from paper.routines.infrastructure.save.table import save_table_dict_xlsx import pandas as pd save_path = 'E:/YandexDisk/Work/pydnameth/unn_epic' data = pdm.Data(path='', base='unn_epic') annotations = pdm.Annotations(name='annotations', type='850k', exclude='bad_cpgs_from_ChAMP', select_dict={'CHR': ['-X', '-Y']}) target = 'Age' observables_unn_epic = pdm.Observables(name='observables_part(final)', types={}) cells = pdm.Cells(name='cell_counts', types='any') attributes = pdm.Attributes(target=target, observables=observables_unn_epic, cells=cells) data_params_unn_epic = { 'norm': 'BMIQ', 'part': 'final', 'cells': ['Bcell', 'CD4T', 'CD8T', 'Neu', 'NK'] } config = pdm.load_residuals_config(data, annotations, attributes, data_params=data_params_unn_epic) keys = ['X' + elem for elem in config.observables_dict['Sample_Name']] res_dict = {} for x_id, x in enumerate(keys):
target = get_target(data.base) data_params = get_data_params(data.base) data_params['cells'] = ['CD8T', 'CD4T', 'NK', 'Bcell', 'Gran'] if data.base == 'GSE55763': observables_list = [ { 'gender': 'any', 'is_duplicate': '0', 'age': (35, 100) }, ] else: observables_list = [ { 'gender': 'any' }, ] for obs in observables_list: observables = pdm.Observables(name='observables', types=obs) attributes = pdm.Attributes(target=target, observables=observables, cells=cells) pdm.residuals_table_linreg(data=data, annotations=annotations, attributes=attributes, data_params=data_params)
select_dict={ 'CHR': ['-X', '-Y'] } ) target_unn_epic = 'Age' observables_unn_epic = pdm.Observables( name='observables', types={} ) cells_unn_epic = pdm.Cells( name='cell_counts_horvath_filtered_normalized', types='any' ) attributes_unn_epic = pdm.Attributes( target=target_unn_epic, observables=observables_unn_epic, cells=cells_unn_epic ) data_params_unn_epic = get_data_params(data_unn_epic.base) # data_params_unn_epic = { # 'norm': 'BMIQ', # 'part': 'raw', # } config_unn = pdm.load_beta_config( data_unn_epic, annotations_unn_epic, attributes_unn_epic, data_params=data_params_unn_epic )