예제 #1
0
def make_dircol_pendulum(ic=(-1., 0.),
                         num_samples=32,
                         min_timestep=0.002,
                         max_timestep=0.25,
                         warm_start="linear",
                         seed=1776,
                         should_vis=False,
                         target_traj=None,
                         **kwargs):
    #    if 'warm_start' in kwargs:
    #        print(kwargs['warm_start'])
    #    else:
    #        print("warm_start", warm_start)
    global dircol
    global plant
    global context
    plant = PendulumPlant()
    context = plant.CreateDefaultContext()
    dircol = DirectCollocation(plant,
                               context,
                               num_time_samples=num_samples,
                               minimum_timestep=min_timestep,
                               maximum_timestep=max_timestep)

    dircol.AddEqualTimeIntervalsConstraints()

    #     torque_limit = input_limit  # N*m.
    torque_limit = 5.
    u = dircol.input()
    dircol.AddConstraintToAllKnotPoints(-torque_limit <= u[0])
    dircol.AddConstraintToAllKnotPoints(u[0] <= torque_limit)

    initial_state = ic
    dircol.AddBoundingBoxConstraint(initial_state, initial_state,
                                    dircol.initial_state())
    final_state = (math.pi, 0.)
    dircol.AddBoundingBoxConstraint(final_state, final_state,
                                    dircol.final_state())

    #     R = 100  # Cost on input "effort".
    u = dircol.input()
    x = dircol.state()
    #     print(x)
    dircol.AddRunningCost(2 * ((x[0] - math.pi) *
                               (x[0] - math.pi) + x[1] * x[1]) + 25 * u.dot(u))

    # Add a final cost equal to the total duration.
    #     dircol.AddFinalCost(dircol.time())

    if warm_start == "linear":
        initial_u_trajectory = PiecewisePolynomial()
        initial_x_trajectory = \
            PiecewisePolynomial.FirstOrderHold([0., 4.],
                                           np.column_stack((initial_state,
                                                            final_state)))
        dircol.SetInitialTrajectory(initial_u_trajectory, initial_x_trajectory)

    elif warm_start == "random":
        assert isinstance(seed, int)
        np.random.seed(seed)
        breaks = np.linspace(0, 4, num_samples).reshape(
            (-1, 1))  # using num_time_samples
        u_knots = np.random.rand(
            1, num_samples) - 0.5  # num_inputs vs num_samples?
        x_knots = np.random.rand(
            2, num_samples) - 0.5  # num_states vs num_samples?
        initial_u_trajectory = PiecewisePolynomial.Cubic(
            breaks, u_knots, False)
        initial_x_trajectory = PiecewisePolynomial.Cubic(
            breaks, x_knots, False)
        dircol.SetInitialTrajectory(initial_u_trajectory, initial_x_trajectory)

    elif warm_start == "target":
        assert target_traj != [], "Need a valid target for warm starting"
        (breaks, x_knots, u_knots) = target_traj
        #(breaks, u_knots, x_knots) = target_traj
        initial_u_trajectory = PiecewisePolynomial.Cubic(
            breaks.T, u_knots.T, False)
        initial_x_trajectory = PiecewisePolynomial.Cubic(
            breaks.T, x_knots.T, False)
        dircol.SetInitialTrajectory(initial_u_trajectory, initial_x_trajectory)

    def cb(decision_vars):
        global vis_cb_counter
        vis_cb_counter += 1
        if vis_cb_counter % 10 != 0:
            return

        # Get the total cost
        all_costs = dircol.EvalBindings(dircol.GetAllCosts(), decision_vars)

        # Get the total cost of the constraints.
        # Additionally, the number and extent of any constraint violations.
        violated_constraint_count = 0
        violated_constraint_cost = 0
        constraint_cost = 0
        for constraint in dircol.GetAllConstraints():
            val = dircol.EvalBinding(constraint, decision_vars)

            # Consider switching to DoCheckSatisfied if you can find the binding...
            nudge = 1e-1  # This much constraint violation is not considered bad...
            lb = constraint.evaluator().lower_bound()
            ub = constraint.evaluator().upper_bound()
            good_lb = np.all(np.less_equal(lb, val + nudge))
            good_ub = np.all(np.greater_equal(ub, val - nudge))
            if not good_lb or not good_ub:
                # print("{} <= {} <= {}".format(lb, val, ub))
                violated_constraint_count += 1
                # violated_constraint_cost += np.sum(np.abs(val))
                if not good_lb:
                    violated_constraint_cost += np.sum(np.abs(lb - val))
                if not good_ub:
                    violated_constraint_cost += np.sum(np.abs(val - ub))
            constraint_cost += np.sum(np.abs(val))
        print("total cost: {: .2f} | \tconstraint {: .2f} \tbad {}, {: .2f}".
              format(sum(all_costs), constraint_cost,
                     violated_constraint_count, violated_constraint_cost))

    #dircol.AddVisualizationCallback(cb, dircol.decision_variables())

    def MyVisualization(sample_times, values):
        global vis_cb_counter

        vis_cb_counter += 1
        #print("counter: ", vis_cb_counter)
        if vis_cb_counter % 10 != 0:
            return

        x, x_dot = values[0], values[1]
        plt.plot(x, x_dot, '-o', label=vis_cb_counter)
        plt.show()

    if should_vis:
        plt.figure()
        plt.title('Tip trajectories')
        plt.xlabel('x')
        plt.ylabel('x_dot')
        dircol.AddStateTrajectoryCallback(MyVisualization)

    from pydrake.all import (SolverType)
    #dircol.SetSolverOption(SolverType.kSnopt, 'Major feasibility tolerance', 1.0e-6) # default="1.0e-6"
    #dircol.SetSolverOption(SolverType.kSnopt, 'Major optimality tolerance',  1.0e-6) # default="1.0e-6"
    #dircol.SetSolverOption(SolverType.kSnopt, 'Minor feasibility tolerance', 1.0e-6) # default="1.0e-6"
    #dircol.SetSolverOption(SolverType.kSnopt, 'Minor optimality tolerance',  1.0e-6) # default="1.0e-6"

    #    dircol.SetSolverOption(SolverType.kSnopt, 'Major feasibility tolerance', 1.0e-6) # default="1.0e-6"
    #    dircol.SetSolverOption(SolverType.kSnopt, 'Major optimality tolerance',  5.0e-2) # default="1.0e-6" was 5.0e-1
    #    dircol.SetSolverOption(SolverType.kSnopt, 'Minor feasibility tolerance', 1.0e-6) # default="1.0e-6"
    #    dircol.SetSolverOption(SolverType.kSnopt, 'Minor optimality tolerance',  5.0e-2) # default="1.0e-6" was 5.0e-1
    dircol.SetSolverOption(
        SolverType.kSnopt, 'Time limit (secs)',
        60.0)  # default="9999999.0" # Very aggressive cutoff...

    dircol.SetSolverOption(
        SolverType.kSnopt, 'Major step limit',
        0.1)  # default="2.0e+0" # HUGE!!! default takes WAY too huge steps
    # dircol.SetSolverOption(SolverType.kSnopt, 'Reduced Hessian dimension',  10000) # Default="min{2000, n1 + 1}"
    # dircol.SetSolverOption(SolverType.kSnopt, 'Hessian updates',  30) # Default="10"
    dircol.SetSolverOption(SolverType.kSnopt, 'Major iterations limit',
                           9300000)  # Default="9300"
    dircol.SetSolverOption(SolverType.kSnopt, 'Minor iterations limit',
                           50000)  # Default="500"
    dircol.SetSolverOption(SolverType.kSnopt, 'Iterations limit',
                           50 * 10000)  # Default="10000"

    # Factoriztion?
    # dircol.SetSolverOption(SolverType.kSnopt, 'QPSolver Cholesky', True) # Default="*Cholesky/CG/QN"

    #dircol.SetSolverOption(SolverType.kSnopt, 'Major iterations limit',  1) # Default="9300"
    #dircol.SetSolverOption(SolverType.kSnopt, 'Minor iterations limit',  1) # Default="500"
    return dircol
예제 #2
0
dircol.SetInitialTrajectory(PiecewisePolynomial(), initial_x_trajectory)

fig = plt.figure()
h, = plt.plot([], [], '.-')
plt.xlim((-2.5, 2.5))
plt.ylim((-3., 3.))


def draw_trajectory(t, x):
    h.set_xdata(x[0, :])
    h.set_ydata(x[1, :])
    fig.canvas.draw()
    if plt.get_backend() == u'MacOSX':
        plt.pause(1e-10)


dircol.AddStateTrajectoryCallback(draw_trajectory)

result = dircol.Solve()
assert(result == SolutionResult.kSolutionFound)

x_trajectory = dircol.ReconstructStateTrajectory()

x_knots = np.hstack([x_trajectory.value(t) for t in
                     np.linspace(x_trajectory.start_time(),
                                 x_trajectory.end_time(), 100)])
plt.plot(x_knots[0, :], x_knots[1, :])

plt.show()
예제 #3
0
def make_dircol_cartpole(ic=(-1., 0., 0., 0.),
                         num_samples=21,
                         min_timestep=0.0001,
                         max_timestep=1.,
                         warm_start="linear",
                         seed=1776,
                         should_vis=False,
                         torque_limit=250.,
                         target_traj=None,
                         **kwargs):
    global dircol
    global plant
    global context
    tree = RigidBodyTree("/opt/underactuated/src/cartpole/cartpole.urdf",
                         FloatingBaseType.kFixed)
    plant = RigidBodyPlant(tree)
    context = plant.CreateDefaultContext()
    dircol = DirectCollocation(
        plant,
        context,
        num_time_samples=num_samples,
        # minimum_timestep=0.01, maximum_timestep=0.01)
        minimum_timestep=min_timestep,
        maximum_timestep=max_timestep)

    #     dircol.AddEqualTimeIntervalsConstraints()

    #     torque_limit = input_limit  # N*m.
    # torque_limit = 64.
    u = dircol.input()
    dircol.AddConstraintToAllKnotPoints(-torque_limit <= u[0])
    dircol.AddConstraintToAllKnotPoints(u[0] <= torque_limit)

    initial_state = ic
    dircol.AddBoundingBoxConstraint(initial_state, initial_state,
                                    dircol.initial_state())
    final_state = np.array([0., math.pi, 0., 0.]).astype(np.double)
    dircol.AddBoundingBoxConstraint(final_state, final_state,
                                    dircol.final_state())

    #     R = 100  # Cost on input "effort".
    u = dircol.input()
    x = dircol.state()
    # t = dircol.time() # let's add 100*t (seconds) to get in that min-time component!
    denom1 = float(10**2 + math.pi**2 + 10**2 + math.pi**2)
    denom2 = float(180**2)
    #denom1 = 10**2+math.pi**2+10**2+math.pi**2
    #denom2 = 180**2
    # dircol.AddRunningCost(u.dot(u)/denom2)
    # dircol.AddRunningCost(2*(x-final_state).dot(x-final_state)/denom1)
    dircol.AddRunningCost(1 + 2. *
                          (x - final_state).dot(x - final_state) / denom1 +
                          u.dot(u) / denom2)

    # Add a final cost equal to the total duration.
    #dircol.AddFinalCost(dircol.time()) # Enabled to sim min time cost?

    if warm_start == "linear":
        initial_u_trajectory = PiecewisePolynomial()
        initial_x_trajectory = \
            PiecewisePolynomial.FirstOrderHold([0., 4.],
                                           np.column_stack((initial_state,
                                                            final_state)))
        dircol.SetInitialTrajectory(initial_u_trajectory, initial_x_trajectory)

    elif warm_start == "random":
        assert isinstance(seed, int)
        np.random.seed(seed)
        breaks = np.linspace(0, 4, num_samples).reshape(
            (-1, 1))  # using num_time_samples
        u_knots = np.random.rand(
            1, num_samples) - 0.5  # num_inputs vs num_samples?
        x_knots = np.random.rand(
            2, num_samples) - 0.5  # num_states vs num_samples?
        initial_u_trajectory = PiecewisePolynomial.Cubic(
            breaks, u_knots, False)
        initial_x_trajectory = PiecewisePolynomial.Cubic(
            breaks, x_knots, False)
        dircol.SetInitialTrajectory(initial_u_trajectory, initial_x_trajectory)

    elif warm_start == "target":
        assert target_traj != [], "Need a valid target for warm starting"
        (breaks, x_knots, u_knots) = target_traj
        #(breaks, u_knots, x_knots) = target_traj
        initial_u_trajectory = PiecewisePolynomial.Cubic(
            breaks.T, u_knots.T, False)
        initial_x_trajectory = PiecewisePolynomial.Cubic(
            breaks.T, x_knots.T, False)
        dircol.SetInitialTrajectory(initial_u_trajectory, initial_x_trajectory)

    def cb(decision_vars):
        global vis_cb_counter
        vis_cb_counter += 1
        if vis_cb_counter % 10 != 0:
            return

        # Get the total cost
        all_costs = dircol.EvalBindings(dircol.GetAllCosts(), decision_vars)

        # Get the total cost of the constraints.
        # Additionally, the number and extent of any constraint violations.
        violated_constraint_count = 0
        violated_constraint_cost = 0
        constraint_cost = 0
        for constraint in dircol.GetAllConstraints():
            val = dircol.EvalBinding(constraint, decision_vars)

            # Consider switching to DoCheckSatisfied if you can find the binding...
            nudge = 1e-1  # This much constraint violation is not considered bad...
            lb = constraint.evaluator().lower_bound()
            ub = constraint.evaluator().upper_bound()
            good_lb = np.all(np.less_equal(lb, val + nudge))
            good_ub = np.all(np.greater_equal(ub, val - nudge))
            if not good_lb or not good_ub:
                # print("{} <= {} <= {}".format(lb, val, ub))
                violated_constraint_count += 1
                # violated_constraint_cost += np.sum(np.abs(val))
                if not good_lb:
                    violated_constraint_cost += np.sum(np.abs(lb - val))
                if not good_ub:
                    violated_constraint_cost += np.sum(np.abs(val - ub))
            constraint_cost += np.sum(np.abs(val))
        print("total cost: {: .2f} | \tconstraint {: .2f} \tbad {}, {: .2f}".
              format(sum(all_costs), constraint_cost,
                     violated_constraint_count, violated_constraint_cost))

    #dircol.AddVisualizationCallback(cb, dircol.decision_variables())

    def MyVisualization(sample_times, values):
        def state_to_tip_coord(state_vec):
            # State: (x, theta, x_dot, theta_dot)
            x, theta, _, _ = state_vec
            pole_length = 0.5  # manually looked this up
            #return (x-pole_length*np.sin(theta), pole_length-np.cos(theta))
            return (x - pole_length * np.sin(theta),
                    pole_length * (-np.cos(theta)))

        global vis_cb_counter

        vis_cb_counter += 1
        if vis_cb_counter % 30 != 0:
            return

        coords = [state_to_tip_coord(state) for state in values.T]
        x, y = zip(*coords)
        plt.plot(x, y, '-o', label=vis_cb_counter)
        #plt.show() # good?

    #if should_vis:
    if False:
        plt.figure()
        plt.title('Tip trajectories')
        plt.xlabel('x')
        plt.ylabel('x_dot')
        dircol.AddStateTrajectoryCallback(MyVisualization)

    from pydrake.all import (SolverType)
    #    dircol.SetSolverOption(SolverType.kSnopt, 'Major feasibility tolerance', 1.0e-6) # default="1.0e-6"
    #    dircol.SetSolverOption(SolverType.kSnopt, 'Major optimality tolerance',  5.0e-2) # default="1.0e-6" was 5.0e-1
    #    dircol.SetSolverOption(SolverType.kSnopt, 'Minor feasibility tolerance', 1.0e-6) # default="1.0e-6"
    #    dircol.SetSolverOption(SolverType.kSnopt, 'Minor optimality tolerance',  5.0e-2) # default="1.0e-6" was 5.0e-1
    #    dircol.SetSolverOption(SolverType.kSnopt, 'Time limit (secs)',             12.0) # default="9999999.0" # Very aggressive cutoff...

    dircol.SetSolverOption(
        SolverType.kSnopt, 'Major step limit',
        0.1)  # default="2.0e+0" # HUGE!!! default takes WAY too huge steps
    dircol.SetSolverOption(SolverType.kSnopt, 'Time limit (secs)',
                           15.0)  # default="9999999.0" # was 15
    # dircol.SetSolverOption(SolverType.kSnopt, 'Reduced Hessian dimension',  10000) # Default="min{2000, n1 + 1}"
    # dircol.SetSolverOption(SolverType.kSnopt, 'Hessian updates',  30) # Default="10"
    dircol.SetSolverOption(SolverType.kSnopt, 'Major iterations limit',
                           9300000)  # Default="9300"
    dircol.SetSolverOption(SolverType.kSnopt, 'Minor iterations limit',
                           50000)  # Default="500"
    dircol.SetSolverOption(SolverType.kSnopt, 'Iterations limit',
                           50 * 10000)  # Default="10000"

    # Factoriztion?
    # dircol.SetSolverOption(SolverType.kSnopt, 'QPSolver Cholesky', True) # Default="*Cholesky/CG/QN"
    return dircol