예제 #1
0
 def _process_values(self, input_data: typing.Any) -> "DictStrAny":
     pk_only = input_data.pop("__pk_only__", False)
     if pk_only:
         v, _ = pydantic.validate_model(self, input_data, raise_exc=False)
     else:
         v = pydantic.validate_model(self, input_data)
     return v
예제 #2
0
def test_return_errors_ok():
    class Model(BaseModel):
        foo: int
        bar: List[int]

    assert validate_model(Model, {'foo': '123', 'bar': (1, 2, 3)}) == {'foo': 123, 'bar': [1, 2, 3]}
    d, e = validate_model(Model, {'foo': '123', 'bar': (1, 2, 3)}, False)
    assert d == {'foo': 123, 'bar': [1, 2, 3]}
    assert e is None
예제 #3
0
    def dump(self, data: ModelT, file: Union[BufferedWriter, Path, str], *args, **kwargs):
        validate_model(data.__class__, data.__dict__)

        if isinstance(file, str):
            file = Path(file)

        if isinstance(file, Path):
            file = file.open(mode='wb')

        return self._dump(data, file, *args, **kwargs)
예제 #4
0
def test_return_errors_error():
    class Model(BaseModel):
        foo: int
        bar: List[int]

    d, e = validate_model(Model, {'foo': '123', 'bar': (1, 2, 'x')}, False)
    assert d == {'foo': 123}
    assert e.errors() == [{'loc': ('bar', 2), 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}]

    d, e = validate_model(Model, {'bar': (1, 2, 3)}, False)
    assert d == {'bar': [1, 2, 3]}
    assert e.errors() == [{'loc': ('foo',), 'msg': 'field required', 'type': 'value_error.missing'}]
예제 #5
0
파일: metadata.py 프로젝트: zitryss/pypads
    def validate(self, include=None):
        """
        Validate the current object.
        :param include: Only validate on given parameters
        :return:
        """
        cls, obj = self._decompose_class()

        # Disable validation for unneeded fields by deleting fields in a dummy class
        if include is not None:

            class ReducedClass(cls, BaseModel):
                pass

            cls = ReducedClass
            cls.__fields__ = {
                k: v
                for k, v in cls.__fields__.items() if k in include
            }
        # Todo stop supporting pydantic < 1.7
        if VERSION >= '1.7':
            defaults = {k: v.get_default() for k, v in cls.__fields__.items()}
        else:
            defaults = cls.__field_defaults__
        return validate_model(
            cls, {
                **deepcopy(defaults),
                **{
                    k: obj[k]
                    for k in obj.keys() if include is None or k in include
                }
            })
예제 #6
0
    def __init__(self, **kwargs) -> None:

        cls = self.__class__

        if cls._model is None:
            cls._model = self._create_model()
            # might be needed in the future due to postponed annotations
            # cls._model.update_forward_refs()

        if hasattr(cls, '__fields__'):
            AmpelBaseModel.__init__(self)  # type: ignore[arg-type]

        vres = validate_model(cls._model, kwargs)  # type: ignore[arg-type]
        self._exclude_unset = self._defaults.keys() - kwargs.keys()

        # pydantic ValidationError
        if e := vres[2]:
            # https://github.com/samuelcolvin/pydantic/issues/784
            print("")
            if kwargs:
                print("#" * 60)
                print("Offending values:")
                for k, v in kwargs.items():
                    print(f"{k}: {v}")
                print("#" * 60)
            raise TypeError(e) from None
예제 #7
0
def validate_object(obj: BaseModel, is_request: bool = True):
    *_, validation_error = validate_model(obj.__class__, obj.__dict__)
    if validation_error:
        if is_request:
            raise RequestValidationError(validation_error.raw_errors)

        raise validation_error
예제 #8
0
async def parse_request_ignore_missing(request,
                                       model: Type[T],
                                       *,
                                       headers_=None) -> T:
    try:
        raw_data = await request.json()
    except ValueError:
        raise JsonErrors.HTTPBadRequest(message='Error decoding JSON',
                                        headers_=headers_)
    if not isinstance(raw_data, dict):
        raise JsonErrors.HTTPBadRequest(message='data not a dictionary',
                                        headers_=headers_)

    data, fields_set, e = validate_model(model, raw_data)
    if e:
        errors = [
            e for e in e.errors()
            if not (e['type'] == 'value_error.missing' and len(e['loc']) == 1)
        ]
        if errors:
            raise JsonErrors.HTTPBadRequest(message='Invalid Data',
                                            details=errors,
                                            headers_=headers_)

    return model.construct(_fields_set=fields_set, **data)
예제 #9
0
def update_todo(
    *,
    user_id: int,
    todo_id: int,
    todo_service: todo.TodoService,
    updates: typing.Dict[str, typing.Any],
) -> response.TodoResponse:
    original_todo = todo_service.get_by_id(user_id=user_id, todo_id=todo_id)
    if original_todo:
        data = original_todo.dict()
        data.update(updates)
        _, _, errors = pydantic.validate_model(todo.Todo, data)
        if errors:
            raise fastapi.HTTPException(
                status_code=fastapi.status.HTTP_400_BAD_REQUEST,
                detail=errors.json(),
            )

        updated_todo = original_todo.copy(update=updates)
        updated_todo_from_db = todo_service.update_todo(user_id=user_id,
                                                        todo=updated_todo)
        return response.TodoResponse.from_domain(updated_todo_from_db)
    else:
        raise fastapi.HTTPException(
            status_code=fastapi.status.HTTP_404_NOT_FOUND,
            detail="Todo does not exist.")
예제 #10
0
    async def get_model_from_json_data(
            cls, request: Request) -> Tuple[STATUS_CODE, REASON, MODEL_DATA]:
        json_data = await request.json()

        _, _, data = await CourierIdRequest.get_model_from_json_data(
            request=request)
        #  400 быть не может так как там рейс

        values, _, error = validate_model(cls, json_data)

        if error is not None:
            return (
                web.HTTPBadRequest.status_code,
                web.HTTPBadRequest().reason,
                cls.error_handler(validation_error=error),
            )

        return (
            web.HTTPOk.status_code,
            web.HTTPOk().reason,
            cls.success_handler({
                "new_data": values,
                "courier_id": data
            }),
        )
예제 #11
0
def validate_taskdata_entry(value: dict):
    """ Validate taskdata entry """
    if not isinstance(value, dict):
        raise ValidationError("taskdata entry should be dict", TaskDataEntry())

    *_, validation_error = validate_model(TaskDataEntry, value)
    if validation_error:
          raise validation_error
예제 #12
0
 def validate_again(self) -> None:
     """
     Use to manually validate for debugging when fields change
     """
     _, _, validation_error = pydantic.validate_model(
         type(self), self.dict())
     if validation_error:
         raise validation_error
예제 #13
0
    def check(self, return_new=False):
        self.__class__.validate(self)
        out_dict, _, validation_error = validate_model(self.__class__, self.__dict__)
        if validation_error:
            raise validation_error

        # For compatibility with tests
        if return_new:
            return self.__class__(**out_dict)
예제 #14
0
    def from_pandas_df(cls, df: pd.DataFrame) -> 'PandasModel':
        obj = df.to_dict(orient="list")
        m = cls.__new__(cls)
        values, fields_set, validation_error = validate_model(cls, obj)
        if validation_error:
            raise validation_error
        object.__setattr__(m, '__dict__', values)
        object.__setattr__(m, '__fields_set__', fields_set)

        return m
예제 #15
0
    def _get_object_model(cls, obj_data: dict) -> "ModelSchema":
        values, fields_set, validation_error = validate_model(cls, obj_data)
        if validation_error:  # pragma: nocover
            raise validation_error

        model_schema = cls.__new__(cls)
        object.__setattr__(model_schema, "__dict__", values)
        object.__setattr__(model_schema, "__fields_set__", fields_set)

        return model_schema
예제 #16
0
 def validate_all(cls, value: dict) -> Any:
     """ Validate kwargs values against all fields of cls """
     if cls._model is None:
         model = cls._model = cls._create_model()
     else:
         model = cls._model
     values, fields, errors = validate_model(model, value)
     if errors:
         raise TypeError(errors) from None
     return values
예제 #17
0
파일: config.py 프로젝트: samcom12/TorchSWE
    def check(self):
        """Manually trigger the validation of the data in this instance."""
        _, _, validation_error = validate_model(self.__class__, self.__dict__)

        if validation_error:
            raise validation_error

        for field in self.__dict__.values():
            if isinstance(field, BaseConfig):
                field.check()
예제 #18
0
    async def get_model_from_json_data(
            cls, json_data: dict) -> Tuple[STATUS_CODE, REASON, dict]:
        values, fields_set, error = validate_model(cls, json_data)
        if error is not None:
            raise web.HTTPBadRequest

        return (
            web.HTTPOk.status_code,
            web.HTTPOk().reason,
            cls.success_handler(values),
        )
예제 #19
0
    async def get_model_from_json_data(
        cls, request: Request
    ) -> Union[Tuple[STATUS_CODE, REASON, MODEL_DATA], NoReturn]:
        values, _, error = validate_model(
            cls, {"id": request.match_info.get("courier_id")})

        if error is not None:
            raise web.HTTPBadRequest

        return web.HTTPOk.status_code, web.HTTPOk(
        ).reason, cls.success_handler(values)
예제 #20
0
    def check(self):
        for field_name, field_props in self.__fields__.items():
            field = getattr(self, field_name)
        if isinstance(field, BaseNetModel):
            field.check()
        elif isinstance(field, list):
            [x.check() for x in field if isinstance(x, BaseNetModel)]
        elif isinstance(field, dict):
            [v.check() for k,v in field.items() if isinstance(v, BaseNetModel)]

        *_, validation_error = validate_model(self.__class__, self.__dict__)
        if validation_error:
            raise validation_error
예제 #21
0
    def __init__(self, **data):
        if "pk" in data:
            data[self.Mapping.pk_name] = data.pop("pk")

        if typing.TYPE_CHECKING:
            self.__values__: Dict[str, Any] = {}
            self.__fields_set__: "SetStr" = set()

        pk_only = data.pop("__pk_only__", False)
        values, fields_set, _ = pydantic.validate_model(
            self, data, not pk_only)

        object.__setattr__(self, "__dict__", values)
        object.__setattr__(self, "__fields_set__", fields_set)
예제 #22
0
    def __init__(self, **data):
        if "pk" in data:
            data[self.Mapping.pk_name] = data.pop("pk")

        if typing.TYPE_CHECKING:
            self.__dict__: typing.Dict[str, typing.Any] = {}
            self.__fields_set__: typing.Set[str] = set()

        pk_only = data.pop("__pk_only__", False)
        values, fields_set, error = pydantic.validate_model(self, data)
        if not pk_only and error:
            raise error

        object.__setattr__(self, "__dict__", values)
        object.__setattr__(self, "__fields_set__", fields_set)
예제 #23
0
    def test_initial_sequential_build(self):
        config_map = ClientConfigAdapter(
            AvellanedaMarketMakingConfigMap.construct())
        config_settings = self.get_default_map()

        def build_config_map(cm: ClientConfigAdapter, cs: Dict):
            """This routine can be used in the create command, with slight modifications."""
            for key in cm.keys():
                client_data = cm.get_client_data(key)
                if client_data is not None and client_data.prompt_on_new:
                    self.assertIsInstance(client_data.prompt(cm), str)
                    if key == "execution_timeframe_model":
                        setattr(cm, key,
                                "daily_between_times")  # simulate user input
                    else:
                        setattr(cm, key, cs[key])
                    new_value = getattr(cm, key)
                    if isinstance(new_value, ClientConfigAdapter):
                        build_config_map(new_value, cs[key])

        build_config_map(config_map, config_settings)
        hb_config = config_map.hb_config
        validate_model(hb_config.__class__, hb_config.__dict__)
        self.assertEqual(0, len(config_map.validate_model()))
예제 #24
0
    def __init__(self, *args: Any, **kwargs: Any) -> None:  # type: ignore

        object.__setattr__(self, "_orm_id", uuid.uuid4().hex)
        object.__setattr__(self, "_orm_saved", False)
        object.__setattr__(
            self,
            "_orm",
            RelationsManager(
                related_fields=[
                    field
                    for name, field in self.Meta.model_fields.items()
                    if issubclass(field, ForeignKeyField)
                ],
                owner=self,
            ),
        )

        pk_only = kwargs.pop("__pk_only__", False)
        if "pk" in kwargs:
            kwargs[self.Meta.pkname] = kwargs.pop("pk")
        # build the models to set them and validate but don't register
        new_kwargs = {
            k: self._convert_json(
                k,
                self.Meta.model_fields[k].expand_relationship(
                    v, self, to_register=False
                ),
                "dumps",
            )
            for k, v in kwargs.items()
        }

        values, fields_set, validation_error = pydantic.validate_model(
            self, new_kwargs  # type: ignore
        )
        if validation_error and not pk_only:
            raise validation_error

        object.__setattr__(self, "__dict__", values)
        object.__setattr__(self, "__fields_set__", fields_set)

        # register the columns models after initialization
        for related in self.extract_related_names():
            self.Meta.model_fields[related].expand_relationship(
                new_kwargs.get(related), self, to_register=True
            )
예제 #25
0
 def __init__(__pydantic_self__, **data):
     if typing.TYPE_CHECKING:
         __pydantic_self__.__dict__: typing.Dict[str, typing.Any] = {}
         __pydantic_self__.__fields_set__: "SetStr" = set()
     values, fields_set, validation_error = validate_model(
         __pydantic_self__.__class__, data)
     if validation_error:
         _fields = list()
         errors = validation_error.errors()
         for each_error in errors:
             _fields.append(
                 Field(
                     name=each_error.get("loc")[0],
                     message=each_error.get("msg"),
                     error_type=each_error.get("type"),
                 ))
         raise ValidationError(_fields)
     object.__setattr__(__pydantic_self__, "__dict__", values)
     object.__setattr__(__pydantic_self__, "__fields_set__", fields_set)
예제 #26
0
async def update_orm(model: Type[BaseModel],
                     orm_obj: models.Model,
                     input: BaseModel,
                     *,
                     access: Optional[Access] = None) -> BaseModel:
    """
    Apply (partial) changes given in `input` to an orm_obj and return an instance of `model` with the full data of the orm including the updated fields.
    """
    warnings.warn(
        "Use transfer_to_orm with exclude_unset=True instead of this function",
        category=DeprecationWarning)

    if access:
        check_field_access(input, access)

    data = await model.from_orm(orm_obj)
    input_dict: dict = input.dict(exclude_unset=True)

    def update(model: BaseModel, input: dict):
        for key, value in input.items():
            if isinstance(value, dict):
                attr = getattr(model, key)
                if attr is None:
                    setattr(model, key,
                            model.__fields__[key].type_.parse_obj(value))

                else:
                    update(attr, value)

            else:
                setattr(model, key, value)

    update(data, input_dict)

    values, fields_set, validation_error = validate_model(model, data.dict())
    if validation_error:
        raise RequestValidationError(validation_error.raw_errors)

    transfer_to_orm(data, orm_obj)
    return data
예제 #27
0
    def from_django(
        cls: Type["PydanticDjangoModel"],
        instance: django.db.models.Model,
        cache: bool = True,
        save: bool = False,
    ) -> Type["PydanticDjangoModel"]:

        obj_data = {}
        for field in instance._meta.get_fields():
            if not field.concrete and field.auto_created:
                accessor_name = field.get_accessor_name()
                if field.one_to_many:
                    obj_data[accessor_name] = list(
                        getattr(instance, accessor_name).all().values("pk")
                    )
                elif field.one_to_one:
                    _obj = getattr(instance, accessor_name, None)
                    if _obj:
                        obj_data[accessor_name] = _obj.pk
            else:
                obj_data[field.name] = field.value_from_object(instance)

        values, fields_set, validation_error = validate_model(cls, obj_data)
        if validation_error:
            raise validation_error

        p_model = cls.__new__(cls)
        object.__setattr__(p_model, "__dict__", values)
        object.__setattr__(p_model, "__fields_set__", fields_set)

        if save:
            instance.save()
        if cache:
            cls.instance = instance

        return p_model
예제 #28
0
    def __init__(self, *args: Any, **kwargs: Any) -> None:  # type: ignore
        """
        Initializer that creates a new ormar Model that is also pydantic Model at the
        same time.

        Passed keyword arguments can be only field names and their corresponding values
        as those will be passed to pydantic validation that will complain if extra
        params are passed.

        If relations are defined each relation is expanded and children models are also
        initialized and validated. Relation from both sides is registered so you can
        access related models from both sides.

        Json fields are automatically loaded/dumped if needed.

        Models marked as abstract=True in internal Meta class cannot be initialized.

        Accepts also special __pk_only__ flag that indicates that Model is constructed
        only with primary key value (so no other fields, it's a child model on other
        Model), that causes skipping the validation, that's the only case when the
        validation can be skipped.

        Accepts also special __excluded__ parameter that contains a set of fields that
        should be explicitly set to None, as otherwise pydantic will try to populate
        them with their default values if default is set.

        :raises ModelError: if abstract model is initialized, model has ForwardRefs
         that has not been updated or unknown field is passed
        :param args: ignored args
        :type args: Any
        :param kwargs: keyword arguments - all fields values and some special params
        :type kwargs: Any
        """
        self._verify_model_can_be_initialized()
        object.__setattr__(self, "_orm_id", uuid.uuid4().hex)
        object.__setattr__(self, "_orm_saved", False)
        object.__setattr__(self, "_pk_column", None)
        object.__setattr__(
            self,
            "_orm",
            RelationsManager(
                related_fields=self.extract_related_fields(),
                owner=self,
            ),
        )

        pk_only = kwargs.pop("__pk_only__", False)
        excluded: Set[str] = kwargs.pop("__excluded__", set())

        if "pk" in kwargs:
            kwargs[self.Meta.pkname] = kwargs.pop("pk")

        # build the models to set them and validate but don't register
        # also remove property fields values from validation
        try:
            new_kwargs: Dict[str, Any] = {
                k: self._convert_json(
                    k,
                    self.Meta.model_fields[k].expand_relationship(
                        v,
                        self,
                        to_register=False,
                    ),
                    "dumps",
                )
                for k, v in kwargs.items() if k not in object.__getattribute__(
                    self, "Meta").property_fields
            }
        except KeyError as e:
            raise ModelError(
                f"Unknown field '{e.args[0]}' for model {self.get_name(lower=False)}"
            )

        # explicitly set None to excluded fields
        # as pydantic populates them with default if set
        for field_to_nullify in excluded:
            new_kwargs[field_to_nullify] = None

        values, fields_set, validation_error = pydantic.validate_model(
            self,
            new_kwargs  # type: ignore
        )
        if validation_error and not pk_only:
            raise validation_error

        object.__setattr__(self, "__dict__", values)
        object.__setattr__(self, "__fields_set__", fields_set)

        # register the columns models after initialization
        for related in self.extract_related_names():
            self.Meta.model_fields[related].expand_relationship(
                new_kwargs.get(related),
                self,
                to_register=True,
            )
예제 #29
0
    def __init__(self, *args: Any, **kwargs: Any) -> None:  # type: ignore
        """
        Initializer that creates a new ormar Model that is also pydantic Model at the
        same time.

        Passed keyword arguments can be only field names and their corresponding values
        as those will be passed to pydantic validation that will complain if extra
        params are passed.

        If relations are defined each relation is expanded and children models are also
        initialized and validated. Relation from both sides is registered so you can
        access related models from both sides.

        Json fields are automatically loaded/dumped if needed.

        Models marked as abstract=True in internal Meta class cannot be initialized.

        Accepts also special __pk_only__ flag that indicates that Model is constructed
        only with primary key value (so no other fields, it's a child model on other
        Model), that causes skipping the validation, that's the only case when the
        validation can be skipped.

        Accepts also special __excluded__ parameter that contains a set of fields that
        should be explicitly set to None, as otherwise pydantic will try to populate
        them with their default values if default is set.

        :raises ModelError: if abstract model is initialized, model has ForwardRefs
         that has not been updated or unknown field is passed
        :param args: ignored args
        :type args: Any
        :param kwargs: keyword arguments - all fields values and some special params
        :type kwargs: Any
        """
        self._verify_model_can_be_initialized()
        self._initialize_internal_attributes()

        pk_only = kwargs.pop("__pk_only__", False)
        object.__setattr__(self, "__pk_only__", pk_only)

        new_kwargs, through_tmp_dict = self._process_kwargs(kwargs)

        values, fields_set, validation_error = pydantic.validate_model(
            self, new_kwargs  # type: ignore
        )
        if validation_error and not pk_only:
            raise validation_error

        object.__setattr__(self, "__dict__", values)
        object.__setattr__(self, "__fields_set__", fields_set)

        # add back through fields
        new_kwargs.update(through_tmp_dict)
        model_fields = object.__getattribute__(self, "Meta").model_fields
        # register the columns models after initialization
        for related in self.extract_related_names().union(self.extract_through_names()):
            model_fields[related].expand_relationship(
                new_kwargs.get(related), self, to_register=True,
            )

        if hasattr(self, "_init_private_attributes"):
            # introduced in pydantic 1.7
            self._init_private_attributes()
예제 #30
0
 def validate(cls, value: dict) -> Any:
     """ Validate kwargs values against fields of cls (except traceless) """
     values, fields, errors = validate_model(cls._create_model(True), value)
     if errors:
         raise TypeError(errors) from None
     return values