot:gamma', 'out_stat.guess:gamt') self.connect('Wout', 'out_stat.W') else: # Calculate static properties. out_stat = Thermo(mode='static_A', fl_name='Fl_O:stat', method=thermo_method, thermo_kwargs={ 'composition': air_fuel_composition, 'spec': thermo_data }) prom_in = ['area'] prom_out = ['Fl_O:stat:*'] self.add_subsystem('out_stat', out_stat, promotes_inputs=prom_in, promotes_outputs=prom_out) self.connect("mix_fuel.composition_out", "out_stat.composition") self.connect('Fl_O:tot:S', 'out_stat.S') self.connect('Fl_O:tot:h', 'out_stat.ht') self.connect('Fl_O:tot:P', 'out_stat.guess:Pt') self.connect('Fl_O:tot:gamma', 'out_stat.guess:gamt') self.connect('Wout', 'out_stat.W') else: self.add_subsystem('W_passthru', PassThrough('Wout', 'Fl_O:stat:W', 1.0, units="lbm/s"), promotes=['*']) super().setup()
def setup(self): #(self, mapclass=NCP01map(), design=True, thermo_data=species_data.janaf, elements=AIR_ELEMENTS, bleeds=[],statics=True): map_data = self.options['map_data'] interp_method = self.options['map_interp_method'] map_extrap = self.options['map_extrap'] # self.linear_solver = ScipyGMRES() # self.linear_solver.options['atol'] = 2e-8 # self.linear_solver.options['maxiter'] = 100 # self.linear_solver.options['restart'] = 100 # self.nonlinear_solver = Newton() # self.nonlinear_solver.options['utol'] = 1e-9 thermo_method = self.options['thermo_method'] design = self.options['design'] bleeds = self.options['bleed_names'] thermo_data = self.options['thermo_data'] elements = self.options['elements'] statics = self.options['statics'] num_element = len(elements) # Create inlet flow station flow_in = FlowIn(fl_name='Fl_I') self.add_subsystem('flow_in', flow_in, promotes_inputs=['Fl_I:*']) self.add_subsystem('corrinputs', CorrectedInputsCalc(), promotes_inputs=( 'Nmech', ('W_in', 'Fl_I:stat:W'), ('Pt', 'Fl_I:tot:P'), ('Tt', 'Fl_I:tot:T')), promotes_outputs=('Nc', 'Wc')) map_calcs = CompressorMap(map_data=self.options['map_data'], design=design, interp_method=interp_method, extrap=map_extrap) self.add_subsystem('map', map_calcs, promotes=['s_Nc','s_eff','s_Wc','s_PR','Nc','Wc', 'PR','eff','SMN','SMW']) # Calculate pressure rise across compressor self.add_subsystem('press_rise', PressureRise(), promotes_inputs=[ 'PR', ('Pt_in', 'Fl_I:tot:P')]) # Calculate ideal flow station properties ideal_flow = Thermo(mode='total_SP', method=thermo_method, thermo_kwargs={'elements':elements, 'spec':thermo_data}) self.add_subsystem('ideal_flow', ideal_flow, promotes_inputs=[('S', 'Fl_I:tot:S'), ('composition', 'Fl_I:tot:composition')]) self.connect("press_rise.Pt_out", "ideal_flow.P") # Calculate enthalpy rise across compressor self.add_subsystem("enth_rise", EnthalpyRise(), promotes_inputs=['eff', ('inlet_ht', 'Fl_I:tot:h')]) self.connect("ideal_flow.h", "enth_rise.ideal_ht") # Calculate real flow station properties real_flow = Thermo(mode='total_hP', fl_name='Fl_O:tot', method=thermo_method, thermo_kwargs={'elements':elements, 'spec':thermo_data}) self.add_subsystem('real_flow', real_flow, promotes_inputs=[ ('composition', 'Fl_I:tot:composition')], promotes_outputs=['Fl_O:tot:*']) self.connect("enth_rise.ht_out", "real_flow.h") self.connect("press_rise.Pt_out", "real_flow.P") #clculate Polytropic Efficiency self.add_subsystem('eff_poly_calc', eff_poly_calc(), promotes_inputs=[('PR','PR'), ('S_in','Fl_I:tot:S'), ('S_out','Fl_O:tot:S'), # ('Cp','Fl_I:tot:Cp'), # ('Cv','Fl_I:tot:Cv'), ('Rt', 'Fl_I:tot:R')], promotes_outputs=['eff_poly'] ) # Calculate shaft power consumption blds_pwr = BleedsAndPower(bleed_names=bleeds) bld_inputs = ['frac_W', 'frac_P', 'frac_work'] bld_in_vars = ['{0}:{1}'.format( bn, in_name) for bn, in_name in itertools.product(bleeds, bld_inputs)] bld_out_globs = ['{}:*'.format(bn) for bn in bleeds] self.add_subsystem('blds_pwr', blds_pwr, promotes_inputs=['Nmech', ('W_in', 'Fl_I:stat:W'), ('ht_in', 'Fl_I:tot:h'), ('Pt_in', 'Fl_I:tot:P'), ('Pt_out', 'Fl_O:tot:P'), ] + bld_in_vars, promotes_outputs=['power', 'trq', 'W_out'] + bld_out_globs) self.connect('enth_rise.ht_out', 'blds_pwr.ht_out') bleed_names = [] for BN in bleeds: bleed_names.append(BN + '_flow') bleed_flow = Thermo(mode='total_hP', fl_name=BN + ":tot", method=thermo_method, thermo_kwargs={'elements':elements, 'spec':thermo_data}) self.add_subsystem(BN + '_flow', bleed_flow, promotes_inputs=[ ('composition', 'Fl_I:tot:composition')], promotes_outputs=['{}:tot:*'.format(BN)]) self.connect(BN + ':ht', BN + "_flow.h") self.connect(BN + ':Pt', BN + "_flow.P") if statics: if design: # Calculate static properties out_stat = Thermo(mode='static_MN', fl_name='Fl_O:stat', method=thermo_method, thermo_kwargs={'elements':elements, 'spec':thermo_data}) self.add_subsystem('out_stat', out_stat, promotes_inputs=[ 'MN', ('composition', 'Fl_I:tot:composition')], promotes_outputs=['Fl_O:stat:*']) self.connect('Fl_O:tot:S', 'out_stat.S') self.connect('Fl_O:tot:h', 'out_stat.ht') self.connect('W_out', 'out_stat.W') self.connect('Fl_O:tot:P', 'out_stat.guess:Pt') self.connect('Fl_O:tot:gamma', 'out_stat.guess:gamt') else: # Calculate static properties out_stat = Thermo(mode='static_A', fl_name='Fl_O:stat', method=thermo_method, thermo_kwargs={'elements':elements, 'spec':thermo_data}) self.add_subsystem('out_stat', out_stat, promotes_inputs=[ 'area', ('composition', 'Fl_I:tot:composition')], promotes_outputs=['Fl_O:stat:*']) self.connect('Fl_O:tot:S', 'out_stat.S') self.connect('Fl_O:tot:h', 'out_stat.ht') self.connect('W_out', 'out_stat.W') self.connect('Fl_O:tot:P', 'out_stat.guess:Pt') self.connect('Fl_O:tot:gamma', 'out_stat.guess:gamt') self.set_order(['flow_in', 'corrinputs', 'map', 'press_rise','ideal_flow', 'enth_rise', 'real_flow','eff_poly_calc' ,'blds_pwr',] + bleed_names + ['out_stat']) else: self.add_subsystem('W_passthru', PassThrough('W_out', 'Fl_O:stat:W', 1.0, units="lbm/s"), promotes=['*']) self.set_order(['flow_in', 'corrinputs', 'map', 'press_rise','ideal_flow', 'enth_rise', 'real_flow','eff_poly_calc' , 'blds_pwr'] + bleed_names + ['W_passthru']) # define the group level defaults self.set_input_defaults('Fl_I:FAR', val=0., units=None) self.set_input_defaults('PR', val=2., units=None) self.set_input_defaults('eff', val=0.99, units=None)
def setup(self): thermo_method = self.options['thermo_method'] thermo_data = self.options['thermo_data'] elements = self.options['elements'] bleed_elements = self.options['bleed_elements'] map_data = self.options['map_data'] designFlag = self.options['design'] bleeds = self.options['bleed_names'] statics = self.options['statics'] interp_method = self.options['map_interp_method'] map_extrap = self.options['map_extrap'] num_element = len(elements) num_bld_element = len(bleed_elements) # Create inlet flow station in_flow = FlowIn(fl_name='Fl_I') self.add_subsystem('in_flow', in_flow, promotes_inputs=['Fl_I:*']) self.add_subsystem('corrinputs', CorrectedInputsCalc(), promotes_inputs=[ 'Nmech', ('W_in', 'Fl_I:stat:W'), ('Pt', 'Fl_I:tot:P'), ('Tt', 'Fl_I:tot:T') ], promotes_outputs=['Np', 'Wp']) turb_map = TurbineMap(map_data=map_data, design=designFlag, interp_method=interp_method, extrap=map_extrap) if designFlag: self.add_subsystem( 'map', turb_map, promotes_inputs=['Np', 'Wp', 'PR', 'eff'], promotes_outputs=['s_PR', 's_Wp', 's_eff', 's_Np']) else: self.add_subsystem( 'map', turb_map, promotes_inputs=['Np', 'Wp', 's_PR', 's_Wp', 's_eff', 's_Np'], promotes_outputs=['PR', 'eff']) # Calculate pressure drop across turbine self.add_subsystem('press_drop', PressureDrop(), promotes_inputs=['PR', ('Pt_in', 'Fl_I:tot:P')]) # Calculate ideal flow station properties ideal_flow = Thermo(mode='total_SP', method=thermo_method, thermo_kwargs={ 'elements': elements, 'spec': thermo_data }) self.add_subsystem('ideal_flow', ideal_flow, promotes_inputs=[('S', 'Fl_I:tot:S'), ('composition', 'Fl_I:tot:composition')]) self.connect("press_drop.Pt_out", "ideal_flow.P") # # Calculate enthalpy drop across turbine # self.add_subsystem("enth_drop", EnthalpyDrop(), promotes=['eff']) # self.connect("Fl_I:tot:h", "enth_drop.ht_in") # self.connect("ideal_flow.h", "enth_drop.ht_out_ideal") for BN in bleeds: bld_flow = FlowIn(fl_name=BN) self.add_subsystem(BN, bld_flow, promotes_inputs=[f'{BN}:*']) # # Calculate bleed parameters blds = BleedPressure(bleed_names=bleeds) self.add_subsystem('blds', blds, promotes_inputs=[ ('Pt_in', 'Fl_I:tot:P'), ] + [f'{BN}:frac_P' for BN in bleeds]) self.connect('press_drop.Pt_out', 'blds.Pt_out') bleed_element_list = [bleed_elements for name in bleeds] bld_mix = ThermoAdd(mix_thermo_data=thermo_data, inflow_elements=elements, mix_elements=bleed_element_list, mix_names=bleeds, mix_mode='flow') self.add_subsystem( 'bld_mix', bld_mix, promotes_inputs=['Fl_I:stat:W', 'Fl_I:tot:composition'] + [(f'{BN}:W', f'{BN}:stat:W') for BN in bleeds] + [(f'{BN}:composition', f'{BN}:tot:composition') for BN in bleeds], promotes_outputs=[('Wout', 'W_out')]) bleed_names2 = [] for BN in bleeds: # Determine bleed inflow properties bleed_names2.append(BN + '_inflow') inflow = Thermo(mode='total_hP', method=thermo_method, thermo_kwargs={ 'elements': bleed_elements, 'spec': thermo_data }) self.add_subsystem(BN + '_inflow', inflow, promotes_inputs=[('composition', BN + ":tot:composition"), ('h', BN + ':tot:h')]) self.connect(f'blds.{BN}:Pt', f'{BN}_inflow.P') # Ideally expand bleeds to exit pressure bleed_names2.append(f'{BN}_ideal') ideal = Thermo(mode='total_SP', method=thermo_method, thermo_kwargs={ 'elements': bleed_elements, 'spec': thermo_data }) self.add_subsystem(f'{BN}_ideal', ideal, promotes_inputs=[('composition', BN + ":tot:composition")]) self.connect(f"{BN}_inflow.flow:S", f"{BN}_ideal.S") self.connect("press_drop.Pt_out", f"{BN}_ideal.P") # Calculate shaft power and exit enthalpy with cooling flows production self.add_subsystem('pwr_turb', EnthalpyAndPower(bleed_names=bleeds), promotes_inputs=[ 'Nmech', 'eff', 'W_out', ('W_in', 'Fl_I:stat:W'), ('ht_in', 'Fl_I:tot:h') ] + [(BN + ':W', BN + ':stat:W') for BN in bleeds] + [(BN + ':ht', BN + ':tot:h') for BN in bleeds] + [(BN + ':ht_ideal', BN + '_ideal.h') for BN in bleeds], promotes_outputs=['power', 'trq', 'ht_out_b4bld']) self.connect('ideal_flow.h', 'pwr_turb.ht_out_ideal') # Calculate real flow station properties before bleed air is added real_flow_b4bld = Thermo(mode='total_hP', fl_name="Fl_O_b4bld:tot", method=thermo_method, thermo_kwargs={ 'elements': elements, 'spec': thermo_data }) self.add_subsystem('real_flow_b4bld', real_flow_b4bld, promotes_inputs=[('composition', 'Fl_I:tot:composition')]) self.connect('ht_out_b4bld', 'real_flow_b4bld.h') self.connect('press_drop.Pt_out', 'real_flow_b4bld.P') # Calculate Polytropic efficiency self.add_subsystem('eff_poly_calc', eff_poly_calc(), promotes_inputs=[ 'PR', ('S_in', 'Fl_I:tot:S'), ('Rt', 'Fl_I:tot:R') ], promotes_outputs=['eff_poly']) self.connect('real_flow_b4bld.Fl_O_b4bld:tot:S', 'eff_poly_calc.S_out') # Calculate real flow station properties real_flow = Thermo(mode='total_hP', fl_name="Fl_O:tot", method=thermo_method, thermo_kwargs={ 'elements': elements, 'spec': thermo_data }) self.add_subsystem('real_flow', real_flow, promotes_outputs=['Fl_O:tot:*']) self.connect("pwr_turb.ht_out", "real_flow.h") self.connect("press_drop.Pt_out", "real_flow.P") self.connect("bld_mix.composition_out", "real_flow.composition") # Calculate static properties if statics: if designFlag: # SetStaticMN out_stat = Thermo(mode='static_MN', fl_name="Fl_O:stat", method=thermo_method, thermo_kwargs={ 'elements': elements, 'spec': thermo_data }) self.add_subsystem('out_stat', out_stat, promotes_inputs=['MN'], promotes_outputs=['Fl_O:stat:*']) self.connect('bld_mix.composition_out', 'out_stat.composition') self.connect('Fl_O:tot:S', 'out_stat.S') self.connect('Fl_O:tot:h', 'out_stat.ht') self.connect('W_out', 'out_stat.W') self.connect('Fl_O:tot:P', 'out_stat.guess:Pt') self.connect('Fl_O:tot:gamma', 'out_stat.guess:gamt') else: # SetStaticArea out_stat = Thermo(mode='static_A', fl_name="Fl_O:stat", method=thermo_method, thermo_kwargs={ 'elements': elements, 'spec': thermo_data }) self.add_subsystem('out_stat', out_stat, promotes_inputs=['area'], promotes_outputs=['Fl_O:stat:*']) self.connect('bld_mix.composition_out', 'out_stat.composition') self.connect('Fl_O:tot:S', 'out_stat.S') self.connect('Fl_O:tot:h', 'out_stat.ht') self.connect('W_out', 'out_stat.W') self.connect('Fl_O:tot:P', 'out_stat.guess:Pt') self.connect('Fl_O:tot:gamma', 'out_stat.guess:gamt') self.set_order( ['in_flow', 'corrinputs', 'map', 'press_drop', 'ideal_flow'] + bleeds + ['bld_mix', 'blds'] + bleed_names2 + [ 'pwr_turb', 'real_flow_b4bld', 'eff_poly_calc', 'real_flow', 'out_stat' ]) else: self.add_subsystem('W_passthru', PassThrough('W_out', 'Fl_O:stat:W', 1.0, units="lbm/s"), promotes=['*']) self.set_order( ['in_flow', 'corrinputs', 'map', 'press_drop', 'ideal_flow'] + bleeds + ['bld_mix', 'blds'] + bleed_names2 + [ 'pwr_turb', 'real_flow_b4bld', 'eff_poly_calc', 'real_flow', 'W_passthru' ]) self.set_input_defaults('eff', val=0.99, units=None)
def setup(self): thermo_method = self.options['thermo_method'] thermo_data = self.options['thermo_data'] if self.options['inflow_thermo_data'] is not None: # Set the inflow thermodynamic data package if it is different from the outflow one inflow_thermo_data = self.options['inflow_thermo_data'] else: # Set the inflow thermodynamic data package if it is the same as the outflow one inflow_thermo_data = thermo_data inflow_elements = self.options['inflow_elements'] air_fuel_elements = self.options['air_fuel_elements'] design = self.options['design'] statics = self.options['statics'] fuel_type = self.options['fuel_type'] num_air_element = len(inflow_elements) # Create combustor flow station in_flow = FlowIn(fl_name='Fl_I') self.add_subsystem('in_flow', in_flow, promotes=['Fl_I:tot:*', 'Fl_I:stat:*']) # Perform combustor engineering calculations self.add_subsystem('mix_fuel', ThermoAdd(inflow_thermo_data=inflow_thermo_data, mix_thermo_data=thermo_data, inflow_elements=inflow_elements, mix_elements=fuel_type), promotes=[ 'Fl_I:stat:W', ('mix:ratio', 'Fl_I:FAR'), 'Fl_I:tot:composition', 'Fl_I:tot:h', ('mix:W', 'Wfuel'), 'Wout' ]) # Pressure loss prom_in = [('Pt_in', 'Fl_I:tot:P'), 'dPqP'] self.add_subsystem('p_loss', PressureLoss(), promotes_inputs=prom_in) # Calculate vitiated flow station properties vit_flow = Thermo(mode='total_hP', fl_name='Fl_O:tot', method=thermo_method, thermo_kwargs={ 'elements': air_fuel_elements, 'spec': thermo_data }) self.add_subsystem('vitiated_flow', vit_flow, promotes_outputs=['Fl_O:*']) self.connect("mix_fuel.mass_avg_h", "vitiated_flow.h") self.connect("mix_fuel.composition_out", "vitiated_flow.composition") self.connect("p_loss.Pt_out", "vitiated_flow.P") if statics: if design: # Calculate static properties. out_stat = Thermo(mode='static_MN', fl_name='Fl_O:stat', method=thermo_method, thermo_kwargs={ 'elements': air_fuel_elements, 'spec': thermo_data }) prom_in = ['MN'] prom_out = ['Fl_O:stat:*'] self.add_subsystem('out_stat', out_stat, promotes_inputs=prom_in, promotes_outputs=prom_out) self.connect("mix_fuel.composition_out", "out_stat.composition") self.connect('Fl_O:tot:S', 'out_stat.S') self.connect('Fl_O:tot:h', 'out_stat.ht') self.connect('Fl_O:tot:P', 'out_stat.guess:Pt') self.connect('Fl_O:tot:gamma', 'out_stat.guess:gamt') self.connect('Wout', 'out_stat.W') else: # Calculate static properties. out_stat = Thermo(mode='static_A', fl_name='Fl_O:stat', method=thermo_method, thermo_kwargs={ 'elements': air_fuel_elements, 'spec': thermo_data }) prom_in = ['area'] prom_out = ['Fl_O:stat:*'] self.add_subsystem('out_stat', out_stat, promotes_inputs=prom_in, promotes_outputs=prom_out) self.connect("mix_fuel.composition_out", "out_stat.composition") self.connect('Fl_O:tot:S', 'out_stat.S') self.connect('Fl_O:tot:h', 'out_stat.ht') self.connect('Fl_O:tot:P', 'out_stat.guess:Pt') self.connect('Fl_O:tot:gamma', 'out_stat.guess:gamt') self.connect('Wout', 'out_stat.W') else: self.add_subsystem('W_passthru', PassThrough('Wout', 'Fl_O:stat:W', 1.0, units="lbm/s"), promotes=['*'])
def setup(self): thermo_method = self.options['thermo_method'] thermo_data = self.options['thermo_data'] statics = self.options['statics'] design = self.options['design'] composition = self.Fl_I_data['Fl_I'] # Create inlet flowstation flow_in = FlowIn(fl_name='Fl_I') self.add_subsystem('flow_in', flow_in, promotes_inputs=('Fl_I:*', )) # Split the flows self.add_subsystem('split_calc', BPRcalc(), promotes_inputs=('BPR', ('W_in', 'Fl_I:stat:W'))) # Set Fl_out1 totals based on T, P real_flow1 = Thermo(mode='total_TP', fl_name='Fl_O1:tot', method=thermo_method, thermo_kwargs={ 'composition': composition, 'spec': thermo_data }) self.add_subsystem('real_flow1', real_flow1, promotes_inputs=(('composition', 'Fl_I:tot:composition'), ('P', 'Fl_I:tot:P'), ('T', 'Fl_I:tot:T')), promotes_outputs=('Fl_O1:tot:*', )) # Set Fl_out2 totals based on T, P real_flow2 = Thermo(mode='total_TP', fl_name='Fl_O2:tot', method=thermo_method, thermo_kwargs={ 'composition': composition, 'spec': thermo_data }) self.add_subsystem('real_flow2', real_flow2, promotes_inputs=(('composition', 'Fl_I:tot:composition'), ('P', 'Fl_I:tot:P'), ('T', 'Fl_I:tot:T')), promotes_outputs=('Fl_O2:tot:*', )) if statics: if design: # Calculate static properties out1_stat = Thermo(mode='static_MN', fl_name='Fl_O1:stat', method=thermo_method, thermo_kwargs={ 'composition': composition, 'spec': thermo_data }) prom_in = [('composition', 'Fl_I:tot:composition'), ('MN', 'MN1')] prom_out = ['Fl_O1:stat:*'] self.add_subsystem('out1_stat', out1_stat, promotes_inputs=prom_in, promotes_outputs=prom_out) self.connect('Fl_O1:tot:S', 'out1_stat.S') self.connect('Fl_O1:tot:h', 'out1_stat.ht') self.connect('Fl_O1:tot:P', 'out1_stat.guess:Pt') self.connect('Fl_O1:tot:gamma', 'out1_stat.guess:gamt') self.connect('split_calc.W1', 'out1_stat.W') out2_stat = Thermo(mode='static_MN', fl_name='Fl_O2:stat', method=thermo_method, thermo_kwargs={ 'composition': composition, 'spec': thermo_data }) prom_in = [('composition', 'Fl_I:tot:composition'), ('MN', 'MN2')] prom_out = ['Fl_O2:stat:*'] self.add_subsystem('out2_stat', out2_stat, promotes_inputs=prom_in, promotes_outputs=prom_out) self.connect('Fl_O2:tot:S', 'out2_stat.S') self.connect('Fl_O2:tot:h', 'out2_stat.ht') self.connect('Fl_O2:tot:P', 'out2_stat.guess:Pt') self.connect('Fl_O2:tot:gamma', 'out2_stat.guess:gamt') self.connect('split_calc.W2', 'out2_stat.W') else: # Calculate static properties out1_stat = Thermo(mode='static_A', fl_name='Fl_O1:stat', method=thermo_method, thermo_kwargs={ 'composition': composition, 'spec': thermo_data }) prom_in = [('composition', 'Fl_I:tot:composition'), ('area', 'area1')] prom_out = ['Fl_O1:stat:*'] self.add_subsystem('out1_stat', out1_stat, promotes_inputs=prom_in, promotes_outputs=prom_out) self.connect('Fl_O1:tot:S', 'out1_stat.S') self.connect('Fl_O1:tot:h', 'out1_stat.ht') self.connect('Fl_O1:tot:P', 'out1_stat.guess:Pt') self.connect('Fl_O1:tot:gamma', 'out1_stat.guess:gamt') self.connect('split_calc.W1', 'out1_stat.W') out2_stat = Thermo(mode='static_A', fl_name='Fl_O2:stat', method=thermo_method, thermo_kwargs={ 'composition': composition, 'spec': thermo_data }) prom_in = [('composition', 'Fl_I:tot:composition'), ('area', 'area2')] prom_out = ['Fl_O2:stat:*'] self.add_subsystem('out2_stat', out2_stat, promotes_inputs=prom_in, promotes_outputs=prom_out) self.connect('Fl_O2:tot:S', 'out2_stat.S') self.connect('Fl_O2:tot:h', 'out2_stat.ht') self.connect('Fl_O2:tot:P', 'out2_stat.guess:Pt') self.connect('Fl_O2:tot:gamma', 'out2_stat.guess:gamt') self.connect('split_calc.W2', 'out2_stat.W') else: self.add_subsystem('W1_passthru', PassThrough('split_calc_W1', 'Fl_O1:stat:W', 1.0, units="lbm/s"), promotes=['*']) self.add_subsystem('W2_passthru', PassThrough('split_calc_W2', 'Fl_O2:stat:W', 1.0, units="lbm/s"), promotes=['*']) self.connect('split_calc.W1', 'split_calc_W1') self.connect('split_calc.W2', 'split_calc_W2') super().setup()
def setup(self): design = self.options['design'] thermo_data = self.options['thermo_data'] thermo_method = self.options['thermo_method'] flow1_composition = self.Fl_I_data['Fl_I1'] in_flow = FlowIn(fl_name='Fl_I1') self.add_subsystem('in_flow1', in_flow, promotes=['Fl_I1:*']) flow2_composition = self.Fl_I_data['Fl_I1'] in_flow = FlowIn(fl_name='Fl_I2') self.add_subsystem('in_flow2', in_flow, promotes=['Fl_I2:*']) if self.options['designed_stream'] == 1: self.default_des_od_conns = [('Fl_O:stat:area', 'area'), ('Fl_I1_calc:stat:area', 'Fl_I1_stat_calc.area')] else: self.default_des_od_conns = [('Fl_O:stat:area', 'area'), ('Fl_I2_calc:stat:area', 'Fl_I2_stat_calc.area')] if design: # internal flow station to compute the area that is needed to match the static pressures if self.options['designed_stream'] == 1: Fl1_stat = Thermo(mode='static_Ps', fl_name="Fl_I1_calc:stat", method=thermo_method, thermo_kwargs={ 'composition': flow1_composition, 'spec': thermo_data }) self.add_subsystem('Fl_I1_stat_calc', Fl1_stat, promotes_inputs=[('composition', 'Fl_I1:tot:composition'), ('S', 'Fl_I1:tot:S'), ('ht', 'Fl_I1:tot:h'), ('W', 'Fl_I1:stat:W'), ('Ps', 'Fl_I2:stat:P')], promotes_outputs=['Fl_I1_calc:stat*']) self.add_subsystem('area_calc', AreaSum(), promotes_inputs=['Fl_I2:stat:area'], promotes_outputs=[('area_sum', 'area')]) self.connect('Fl_I1_calc:stat:area', 'area_calc.Fl_I1:stat:area') else: Fl2_stat = Thermo(mode='static_Ps', fl_name="Fl_I2_calc:stat", method=thermo_method, thermo_kwargs={ 'composition': flow2_composition, 'spec': thermo_data }) self.add_subsystem('Fl_I2_stat_calc', Fl2_stat, promotes_inputs=[('composition', 'Fl_I2:tot:composition'), ('S', 'Fl_I2:tot:S'), ('ht', 'Fl_I2:tot:h'), ('W', 'Fl_I2:stat:W'), ('Ps', 'Fl_I1:stat:P')], promotes_outputs=['Fl_I2_calc:stat:*']) self.add_subsystem('area_calc', AreaSum(), promotes_inputs=['Fl_I1:stat:area'], promotes_outputs=[('area_sum', 'area')]) self.connect('Fl_I2_calc:stat:area', 'area_calc.Fl_I2:stat:area') else: if self.options['designed_stream'] == 1: Fl1_stat = Thermo(mode='static_A', fl_name="Fl_I1_calc:stat", method=thermo_method, thermo_kwargs={ 'composition': flow1_composition, 'spec': thermo_data }) self.add_subsystem('Fl_I1_stat_calc', Fl1_stat, promotes_inputs=[ ('composition', 'Fl_I1:tot:composition'), ('S', 'Fl_I1:tot:S'), ('ht', 'Fl_I1:tot:h'), ('W', 'Fl_I1:stat:W'), ('guess:Pt', 'Fl_I1:tot:P'), ('guess:gamt', 'Fl_I1:tot:gamma') ], promotes_outputs=['Fl_I1_calc:stat*']) else: Fl2_stat = Thermo(mode='static_A', fl_name="Fl_I2_calc:stat", method=thermo_method, thermo_kwargs={ 'composition': flow2_composition, 'spec': thermo_data }) self.add_subsystem('Fl_I2_stat_calc', Fl2_stat, promotes_inputs=[ ('composition', 'Fl_I2:tot:composition'), ('S', 'Fl_I2:tot:S'), ('ht', 'Fl_I2:tot:h'), ('W', 'Fl_I2:stat:W'), ('guess:Pt', 'Fl_I2:tot:P'), ('guess:gamt', 'Fl_I2:tot:gamma') ], promotes_outputs=['Fl_I2_calc:stat*']) self.add_subsystem('extraction_ratio', om.ExecComp('ER=Pt1/Pt2', Pt1={'units': 'Pa'}, Pt2={'units': 'Pa'}), promotes_inputs=[('Pt1', 'Fl_I1:tot:P'), ('Pt2', 'Fl_I2:tot:P')], promotes_outputs=['ER']) self.add_subsystem('flow_add', self.flow_add, promotes_inputs=[('Fl_I:stat:W', 'Fl_I1:stat:W'), ('Fl_I:tot:composition', 'Fl_I1:tot:composition'), ('Fl_I:tot:h', 'Fl_I1:tot:h'), ('mix:W', 'Fl_I2:stat:W'), ('mix:composition', 'Fl_I2:tot:composition'), ('mix:h', 'Fl_I2:tot:h')]) if self.options['designed_stream'] == 1: self.add_subsystem('impulse_mix', MixImpulse(), promotes_inputs=[ ('Fl_I1:stat:W', 'Fl_I1_calc:stat:W'), ('Fl_I1:stat:P', 'Fl_I1_calc:stat:P'), ('Fl_I1:stat:V', 'Fl_I1_calc:stat:V'), ('Fl_I1:stat:area', 'Fl_I1_calc:stat:area'), 'Fl_I2:stat:W', 'Fl_I2:stat:P', 'Fl_I2:stat:V', 'Fl_I2:stat:area' ]) else: self.add_subsystem('impulse_mix', MixImpulse(), promotes_inputs=[ 'Fl_I1:stat:W', 'Fl_I1:stat:P', 'Fl_I1:stat:V', 'Fl_I1:stat:area', ('Fl_I2:stat:W', 'Fl_I2_calc:stat:W'), ('Fl_I2:stat:P', 'Fl_I2_calc:stat:P'), ('Fl_I2:stat:V', 'Fl_I2_calc:stat:V'), ('Fl_I2:stat:area', 'Fl_I2_calc:stat:area') ]) # group to converge for the impulse balance conv = self.add_subsystem('impulse_converge', om.Group(), promotes=['*']) if self.options['internal_solver']: newton = conv.nonlinear_solver = om.NewtonSolver() newton.options['maxiter'] = 30 newton.options['atol'] = 1e-5 newton.options['rtol'] = 1e-99 newton.options['solve_subsystems'] = True newton.options['max_sub_solves'] = 20 newton.options['reraise_child_analysiserror'] = False newton.linesearch = om.BoundsEnforceLS() newton.linesearch.options['iprint'] = -1 conv.linear_solver = om.DirectSolver() out_tot = Thermo(mode='total_hP', fl_name='Fl_O:tot', method=thermo_method, thermo_kwargs={ 'composition': flow1_composition, 'spec': thermo_data }) conv.add_subsystem('out_tot', out_tot, promotes_outputs=['Fl_O:tot:*']) self.connect('flow_add.composition_out', 'out_tot.composition') self.connect('flow_add.mass_avg_h', 'out_tot.h') # note: gets Pt from the balance comp out_stat = Thermo(mode='static_A', fl_name='Fl_O:stat', method=thermo_method, thermo_kwargs={ 'composition': flow1_composition, 'spec': thermo_data }) conv.add_subsystem('out_stat', out_stat, promotes_outputs=['Fl_O:stat:*'], promotes_inputs=[ 'area', ]) self.connect('flow_add.composition_out', 'out_stat.composition') self.connect('flow_add.Wout', 'out_stat.W') conv.connect('Fl_O:tot:S', 'out_stat.S') self.connect('flow_add.mass_avg_h', 'out_stat.ht') conv.connect('Fl_O:tot:P', 'out_stat.guess:Pt') conv.connect('Fl_O:tot:gamma', 'out_stat.guess:gamt') conv.add_subsystem('imp_out', Impulse()) conv.connect('Fl_O:stat:P', 'imp_out.P') conv.connect('Fl_O:stat:area', 'imp_out.area') conv.connect('Fl_O:stat:V', 'imp_out.V') conv.connect('Fl_O:stat:W', 'imp_out.W') balance = conv.add_subsystem('balance', om.BalanceComp()) balance.add_balance('P_tot', val=100, units='psi', eq_units='N', lower=1e-3, upper=10000) conv.connect('balance.P_tot', 'out_tot.P') conv.connect('imp_out.impulse', 'balance.lhs:P_tot') self.connect( 'impulse_mix.impulse_mix', 'balance.rhs:P_tot' ) #note that this connection comes from outside the convergence group super().setup()
def setup(self): thermo_method = self.options['thermo_method'] thermo_data = self.options['thermo_data'] elements = self.options['elements'] statics = self.options['statics'] design = self.options['design'] expMN = self.options['expMN'] num_element = len(elements) # Create inlet flowstation flow_in = FlowIn(fl_name='Fl_I') self.add_subsystem('flow_in', flow_in, promotes=['Fl_I:tot:*', 'Fl_I:stat:*']) if expMN > 1e-10: # Calcluate pressure losses as function of Mach number if design: self.add_subsystem( 'dPqP_MN', MachPressureLossMap(design=design, expMN=expMN), promotes_inputs=['dPqP', ('MN_in', 'Fl_I:stat:MN')], promotes_outputs=['s_dPqP']) else: self.add_subsystem( 'dPqP_MN', MachPressureLossMap(design=design, expMN=expMN), promotes_inputs=['s_dPqP', ('MN_in', 'Fl_I:stat:MN')], promotes_outputs=['dPqP']) #Pressure Loss Component prom_in = [('Pt_in', 'Fl_I:tot:P'), 'dPqP'] self.add_subsystem('p_loss', PressureLoss(), promotes_inputs=prom_in) # Energy Calc Component prom_in = [('W_in', 'Fl_I:stat:W'), ('ht_in', 'Fl_I:tot:h'), 'Q_dot'] self.add_subsystem('q_calc', qCalc(), promotes_inputs=prom_in) # Total Calc real_flow = Thermo(mode='total_hP', fl_name='Fl_O:tot', method=thermo_method, thermo_kwargs={ 'elements': elements, 'spec': thermo_data }) prom_in = [('composition', 'Fl_I:tot:composition')] self.add_subsystem('real_flow', real_flow, promotes_inputs=prom_in, promotes_outputs=['Fl_O:*']) self.connect("q_calc.ht_out", "real_flow.h") self.connect("p_loss.Pt_out", "real_flow.P") if statics: if design: # Calculate static properties out_stat = Thermo(mode='static_MN', fl_name='Fl_O:stat', method=thermo_method, thermo_kwargs={ 'elements': elements, 'spec': thermo_data }) prom_in = [('composition', 'Fl_I:tot:composition'), ('W', 'Fl_I:stat:W'), 'MN'] prom_out = ['Fl_O:stat:*'] self.add_subsystem('out_stat', out_stat, promotes_inputs=prom_in, promotes_outputs=prom_out) self.connect('Fl_O:tot:S', 'out_stat.S') self.connect('Fl_O:tot:h', 'out_stat.ht') self.connect('Fl_O:tot:P', 'out_stat.guess:Pt') self.connect('Fl_O:tot:gamma', 'out_stat.guess:gamt') else: # Calculate static properties out_stat = Thermo(mode='static_A', fl_name='Fl_O:stat', method=thermo_method, thermo_kwargs={ 'elements': elements, 'spec': thermo_data }) prom_in = [('composition', 'Fl_I:tot:composition'), ('W', 'Fl_I:stat:W'), 'area'] prom_out = ['Fl_O:stat:*'] self.add_subsystem('out_stat', out_stat, promotes_inputs=prom_in, promotes_outputs=prom_out) self.connect('Fl_O:tot:S', 'out_stat.S') self.connect('Fl_O:tot:h', 'out_stat.ht') self.connect('Fl_O:tot:P', 'out_stat.guess:Pt') self.connect('Fl_O:tot:gamma', 'out_stat.guess:gamt') else: self.add_subsystem('W_passthru', PassThrough('Fl_I:stat:W', 'Fl_O:stat:W', 1.0, units="lbm/s"), promotes=['*'])
def setup(self): self.add_subsystem('cooling_calcs', CoolingCalcs(n_stages=self.options['n_stages'], i_row=self.options['i_row'], T_safety=self.options['T_safety'], T_metal=self.options['T_metal']), promotes_inputs=[ 'Pt_in', 'Pt_out', 'W_primary', 'Tt_primary', 'Tt_cool', 'ht_primary', 'ht_cool', 'x_factor', 'turb_pwr' ], promotes_outputs=['W_cool']) consts = self.add_subsystem( 'consts', om.IndepVarComp()) # values that should not be changed ever consts.add_output('bld_frac_P', val=1) # self.add_subsystem('mix_n', Bleeds(thermo_data=self.options['thermo_data'], # main_flow_elements=AIR_FUEL_ELEMENTS, # bld_flow_elements=AIR_ELEMENTS, # bleed_names=['cool'] # ), # promotes_inputs=['Pt_in', 'Pt_out', ('W_in','W_primary'), ('n_in', 'n_primary'), ('cool:n', 'n_cool')], # promotes_outputs=['W_out']) self.add_subsystem( 'mix_n', ThermoAdd(mix_thermo_data=self.options['thermo_data'], inflow_elements=AIR_FUEL_ELEMENTS, mix_mode='flow', mix_elements=AIR_ELEMENTS, mix_names='cool'), promotes_inputs=[('Fl_I:stat:W', 'W_primary'), ('Fl_I:tot:composition', 'composition_primary'), 'cool:composition'], promotes_outputs=[ ('Wout', 'W_out'), ]) mixed_flow = Thermo(mode='total_hP', fl_name='Fl_O:tot', method='CEA', thermo_kwargs={ 'elements': AIR_FUEL_ELEMENTS, 'spec': self.options['thermo_data'] }) self.add_subsystem('mixed_flow', mixed_flow, promotes_outputs=['Fl_O:tot:*']) # promoted # self.connect('', 'mix_n.Pt_in') # self.connect('', 'mix_n.Pt_out') # self.connect('', 'mix_n.W_primary') # self.connect('', 'mix_n.n_in') # self.connect('', 'mix_n.cool:n') self.connect('W_cool', 'mix_n.cool:W') # self.connect('consts.bld_frac_P', 'mix_n.cool:frac_P') self.connect('mix_n.composition_out', 'mixed_flow.composition') self.connect('cooling_calcs.ht_out', 'mixed_flow.h') self.connect('cooling_calcs.Pt_stage', 'mixed_flow.P')