import pydnameth as pdm from scripts.develop.routines import * f = open('cpgs.txt', 'r') items = f.read().splitlines() reverses = ['no'] * len(items) x_ranges = ['auto'] * len(items) y_ranges = ['auto'] * len(items) data = pdm.Data( base='unn_epic' ) annotations = pdm.Annotations( name='annotations', type='850k', exclude='bad_cpgs_from_ChAMP', select_dict={ 'CHR': ['-X', '-Y'] } ) observables = pdm.Observables( name='observables', types={} ) cells = pdm.Cells( name='', types='any' )
import pydnameth as pdm from scripts.develop.routines import * data = pdm.Data( #path='E:/YandexDisk/Work/pydnameth/tissues/brain(DLPFC)', path='', base='GSE87571' ) annotations = pdm.Annotations( name='annotations', type='450k', exclude='bad_cpgs', select_dict={ 'CHR': ['-X', '-Y'] } ) cells = pdm.Cells( name='', types='any' ) observables = pdm.Observables( name='observables', types={} ) attributes = pdm.Attributes( target='age', observables=observables,
tmp_dict = df.to_dict() for key in tmp_dict: curr_dict = tmp_dict[key] table_dict[key] = list(curr_dict.values()) items = table_dict['i'] x_ranges = [[5, 105]] * len(items) y_ranges = [] for index in range(0, len(items)): y_ranges.append([table_dict['begin'][index], table_dict['end'][index]]) data_bases = ['GSE87571_TEST'] for data_base in data_bases: data = pdm.Data(path='', base='GSE43414') annotations = pdm.Annotations(name='annotations', type='450k', exclude='bad_cpgs', select_dict={'CHR': ['-X', '-Y']}) observables = pdm.Observables(name='observables', types={}) cells = pdm.Cells(name='cells', types='any') target = get_target(data.base) observables_list = get_observables_list(data.base) data_params = get_data_params(data.base) attributes = pdm.Attributes(target=target,
import pydnameth as pdm data_sets = ['GSE87571'] for data_set in data_sets: cell_types = ['Bcell', 'CD4T', 'NK', 'CD8T', 'Gran'] cell_name = 'cells_horvath_calculator' data = pdm.Data(path='', base=data_set) annotations = pdm.Annotations(name='annotations', exclude='bad_cpgs', cross_reactive='any', snp='any', chr='NS', gene_region='any', geo='any', probe_class='any') observables = pdm.Observables(name='observables', types={}) cells = pdm.Cells(name=cell_name, types=cell_types) attributes = pdm.Attributes(target='age', observables=observables, cells=cells) if data.base == 'GSE55763': observables_list = [{ 'gender': 'F',
import pydnameth as pdm items = ['entropy'] x_ranges = [[5, 105]] * len(items) y_ranges = ['auto'] * len(items) data_bases = ['GSE87571'] for data_base in data_bases: data = pdm.Data( path='', base=data_base ) annotations = pdm.Annotations( name='annotations', exclude='bad_cpgs', cross_reactive='any', snp='any', chr='NS', gene_region='any', geo='any', probe_class='any' ) observables = pdm.Observables( name='observables', types={} )
import pydnameth as pdm from scripts.develop.routines import * data = pdm.Data( path='', base='unn_epic' ) annotations = pdm.Annotations( name='annotations', type='850k', exclude='none', select_dict={} ) observables = pdm.Observables( name='observables_part(v1)', types={'COVID': ['no', 'before'], 'Sample_Chronology': [0, 1]} ) cells = pdm.Cells( name='cell_counts_part(v1)', types='any' ) target = 'Group' attributes = pdm.Attributes( target=target, observables=observables,
import pydnameth as pdm data = pdm.Data( path= 'E:/YandexDisk/Work/pydnameth/script_datasets/GPL13534/filtered/blood(whole)', base='GSE87571') data_params = { 'norm': 'fun', 'part': 'wo_missedFeatures', } chip_type = '450k' fn = 'observables_part(wo_missedFeatures)' pdm.betas_horvath_calculator_create_regular(chip_type=chip_type, observables_fn=fn, data=data, data_params=data_params)
tmp_dict = df.to_dict() for key in tmp_dict: curr_dict = tmp_dict[key] cols_dict[key] = list(curr_dict.values()) data_bases = cols_dict['data_bases'] data_list = [] annotations_list = [] attributes_list = [] observables_list = [] data_params_list = [] for data_base in data_bases: data = pdm.Data(path='E:/YandexDisk/Work/pydnameth/epityper/FIGN', base=data_base) data_list.append(data) annotations = pdm.Annotations(name='annotations', type='epityper', exclude='none', select_dict={}) annotations_list.append(annotations) observables = pdm.Observables(name='observables', types={}) cells = pdm.Cells(name='cells', types='any') target = get_target(data.base) obs = get_observables_list(data.base) data_params = get_data_params(data.base)
import pydnameth as pdm from scripts.develop.routines import * data = pdm.Data(path='', base='EPIC') annotations = pdm.Annotations(name='annotations', type='450k', exclude='bad_cpgs', select_dict={'CHR': ['-X', '-Y']}) observables = pdm.Observables(name='observables', types={}) cells = pdm.Cells(name='cells_horvath_calculator', types='any') target = get_target(data.base) observables_list = get_observables_list(data.base) data_params = get_data_params(data.base) data_params['cells'] = ['Bcell', 'CD4T', 'CD8T', 'Gran', 'NK'] attributes = pdm.Attributes(target=target, observables=observables, cells=cells) pdm.residuals_table_approach_4(data=data, annotations=annotations, attributes=attributes, observables_list=observables_list, data_params=data_params)
import pydnameth as pdm from scripts.develop.routines import * f = open('cpgs.txt', 'r') items = f.read().splitlines() x_ranges = ['auto'] * len(items) y_ranges = ['auto'] * len(items) data = pdm.Data( path='E:/YandexDisk/Work/pydnameth/epityper/PRR4', base='control' ) annotations = pdm.Annotations( name='annotations', type='epityper', exclude='none', select_dict={} ) observables = pdm.Observables( name='observables', types={} ) cells = pdm.Cells( name='cells', types='any' ) target = get_target(data.base)
import pydnameth as pdm f = open('genes.txt', 'r') items = f.read().splitlines() x_ranges = [[5, 105]] * len(items) y_ranges = ['auto'] * len(items) data = pdm.Data( path='', base='E-MTAB-7309-FILTERED' ) annotations = pdm.Annotations( name='annotations', exclude='bad_cpgs', cross_reactive='any', snp='any', chr='NS', gene_region='any', geo='islands_shores', probe_class='any' ) observables = pdm.Observables( name='observables', types={} ) cells = pdm.Cells( name='cells_horvath_calculator',
import pydnameth as pdm data = pdm.Data(name='cpg_beta', path='', base='EPIC') annotations = pdm.Annotations(name='annotations', exclude='none', cross_reactive='ex', snp='ex', chr='NS', gene_region='yes', geo='any', probe_class='any') observables = pdm.Observables(name='observables', types={}) cells = pdm.Cells(name='cells', types='any') attributes = pdm.Attributes(target='age', observables=observables, cells=cells) observables_list = [{'gender': 'F'}, {'gender': 'M'}] pdm.cpg_proc_table_z_test_linreg(data=data, annotations=annotations, attributes=attributes, observables_list=observables_list)
import pydnameth as pdm from scripts.develop.routines import * data = pdm.Data( path='', base='GSE40279' ) annotations = pdm.Annotations( name='annotations', type='450k', exclude='bad_cpgs', select_dict={ 'CHR': ['-X', '-Y'] } ) observables = pdm.Observables( name='observables', types={} ) cells = pdm.Cells( name='cells_horvath_calculator', types='any' ) target = get_target(data.base) observables_list = get_observables_list(data.base) data_params = get_data_params(data.base)
import pydnameth as pdm from scripts.develop.routines import * from tqdm import tqdm import numpy as np from scipy.stats import pearsonr, pointbiserialr from statsmodels.stats.multitest import multipletests from paper.routines.infrastructure.save.table import save_table_dict_xlsx save_path = 'E:/YandexDisk/Work/pydnameth/unn_epic/comparison' data_unn_epic = pdm.Data( path='', base='unn_epic' ) annotations_unn_epic = pdm.Annotations( name='annotations', type='850k', exclude='bad_cpgs_from_ChAMP', select_dict={ 'CHR': ['-X', '-Y'] } ) target_unn_epic = 'Age' observables_unn_epic = pdm.Observables( name='observables', types={} ) cells_unn_epic = pdm.Cells( name='cell_counts_horvath_filtered_normalized', types='any' )
import pydnameth as pdm from scripts.develop.routines import * data = pdm.Data( path='', base='GSE55763' ) annotations = pdm.Annotations( name='annotations', type='450k', exclude='bad_cpgs', select_dict={ 'CHR': ['-X', '-Y'] } ) observables = pdm.Observables( name='observables', types={} ) cells = pdm.Cells( name='cells_horvath_calculator', types='any' ) target = get_target(data.base) observables_list = get_observables_list(data.base) data_params = get_data_params(data.base)
import pydnameth as pdm data = pdm.Data(name='cpg_beta', path='', base='GSE87571') annotations = pdm.Annotations(name='annotations', exclude='none', cross_reactive='ex', snp='ex', chr='NS', gene_region='yes', geo='any', probe_class='any') observables = pdm.Observables(name='observables', types={}) cells = pdm.Cells(name='cells', types='any') attributes = pdm.Attributes(target='age', observables=observables, cells=cells) observables_list = [{'smoke': 0}, {'smoke': [1, 2, 3, 4]}] pdm.cpg_proc_table_polygon(data=data, annotations=annotations, attributes=attributes, observables_list=observables_list)
import pydnameth as pdm from scripts.develop.routines import * data = pdm.Data( path='', #path='E:/YandexDisk/Work/pydnameth/tissues/brain(DLPFC)', base='GSE87571' #base='liver' #base='GSE74193' ) annotations = pdm.Annotations(name='annotations', type='450k', exclude='bad_cpgs', select_dict={'CHR': ['-X', '-Y']}) cells = pdm.Cells(name='cells_horvath_calculator', types='any') target = get_target(data.base) data_params = get_data_params(data.base) if data.base == 'GSE55763': observables_list = [ { 'gender': 'any', 'is_duplicate': '0', 'age': (35, 100) }, ] else: # observables_list = [
import pydnameth as pdm from scripts.develop.routines import * data = pdm.Data(path='', base='liver') annotations = pdm.Annotations(name='annotations', type='450k', exclude='bad_cpgs', select_dict={'CHR': ['-X', '-Y']}) cells = pdm.Cells(name='cells_horvath_calculator', types='any') target = 'age' observables_list = [ { 'gender': 'any' }, ] data_params = get_data_params(data.base) data_params['cells'] = ['CD8T', 'CD4T', 'NK', 'Bcell', 'Gran'] data_params['observables'] = ['gender'] for obs in observables_list: observables = pdm.Observables(name='observables', types=obs) attributes = pdm.Attributes(target=target, observables=observables, cells=cells) pdm.residuals_table_oma(data=data,
import pydnameth as pdm from scripts.develop.routines import * data = pdm.Data(path='', base='GSE87571') annotations = pdm.Annotations(name='annotations', type='450k', exclude='bad_cpgs', select_dict={'CHR': ['-X', '-Y']}) cells = pdm.Cells(name='cells_horvath_calculator', types='any') target = get_target(data.base) data_params = get_data_params(data.base) data_params['cells'] = ['CD8T', 'CD4T', 'NK', 'Bcell', 'Gran'] if data.base == 'GSE55763': observables_list = [ { 'gender': 'any', 'is_duplicate': '0', 'age': (35, 100) }, ] else: observables_list = [ { 'gender': 'any' }, ]
if '(' in filter_list[1] and ')' in filter_list[1]: filter_values_str = filter_list[1][1::-1] filter_value = filter_values_str.split(',') else: filter_value = filter_list[1] ds_filter[ds][filter_key] = filter_value ololo = 1 f.close() data = pdm.Data( path='E:/YandexDisk/Work/pydnameth/script_datasets/GPL13534/filtered/airway_epithelial_cells', base='GSE85566' ) annotations = None cells = None observables = pdm.Observables( name='observables', types={} ) attributes = pdm.Attributes( target='age', observables=observables, cells=cells