def test_learn_word_vectors_from_char_vector_sequence(self): text = "please learn how to infer word vectors from sequences of character vectors" index_to_word = list(set(text.split())) index_to_char = list(set(text)) word_to_index = { word: index for index, word in enumerate(index_to_word) } char_to_index = { word: index for index, word in enumerate(index_to_char) } def to_char_vector_sequence(word): sequence = [] for char in word: vector = np.ones(len(char_to_index)) * -1 vector[char_to_index[char]] = 1 sequence.append(vector) sequence.append(np.zeros(len(char_to_index))) return np.asarray(sequence) def to_word_vector(word): vector = np.ones(len(word_to_index)) * -1 vector[word_to_index[word]] = 1 return vector training_data = [(to_char_vector_sequence(word), to_word_vector(word)) for word in text.split()] n = NoOutputLstm(len(index_to_char), len(index_to_word)) for i in range(1000): for char_vectors, word_vector in training_data: intermediate_results = {} h_last = n.forward_prop(char_vectors, np.zeros(len(index_to_word)), intermediate_results) n.back_prop(ce_err_prime(h_last, word_vector), intermediate_results) n.train(0.1, intermediate_results) if i % 200 == 0: total_err = 0 for char_vectors, word_vector in training_data: h = n.activate(char_vectors, np.zeros(len(index_to_word))) total_err += mathutils.mean_squared_error(h, word_vector) print((total_err / len(training_data))) result = n.activate(to_char_vector_sequence("infer"), np.zeros(len(index_to_word))) self.assertEquals("infer", index_to_word[np.argmax(result)])
def test_learn_word_vectors_from_char_vector_sequence(self): text = "please learn how to infer word vectors from sequences of character vectors" index_to_word = list(set(text.split())) index_to_char = list(set(text)) word_to_index = {word: index for index, word in enumerate(index_to_word)} char_to_index = {word: index for index, word in enumerate(index_to_char)} def to_char_vector_sequence(word): sequence = [] for char in word: vector = np.ones(len(char_to_index)) * -1 vector[char_to_index[char]] = 1 sequence.append(vector) sequence.append(np.zeros(len(char_to_index))) return np.asarray(sequence) def to_word_vector(word): vector = np.ones(len(word_to_index)) * -1 vector[word_to_index[word]] = 1 return vector training_data = [(to_char_vector_sequence(word), to_word_vector(word)) for word in text.split()] n = NoOutputLstm(len(index_to_char), len(index_to_word)) for i in range(1000): for char_vectors, word_vector in training_data: intermediate_results = {} h_last = n.forward_prop(char_vectors, np.zeros(len(index_to_word)), intermediate_results) n.back_prop(ce_err_prime(h_last, word_vector), intermediate_results) n.train(0.1, intermediate_results) if i % 200 == 0: total_err = 0 for char_vectors, word_vector in training_data: h = n.activate(char_vectors, np.zeros(len(index_to_word))) total_err += mathutils.mean_squared_error(h, word_vector) print(total_err/len(training_data)) result = n.activate(to_char_vector_sequence("infer"), np.zeros(len(index_to_word))) self.assertEquals("infer", index_to_word[np.argmax(result)])
def test_learn_word_vectors_from_char_vector_sequence_2(self): text = "please learn how to infer word vectors from sequences of character vectors" \ "giving it more words to try and confuse it" \ "how evil" \ "much diabolical" \ "many genius" \ "the doge of venice gives his regards" index_to_word = list(set(text.split())) index_to_char = list(set(text)) word_to_index = {word: index for index, word in enumerate(index_to_word)} char_to_index = {word: index for index, word in enumerate(index_to_char)} def to_char_vector_sequence(word): sequence = [] for char in word: vector = np.ones(len(char_to_index)) * -1 vector[char_to_index[char]] = 1 sequence.append(vector) sequence.append(np.zeros(len(char_to_index))) return np.asarray(sequence) def to_word_vector(word): vector = np.ones(len(word_to_index)) * -1 vector[word_to_index[word]] = 1 return vector hidden_size = 50 training_data = [(to_char_vector_sequence(word), to_word_vector(word)) for word in text.split()] lstm = NoOutputLstm(len(index_to_char), hidden_size) ffn = FeedForwardNetwork([hidden_size, len(index_to_word)]) h0 = np.random.uniform(-1, 1, size=hidden_size) learning_rate = 5 for i in range(2000): for char_vectors, word_vector in training_data: hs, f_gs, i_gs, cs, h = lstm.forward_prop(char_vectors, h0) res = {} y = ffn.forward_prop(h, res) dy = mathutils.mean_squared_error(y, word_vector) dx = ffn.dx(h, dy, res) ffn.train(learning_rate, h, dy, res) dh = dx dw_xf_g, dw_hf_g, db_f_g, dw_xi_g, dw_hi_g, db_i_g, dw_xc, dw_hc, db_c = lstm.back_prop(char_vectors, hs, f_gs, i_gs, cs, dh) lstm.w_xf_g -= dw_xf_g * learning_rate lstm.w_hf_g -= dw_hf_g * learning_rate lstm.b_f_g -= db_f_g * learning_rate lstm.w_xi_g -= dw_xi_g * learning_rate lstm.w_hi_g -= dw_hi_g * learning_rate lstm.b_i_g -= db_i_g * learning_rate lstm.w_xc -= dw_xc * learning_rate lstm.w_hc -= dw_hc * learning_rate lstm.b_c -= db_c * learning_rate if i % 200 == 0: total_err = 0 for char_vectors, word_vector in training_data: h = lstm.activate(char_vectors, h0) y = ffn.forward_prop(h, {}) total_err += mathutils.mean_squared_error(y, word_vector) print(total_err/len(training_data)) h = lstm.activate(to_char_vector_sequence("infer"), h0) y = ffn.forward_prop(h, {}) self.assertEquals("infer", index_to_word[np.argmax(y)])
def test_learn_word_vectors_from_char_vector_sequence(self): text = "please learn how to infer word vectors from sequences of character vectors" index_to_word = list(set(text.split())) index_to_char = list(set(text)) word_to_index = {word: index for index, word in enumerate(index_to_word)} char_to_index = {word: index for index, word in enumerate(index_to_char)} def to_char_vector_sequence(word): sequence = [] for char in word: vector = np.ones(len(char_to_index)) * -1 vector[char_to_index[char]] = 1 sequence.append(vector) sequence.append(np.zeros(len(char_to_index))) return np.asarray(sequence) def to_word_vector(word): vector = np.ones(len(word_to_index)) * -1 vector[word_to_index[word]] = 1 return vector training_data = [(to_char_vector_sequence(word), to_word_vector(word)) for word in text.split()] # hidden_size = 100 hidden_size = len(index_to_word) lstm = NoOutputLstm(len(index_to_char), hidden_size) ffn = FeedForwardNetwork([hidden_size, 50, 20, len(index_to_word)]) h0 = np.random.uniform(-1, 1, size=hidden_size) learning_rate = 0.5 for i in range(1000): for char_vectors, word_vector in training_data: hs, f_gs, i_gs, cs, lstm_output = lstm.forward_prop(char_vectors, h0) res = {} y = ffn.forward_prop(lstm_output, res) # dy = mathutils.mean_squared_error_prime(y, word_vector) dy = mathutils.mean_squared_error_prime(lstm_output, word_vector) dx = ffn.dx(lstm_output, dy, res) ffn.train(learning_rate, lstm_output, dy, res) # dw_xf_g, dw_hf_g, db_f_g, dw_xi_g, dw_hi_g, db_i_g, dw_xc, dw_hc, db_c = lstm.back_prop(char_vectors, hs, f_gs, i_gs, cs, dx) dw_xf_g, dw_hf_g, db_f_g, dw_xi_g, dw_hi_g, db_i_g, dw_xc, dw_hc, db_c = lstm.back_prop(char_vectors, hs, f_gs, i_gs, cs, dy) lstm.w_xf_g -= dw_xf_g * learning_rate lstm.w_hf_g -= dw_hf_g * learning_rate lstm.b_f_g -= db_f_g * learning_rate lstm.w_xi_g -= dw_xi_g * learning_rate lstm.w_hi_g -= dw_hi_g * learning_rate lstm.b_i_g -= db_i_g * learning_rate lstm.w_xc -= dw_xc * learning_rate lstm.w_hc -= dw_hc * learning_rate lstm.b_c -= db_c * learning_rate if i % 200 == 0: total_err = 0 for char_vectors, word_vector in training_data: h = lstm.activate(char_vectors, h0) output_vector = ffn.forward_prop(h[-1], {}) total_err += mathutils.mean_squared_error(output_vector, word_vector) print(total_err/len(training_data)) lstm_out = lstm.activate(to_char_vector_sequence("infer"), h0) result = ffn.forward_prop(lstm_out, {}) self.assertEquals("infer", index_to_word[np.argmax(result)])
def test_learn_word_vectors_from_char_vector_sequence_2(self): text = "please learn how to infer word vectors from sequences of character vectors" \ "giving it more words to try and confuse it" \ "how evil" \ "much diabolical" \ "many genius" \ "the doge of venice gives his regards" index_to_word = list(set(text.split())) index_to_char = list(set(text)) word_to_index = { word: index for index, word in enumerate(index_to_word) } char_to_index = { word: index for index, word in enumerate(index_to_char) } def to_char_vector_sequence(word): sequence = [] for char in word: vector = np.ones(len(char_to_index)) * -1 vector[char_to_index[char]] = 1 sequence.append(vector) sequence.append(np.zeros(len(char_to_index))) return np.asarray(sequence) def to_word_vector(word): vector = np.ones(len(word_to_index)) * -1 vector[word_to_index[word]] = 1 return vector hidden_size = 50 training_data = [(to_char_vector_sequence(word), to_word_vector(word)) for word in text.split()] lstm = NoOutputLstm(len(index_to_char), hidden_size) ffn = FeedForwardNetwork([hidden_size, len(index_to_word)]) h0 = np.random.uniform(-1, 1, size=hidden_size) learning_rate = 5 for i in range(2000): for char_vectors, word_vector in training_data: hs, f_gs, i_gs, cs, h = lstm.forward_prop(char_vectors, h0) res = {} y = ffn.forward_prop(h, res) dy = mathutils.mean_squared_error(y, word_vector) dx = ffn.dx(h, dy, res) ffn.train(learning_rate, h, dy, res) dh = dx dw_xf_g, dw_hf_g, db_f_g, dw_xi_g, dw_hi_g, db_i_g, dw_xc, dw_hc, db_c = lstm.back_prop( char_vectors, hs, f_gs, i_gs, cs, dh) lstm.w_xf_g -= dw_xf_g * learning_rate lstm.w_hf_g -= dw_hf_g * learning_rate lstm.b_f_g -= db_f_g * learning_rate lstm.w_xi_g -= dw_xi_g * learning_rate lstm.w_hi_g -= dw_hi_g * learning_rate lstm.b_i_g -= db_i_g * learning_rate lstm.w_xc -= dw_xc * learning_rate lstm.w_hc -= dw_hc * learning_rate lstm.b_c -= db_c * learning_rate if i % 200 == 0: total_err = 0 for char_vectors, word_vector in training_data: h = lstm.activate(char_vectors, h0) y = ffn.forward_prop(h, {}) total_err += mathutils.mean_squared_error(y, word_vector) print(total_err / len(training_data)) h = lstm.activate(to_char_vector_sequence("infer"), h0) y = ffn.forward_prop(h, {}) self.assertEquals("infer", index_to_word[np.argmax(y)])
def test_learn_word_vectors_from_char_vector_sequence(self): text = "please learn how to infer word vectors from sequences of character vectors" index_to_word = list(set(text.split())) index_to_char = list(set(text)) word_to_index = { word: index for index, word in enumerate(index_to_word) } char_to_index = { word: index for index, word in enumerate(index_to_char) } def to_char_vector_sequence(word): sequence = [] for char in word: vector = np.ones(len(char_to_index)) * -1 vector[char_to_index[char]] = 1 sequence.append(vector) sequence.append(np.zeros(len(char_to_index))) return np.asarray(sequence) def to_word_vector(word): vector = np.ones(len(word_to_index)) * -1 vector[word_to_index[word]] = 1 return vector training_data = [(to_char_vector_sequence(word), to_word_vector(word)) for word in text.split()] # hidden_size = 100 hidden_size = len(index_to_word) lstm = NoOutputLstm(len(index_to_char), hidden_size) ffn = FeedForwardNetwork([hidden_size, 50, 20, len(index_to_word)]) h0 = np.random.uniform(-1, 1, size=hidden_size) learning_rate = 0.5 for i in range(1000): for char_vectors, word_vector in training_data: hs, f_gs, i_gs, cs, lstm_output = lstm.forward_prop( char_vectors, h0) res = {} y = ffn.forward_prop(lstm_output, res) # dy = mathutils.mean_squared_error_prime(y, word_vector) dy = mathutils.mean_squared_error_prime( lstm_output, word_vector) dx = ffn.dx(lstm_output, dy, res) ffn.train(learning_rate, lstm_output, dy, res) # dw_xf_g, dw_hf_g, db_f_g, dw_xi_g, dw_hi_g, db_i_g, dw_xc, dw_hc, db_c = lstm.back_prop(char_vectors, hs, f_gs, i_gs, cs, dx) dw_xf_g, dw_hf_g, db_f_g, dw_xi_g, dw_hi_g, db_i_g, dw_xc, dw_hc, db_c = lstm.back_prop( char_vectors, hs, f_gs, i_gs, cs, dy) lstm.w_xf_g -= dw_xf_g * learning_rate lstm.w_hf_g -= dw_hf_g * learning_rate lstm.b_f_g -= db_f_g * learning_rate lstm.w_xi_g -= dw_xi_g * learning_rate lstm.w_hi_g -= dw_hi_g * learning_rate lstm.b_i_g -= db_i_g * learning_rate lstm.w_xc -= dw_xc * learning_rate lstm.w_hc -= dw_hc * learning_rate lstm.b_c -= db_c * learning_rate if i % 200 == 0: total_err = 0 for char_vectors, word_vector in training_data: h = lstm.activate(char_vectors, h0) output_vector = ffn.forward_prop(h[-1], {}) total_err += mathutils.mean_squared_error( output_vector, word_vector) print(total_err / len(training_data)) lstm_out = lstm.activate(to_char_vector_sequence("infer"), h0) result = ffn.forward_prop(lstm_out, {}) self.assertEquals("infer", index_to_word[np.argmax(result)])