def test_functions_with_float(self): # TODO(eric.cousineau): Use concrete values once vectorized methods are # supported. v_x = 1.0 v_y = 1.0 self.assertEqualStructure(sym.abs(v_x), np.abs(v_x)) self.assertNotEqualStructure(sym.abs(v_x), 0.5 * np.abs(v_x)) self._check_scalar(sym.abs(v_x), np.abs(v_x)) self._check_scalar(sym.abs(v_x), np.abs(v_x)) self._check_scalar(sym.exp(v_x), np.exp(v_x)) self._check_scalar(sym.sqrt(v_x), np.sqrt(v_x)) self._check_scalar(sym.pow(v_x, v_y), v_x**v_y) self._check_scalar(sym.sin(v_x), np.sin(v_x)) self._check_scalar(sym.cos(v_x), np.cos(v_x)) self._check_scalar(sym.tan(v_x), np.tan(v_x)) self._check_scalar(sym.asin(v_x), np.arcsin(v_x)) self._check_scalar(sym.acos(v_x), np.arccos(v_x)) self._check_scalar(sym.atan(v_x), np.arctan(v_x)) self._check_scalar(sym.atan2(v_x, v_y), np.arctan2(v_x, v_y)) self._check_scalar(sym.sinh(v_x), np.sinh(v_x)) self._check_scalar(sym.cosh(v_x), np.cosh(v_x)) self._check_scalar(sym.tanh(v_x), np.tanh(v_x)) self._check_scalar(sym.min(v_x, v_y), min(v_x, v_y)) self._check_scalar(sym.max(v_x, v_y), max(v_x, v_y)) self._check_scalar(sym.ceil(v_x), np.ceil(v_x)) self._check_scalar(sym.floor(v_x), np.floor(v_x)) self._check_scalar( sym.if_then_else( sym.Expression(v_x) > sym.Expression(v_y), v_x, v_y), v_x if v_x > v_y else v_y)
def test_functions_with_float(self): v_x = 1.0 v_y = 1.0 self.assertEqual(sym.abs(v_x), np.abs(v_x)) self.assertEqual(sym.exp(v_x), np.exp(v_x)) self.assertEqual(sym.sqrt(v_x), np.sqrt(v_x)) self.assertEqual(sym.pow(v_x, v_y), v_x**v_y) self.assertEqual(sym.sin(v_x), np.sin(v_x)) self.assertEqual(sym.cos(v_x), np.cos(v_x)) self.assertEqual(sym.tan(v_x), np.tan(v_x)) self.assertEqual(sym.asin(v_x), np.arcsin(v_x)) self.assertEqual(sym.acos(v_x), np.arccos(v_x)) self.assertEqual(sym.atan(v_x), np.arctan(v_x)) self.assertEqual(sym.atan2(v_x, v_y), np.arctan2(v_x, v_y)) self.assertEqual(sym.sinh(v_x), np.sinh(v_x)) self.assertEqual(sym.cosh(v_x), np.cosh(v_x)) self.assertEqual(sym.tanh(v_x), np.tanh(v_x)) self.assertEqual(sym.min(v_x, v_y), min(v_x, v_y)) self.assertEqual(sym.max(v_x, v_y), max(v_x, v_y)) self.assertEqual(sym.ceil(v_x), np.ceil(v_x)) self.assertEqual(sym.floor(v_x), np.floor(v_x)) self.assertEqual( sym.if_then_else( sym.Expression(v_x) > sym.Expression(v_y), v_x, v_y), v_x if v_x > v_y else v_y)
def test_functions_with_float(self): # TODO(eric.cousineau): Use concrete values once vectorized methods are # supported. v_x = 1.0 v_y = 1.0 self.assertEqualStructure(sym.abs(v_x), np.abs(v_x)) self.assertNotEqualStructure(sym.abs(v_x), 0.5*np.abs(v_x)) self._check_scalar(sym.abs(v_x), np.abs(v_x)) self._check_scalar(sym.abs(v_x), np.abs(v_x)) self._check_scalar(sym.exp(v_x), np.exp(v_x)) self._check_scalar(sym.sqrt(v_x), np.sqrt(v_x)) self._check_scalar(sym.pow(v_x, v_y), v_x ** v_y) self._check_scalar(sym.sin(v_x), np.sin(v_x)) self._check_scalar(sym.cos(v_x), np.cos(v_x)) self._check_scalar(sym.tan(v_x), np.tan(v_x)) self._check_scalar(sym.asin(v_x), np.arcsin(v_x)) self._check_scalar(sym.acos(v_x), np.arccos(v_x)) self._check_scalar(sym.atan(v_x), np.arctan(v_x)) self._check_scalar(sym.atan2(v_x, v_y), np.arctan2(v_x, v_y)) self._check_scalar(sym.sinh(v_x), np.sinh(v_x)) self._check_scalar(sym.cosh(v_x), np.cosh(v_x)) self._check_scalar(sym.tanh(v_x), np.tanh(v_x)) self._check_scalar(sym.min(v_x, v_y), min(v_x, v_y)) self._check_scalar(sym.max(v_x, v_y), max(v_x, v_y)) self._check_scalar(sym.ceil(v_x), np.ceil(v_x)) self._check_scalar(sym.floor(v_x), np.floor(v_x)) self._check_scalar( sym.if_then_else( sym.Expression(v_x) > sym.Expression(v_y), v_x, v_y), v_x if v_x > v_y else v_y)
def test_functions_with_variable(self): self.assertEqual(str(sym.abs(x)), "abs(x)") self.assertEqual(str(sym.exp(x)), "exp(x)") self.assertEqual(str(sym.sqrt(x)), "sqrt(x)") self.assertEqual(str(sym.pow(x, y)), "pow(x, y)") self.assertEqual(str(sym.sin(x)), "sin(x)") self.assertEqual(str(sym.cos(x)), "cos(x)") self.assertEqual(str(sym.tan(x)), "tan(x)") self.assertEqual(str(sym.asin(x)), "asin(x)") self.assertEqual(str(sym.acos(x)), "acos(x)") self.assertEqual(str(sym.atan(x)), "atan(x)") self.assertEqual(str(sym.atan2(x, y)), "atan2(x, y)") self.assertEqual(str(sym.sinh(x)), "sinh(x)") self.assertEqual(str(sym.cosh(x)), "cosh(x)") self.assertEqual(str(sym.tanh(x)), "tanh(x)") self.assertEqual(str(sym.min(x, y)), "min(x, y)") self.assertEqual(str(sym.max(x, y)), "max(x, y)") self.assertEqual(str(sym.ceil(x)), "ceil(x)") self.assertEqual(str(sym.floor(x)), "floor(x)") self.assertEqual(str(sym.if_then_else(x > y, x, y)), "(if (x > y) then x else y)")
def test_functions_with_expression(self): self.assertEqual(str(sym.abs(e_x)), "abs(x)") self.assertEqual(str(sym.exp(e_x)), "exp(x)") self.assertEqual(str(sym.sqrt(e_x)), "sqrt(x)") self.assertEqual(str(sym.pow(e_x, e_y)), "pow(x, y)") self.assertEqual(str(sym.sin(e_x)), "sin(x)") self.assertEqual(str(sym.cos(e_x)), "cos(x)") self.assertEqual(str(sym.tan(e_x)), "tan(x)") self.assertEqual(str(sym.asin(e_x)), "asin(x)") self.assertEqual(str(sym.acos(e_x)), "acos(x)") self.assertEqual(str(sym.atan(e_x)), "atan(x)") self.assertEqual(str(sym.atan2(e_x, e_y)), "atan2(x, y)") self.assertEqual(str(sym.sinh(e_x)), "sinh(x)") self.assertEqual(str(sym.cosh(e_x)), "cosh(x)") self.assertEqual(str(sym.tanh(e_x)), "tanh(x)") self.assertEqual(str(sym.min(e_x, e_y)), "min(x, y)") self.assertEqual(str(sym.max(e_x, e_y)), "max(x, y)") self.assertEqual(str(sym.ceil(e_x)), "ceil(x)") self.assertEqual(str(sym.floor(e_x)), "floor(x)") self.assertEqual(str(sym.if_then_else(e_x > e_y, e_x, e_y)), "(if (x > y) then x else y)")
def test_functions_with_float(self): # TODO(eric.cousineau): Use concrete values once vectorized methods are # supported. v_x = 1.0 v_y = 1.0 # WARNING: If these math functions have `float` overloads that return # `float`, then `assertEqual`-like tests are meaningful (current state, # and before `math` overloads were introduced). # If these math functions implicitly cast `float` to `Expression`, then # `assertEqual` tests are meaningless, as it tests `__nonzero__` for # `Formula`, which will always be True. self.assertEqual(sym.abs(v_x), 0.5*np.abs(v_x)) self.assertNotEqual(str(sym.abs(v_x)), str(0.5*np.abs(v_x))) self._check_scalar(sym.abs(v_x), np.abs(v_x)) self._check_scalar(sym.abs(v_x), np.abs(v_x)) self._check_scalar(sym.exp(v_x), np.exp(v_x)) self._check_scalar(sym.sqrt(v_x), np.sqrt(v_x)) self._check_scalar(sym.pow(v_x, v_y), v_x ** v_y) self._check_scalar(sym.sin(v_x), np.sin(v_x)) self._check_scalar(sym.cos(v_x), np.cos(v_x)) self._check_scalar(sym.tan(v_x), np.tan(v_x)) self._check_scalar(sym.asin(v_x), np.arcsin(v_x)) self._check_scalar(sym.acos(v_x), np.arccos(v_x)) self._check_scalar(sym.atan(v_x), np.arctan(v_x)) self._check_scalar(sym.atan2(v_x, v_y), np.arctan2(v_x, v_y)) self._check_scalar(sym.sinh(v_x), np.sinh(v_x)) self._check_scalar(sym.cosh(v_x), np.cosh(v_x)) self._check_scalar(sym.tanh(v_x), np.tanh(v_x)) self._check_scalar(sym.min(v_x, v_y), min(v_x, v_y)) self._check_scalar(sym.max(v_x, v_y), max(v_x, v_y)) self._check_scalar(sym.ceil(v_x), np.ceil(v_x)) self._check_scalar(sym.floor(v_x), np.floor(v_x)) self._check_scalar( sym.if_then_else( sym.Expression(v_x) > sym.Expression(v_y), v_x, v_y), v_x if v_x > v_y else v_y)
def _check_algebra(self, algebra): xv = algebra.to_algebra(x) yv = algebra.to_algebra(y) zv = algebra.to_algebra(z) wv = algebra.to_algebra(w) av = algebra.to_algebra(a) bv = algebra.to_algebra(b) cv = algebra.to_algebra(c) e_xv = algebra.to_algebra(e_x) e_yv = algebra.to_algebra(e_y) # Addition. algebra.check_value(e_xv + e_yv, "(x + y)") algebra.check_value(e_xv + yv, "(x + y)") algebra.check_value(e_xv + 1, "(1 + x)") algebra.check_value(xv + e_yv, "(x + y)") algebra.check_value(1 + e_xv, "(1 + x)") # - In place. e = copy(xv) e += e_yv algebra.check_value(e, "(x + y)") e += zv algebra.check_value(e, "(x + y + z)") e += 1 algebra.check_value(e, "(1 + x + y + z)") # Subtraction. algebra.check_value((e_xv - e_yv), "(x - y)") algebra.check_value((e_xv - yv), "(x - y)") algebra.check_value((e_xv - 1), "(-1 + x)") algebra.check_value((xv - e_yv), "(x - y)") algebra.check_value((1 - e_xv), "(1 - x)") # - In place. e = copy(xv) e -= e_yv algebra.check_value(e, (x - y)) e -= zv algebra.check_value(e, (x - y - z)) e -= 1 algebra.check_value(e, (x - y - z - 1)) # Multiplication. algebra.check_value((e_xv * e_yv), "(x * y)") algebra.check_value((e_xv * yv), "(x * y)") algebra.check_value((e_xv * 1), "x") algebra.check_value((xv * e_yv), "(x * y)") algebra.check_value((1 * e_xv), "x") # - In place. e = copy(xv) e *= e_yv algebra.check_value(e, "(x * y)") e *= zv algebra.check_value(e, "(x * y * z)") e *= 1 algebra.check_value(e, "(x * y * z)") # Division algebra.check_value((e_xv / e_yv), (x / y)) algebra.check_value((e_xv / yv), (x / y)) algebra.check_value((e_xv / 1), "x") algebra.check_value((xv / e_yv), (x / y)) algebra.check_value((1 / e_xv), (1 / x)) # - In place. e = copy(xv) e /= e_yv algebra.check_value(e, (x / y)) e /= zv algebra.check_value(e, (x / y / z)) e /= 1 algebra.check_value(e, ((x / y) / z)) # Unary algebra.check_value((+e_xv), "x") algebra.check_value((-e_xv), "(-1 * x)") # Math functions. algebra.check_value((algebra.abs(e_xv)), "abs(x)") algebra.check_value((algebra.exp(e_xv)), "exp(x)") algebra.check_value((algebra.sqrt(e_xv)), "sqrt(x)") algebra.check_value((algebra.pow(e_xv, e_yv)), "pow(x, y)") algebra.check_value((algebra.sin(e_xv)), "sin(x)") algebra.check_value((algebra.cos(e_xv)), "cos(x)") algebra.check_value((algebra.tan(e_xv)), "tan(x)") algebra.check_value((algebra.arcsin(e_xv)), "asin(x)") algebra.check_value((algebra.arccos(e_xv)), "acos(x)") algebra.check_value((algebra.arctan2(e_xv, e_yv)), "atan2(x, y)") algebra.check_value((algebra.sinh(e_xv)), "sinh(x)") algebra.check_value((algebra.cosh(e_xv)), "cosh(x)") algebra.check_value((algebra.tanh(e_xv)), "tanh(x)") algebra.check_value((algebra.ceil(e_xv)), "ceil(x)") algebra.check_value((algebra.floor(e_xv)), "floor(x)") if isinstance(algebra, ScalarAlgebra): # TODO(eric.cousineau): Uncomment these lines if we can teach numpy # that reduction is not just selection. algebra.check_value((algebra.min(e_xv, e_yv)), "min(x, y)") algebra.check_value((algebra.max(e_xv, e_yv)), "max(x, y)") # TODO(eric.cousineau): Add broadcasting functions for these # operations. algebra.check_value((sym.atan(e_xv)), "atan(x)") algebra.check_value((sym.if_then_else(e_xv > e_yv, e_xv, e_yv)), "(if (x > y) then x else y)") return xv, e_xv
def _check_algebra(self, algebra): xv = algebra.to_algebra(x) yv = algebra.to_algebra(y) zv = algebra.to_algebra(z) wv = algebra.to_algebra(w) av = algebra.to_algebra(a) bv = algebra.to_algebra(b) cv = algebra.to_algebra(c) e_xv = algebra.to_algebra(e_x) e_yv = algebra.to_algebra(e_y) # Addition. algebra.check_value(e_xv + e_yv, "(x + y)") algebra.check_value(e_xv + yv, "(x + y)") algebra.check_value(e_xv + 1, "(1 + x)") algebra.check_value(xv + e_yv, "(x + y)") algebra.check_value(1 + e_xv, "(1 + x)") # - In place. e = copy.copy(xv) e += e_yv algebra.check_value(e, "(x + y)") e += zv algebra.check_value(e, "(x + y + z)") e += 1 algebra.check_value(e, "(1 + x + y + z)") # Subtraction. algebra.check_value((e_xv - e_yv), "(x - y)") algebra.check_value((e_xv - yv), "(x - y)") algebra.check_value((e_xv - 1), "(-1 + x)") algebra.check_value((xv - e_yv), "(x - y)") algebra.check_value((1 - e_xv), "(1 - x)") # - In place. e = copy.copy(xv) e -= e_yv algebra.check_value(e, (x - y)) e -= zv algebra.check_value(e, (x - y - z)) e -= 1 algebra.check_value(e, (x - y - z - 1)) # Multiplication. algebra.check_value((e_xv * e_yv), "(x * y)") algebra.check_value((e_xv * yv), "(x * y)") algebra.check_value((e_xv * 1), "x") algebra.check_value((xv * e_yv), "(x * y)") algebra.check_value((1 * e_xv), "x") # - In place. e = copy.copy(xv) e *= e_yv algebra.check_value(e, "(x * y)") e *= zv algebra.check_value(e, "(x * y * z)") e *= 1 algebra.check_value(e, "(x * y * z)") # Division algebra.check_value((e_xv / e_yv), (x / y)) algebra.check_value((e_xv / yv), (x / y)) algebra.check_value((e_xv / 1), "x") algebra.check_value((xv / e_yv), (x / y)) algebra.check_value((1 / e_xv), (1 / x)) # - In place. e = copy.copy(xv) e /= e_yv algebra.check_value(e, (x / y)) e /= zv algebra.check_value(e, (x / y / z)) e /= 1 algebra.check_value(e, ((x / y) / z)) # Unary algebra.check_value((+e_xv), "x") algebra.check_value((-e_xv), "(-1 * x)") # Math functions. algebra.check_value((algebra.abs(e_xv)), "abs(x)") algebra.check_value((algebra.exp(e_xv)), "exp(x)") algebra.check_value((algebra.sqrt(e_xv)), "sqrt(x)") algebra.check_value((algebra.pow(e_xv, e_yv)), "pow(x, y)") algebra.check_value((algebra.sin(e_xv)), "sin(x)") algebra.check_value((algebra.cos(e_xv)), "cos(x)") algebra.check_value((algebra.tan(e_xv)), "tan(x)") algebra.check_value((algebra.arcsin(e_xv)), "asin(x)") algebra.check_value((algebra.arccos(e_xv)), "acos(x)") algebra.check_value((algebra.arctan2(e_xv, e_yv)), "atan2(x, y)") algebra.check_value((algebra.sinh(e_xv)), "sinh(x)") algebra.check_value((algebra.cosh(e_xv)), "cosh(x)") algebra.check_value((algebra.tanh(e_xv)), "tanh(x)") algebra.check_value((algebra.ceil(e_xv)), "ceil(x)") algebra.check_value((algebra.floor(e_xv)), "floor(x)") if isinstance(algebra, ScalarAlgebra): # TODO(eric.cousineau): Uncomment these lines if we can teach numpy # that reduction is not just selection. algebra.check_value((algebra.min(e_xv, e_yv)), "min(x, y)") algebra.check_value((algebra.max(e_xv, e_yv)), "max(x, y)") # TODO(eric.cousineau): Add broadcasting functions for these # operations. algebra.check_value((sym.atan(e_xv)), "atan(x)") algebra.check_value((sym.if_then_else(e_xv > e_yv, e_xv, e_yv)), "(if (x > y) then x else y)") return xv, e_xv
def _check_algebra(self, algebra): xv = algebra.to_algebra(x) yv = algebra.to_algebra(y) zv = algebra.to_algebra(z) wv = algebra.to_algebra(w) av = algebra.to_algebra(a) bv = algebra.to_algebra(b) cv = algebra.to_algebra(c) e_xv = algebra.to_algebra(e_x) e_yv = algebra.to_algebra(e_y) # Addition. numpy_compare.assert_equal(e_xv + e_yv, "(x + y)") numpy_compare.assert_equal(e_xv + yv, "(x + y)") numpy_compare.assert_equal(e_xv + 1, "(1 + x)") numpy_compare.assert_equal(xv + e_yv, "(x + y)") numpy_compare.assert_equal(1 + e_xv, "(1 + x)") # - In place. e = copy.copy(xv) e += e_yv numpy_compare.assert_equal(e, "(x + y)") e += zv numpy_compare.assert_equal(e, "(x + y + z)") e += 1 numpy_compare.assert_equal(e, "(1 + x + y + z)") # Subtraction. numpy_compare.assert_equal(e_xv - e_yv, "(x - y)") numpy_compare.assert_equal(e_xv - yv, "(x - y)") numpy_compare.assert_equal(e_xv - 1, "(-1 + x)") numpy_compare.assert_equal(xv - e_yv, "(x - y)") numpy_compare.assert_equal(1 - e_xv, "(1 - x)") # - In place. e = copy.copy(xv) e -= e_yv numpy_compare.assert_equal(e, (x - y)) e -= zv numpy_compare.assert_equal(e, (x - y - z)) e -= 1 numpy_compare.assert_equal(e, (x - y - z - 1)) # Multiplication. numpy_compare.assert_equal(e_xv * e_yv, "(x * y)") numpy_compare.assert_equal(e_xv * yv, "(x * y)") numpy_compare.assert_equal(e_xv * 1, "x") numpy_compare.assert_equal(xv * e_yv, "(x * y)") numpy_compare.assert_equal(1 * e_xv, "x") # - In place. e = copy.copy(xv) e *= e_yv numpy_compare.assert_equal(e, "(x * y)") e *= zv numpy_compare.assert_equal(e, "(x * y * z)") e *= 1 numpy_compare.assert_equal(e, "(x * y * z)") # Division numpy_compare.assert_equal(e_xv / e_yv, (x / y)) numpy_compare.assert_equal(e_xv / yv, (x / y)) numpy_compare.assert_equal(e_xv / 1, "x") numpy_compare.assert_equal(xv / e_yv, (x / y)) numpy_compare.assert_equal(1 / e_xv, (1 / x)) # - In place. e = copy.copy(xv) e /= e_yv numpy_compare.assert_equal(e, (x / y)) e /= zv numpy_compare.assert_equal(e, (x / y / z)) e /= 1 numpy_compare.assert_equal(e, ((x / y) / z)) # Unary numpy_compare.assert_equal(+e_xv, "x") numpy_compare.assert_equal(-e_xv, "(-1 * x)") # Comparison. For `VectorizedAlgebra`, uses `np.vectorize` workaround # for #8315. # TODO(eric.cousineau): `BaseAlgebra.check_logical` is designed for # AutoDiffXd (float-convertible), not for symbolic (not always # float-convertible). numpy_compare.assert_equal(algebra.lt(e_xv, e_yv), "(x < y)") numpy_compare.assert_equal(algebra.le(e_xv, e_yv), "(x <= y)") numpy_compare.assert_equal(algebra.eq(e_xv, e_yv), "(x == y)") numpy_compare.assert_equal(algebra.ne(e_xv, e_yv), "(x != y)") numpy_compare.assert_equal(algebra.ge(e_xv, e_yv), "(x >= y)") numpy_compare.assert_equal(algebra.gt(e_xv, e_yv), "(x > y)") # Math functions. numpy_compare.assert_equal(algebra.abs(e_xv), "abs(x)") numpy_compare.assert_equal(algebra.exp(e_xv), "exp(x)") numpy_compare.assert_equal(algebra.sqrt(e_xv), "sqrt(x)") numpy_compare.assert_equal(algebra.pow(e_xv, e_yv), "pow(x, y)") numpy_compare.assert_equal(algebra.sin(e_xv), "sin(x)") numpy_compare.assert_equal(algebra.cos(e_xv), "cos(x)") numpy_compare.assert_equal(algebra.tan(e_xv), "tan(x)") numpy_compare.assert_equal(algebra.arcsin(e_xv), "asin(x)") numpy_compare.assert_equal(algebra.arccos(e_xv), "acos(x)") numpy_compare.assert_equal(algebra.arctan2(e_xv, e_yv), "atan2(x, y)") numpy_compare.assert_equal(algebra.sinh(e_xv), "sinh(x)") numpy_compare.assert_equal(algebra.cosh(e_xv), "cosh(x)") numpy_compare.assert_equal(algebra.tanh(e_xv), "tanh(x)") numpy_compare.assert_equal(algebra.ceil(e_xv), "ceil(x)") numpy_compare.assert_equal(algebra.floor(e_xv), "floor(x)") if isinstance(algebra, ScalarAlgebra): # TODO(eric.cousineau): Uncomment these lines if we can teach numpy # that reduction is not just selection. numpy_compare.assert_equal(algebra.min(e_xv, e_yv), "min(x, y)") numpy_compare.assert_equal(algebra.max(e_xv, e_yv), "max(x, y)") # TODO(eric.cousineau): Add broadcasting functions for these # operations. numpy_compare.assert_equal(sym.atan(e_xv), "atan(x)") numpy_compare.assert_equal( sym.if_then_else(e_xv > e_yv, e_xv, e_yv), "(if (x > y) then x else y)") return xv, e_xv
def _check_algebra(self, algebra): xv = algebra.to_algebra(x) yv = algebra.to_algebra(y) zv = algebra.to_algebra(z) wv = algebra.to_algebra(w) av = algebra.to_algebra(a) bv = algebra.to_algebra(b) cv = algebra.to_algebra(c) e_xv = algebra.to_algebra(e_x) e_yv = algebra.to_algebra(e_y) # Addition. npc.assert_equal(e_xv + e_yv, "(x + y)") npc.assert_equal(e_xv + yv, "(x + y)") npc.assert_equal(e_xv + 1, "(1 + x)") npc.assert_equal(xv + e_yv, "(x + y)") npc.assert_equal(1 + e_xv, "(1 + x)") # - In place. e = copy.copy(xv) e += e_yv npc.assert_equal(e, "(x + y)") e += zv npc.assert_equal(e, "(x + y + z)") e += 1 npc.assert_equal(e, "(1 + x + y + z)") # Subtraction. npc.assert_equal(e_xv - e_yv, "(x - y)") npc.assert_equal(e_xv - yv, "(x - y)") npc.assert_equal(e_xv - 1, "(-1 + x)") npc.assert_equal(xv - e_yv, "(x - y)") npc.assert_equal(1 - e_xv, "(1 - x)") # - In place. e = copy.copy(xv) e -= e_yv npc.assert_equal(e, (x - y)) e -= zv npc.assert_equal(e, (x - y - z)) e -= 1 npc.assert_equal(e, (x - y - z - 1)) # Multiplication. npc.assert_equal(e_xv * e_yv, "(x * y)") npc.assert_equal(e_xv * yv, "(x * y)") npc.assert_equal(e_xv * 1, "x") npc.assert_equal(xv * e_yv, "(x * y)") npc.assert_equal(1 * e_xv, "x") # - In place. e = copy.copy(xv) e *= e_yv npc.assert_equal(e, "(x * y)") e *= zv npc.assert_equal(e, "(x * y * z)") e *= 1 npc.assert_equal(e, "(x * y * z)") # Division npc.assert_equal(e_xv / e_yv, (x / y)) npc.assert_equal(e_xv / yv, (x / y)) npc.assert_equal(e_xv / 1, "x") npc.assert_equal(xv / e_yv, (x / y)) npc.assert_equal(1 / e_xv, (1 / x)) # - In place. e = copy.copy(xv) e /= e_yv npc.assert_equal(e, (x / y)) e /= zv npc.assert_equal(e, (x / y / z)) e /= 1 npc.assert_equal(e, ((x / y) / z)) # Unary npc.assert_equal(+e_xv, "x") npc.assert_equal(-e_xv, "(-1 * x)") # Comparison. For `VectorizedAlgebra`, uses `np.vectorize` workaround # for #8315. # TODO(eric.cousineau): `BaseAlgebra.check_logical` is designed for # AutoDiffXd (float-convertible), not for symbolic (not always # float-convertible). npc.assert_equal(algebra.lt(e_xv, e_yv), "(x < y)") npc.assert_equal(algebra.le(e_xv, e_yv), "(x <= y)") npc.assert_equal(algebra.eq(e_xv, e_yv), "(x == y)") npc.assert_equal(algebra.ne(e_xv, e_yv), "(x != y)") npc.assert_equal(algebra.ge(e_xv, e_yv), "(x >= y)") npc.assert_equal(algebra.gt(e_xv, e_yv), "(x > y)") # Math functions. npc.assert_equal(algebra.abs(e_xv), "abs(x)") npc.assert_equal(algebra.exp(e_xv), "exp(x)") npc.assert_equal(algebra.sqrt(e_xv), "sqrt(x)") npc.assert_equal(algebra.pow(e_xv, e_yv), "pow(x, y)") npc.assert_equal(algebra.sin(e_xv), "sin(x)") npc.assert_equal(algebra.cos(e_xv), "cos(x)") npc.assert_equal(algebra.tan(e_xv), "tan(x)") npc.assert_equal(algebra.arcsin(e_xv), "asin(x)") npc.assert_equal(algebra.arccos(e_xv), "acos(x)") npc.assert_equal(algebra.arctan2(e_xv, e_yv), "atan2(x, y)") npc.assert_equal(algebra.sinh(e_xv), "sinh(x)") npc.assert_equal(algebra.cosh(e_xv), "cosh(x)") npc.assert_equal(algebra.tanh(e_xv), "tanh(x)") npc.assert_equal(algebra.ceil(e_xv), "ceil(x)") npc.assert_equal(algebra.floor(e_xv), "floor(x)") if isinstance(algebra, ScalarAlgebra): # TODO(eric.cousineau): Uncomment these lines if we can teach numpy # that reduction is not just selection. npc.assert_equal(algebra.min(e_xv, e_yv), "min(x, y)") npc.assert_equal(algebra.max(e_xv, e_yv), "max(x, y)") # TODO(eric.cousineau): Add broadcasting functions for these # operations. npc.assert_equal(sym.atan(e_xv), "atan(x)") npc.assert_equal(sym.if_then_else(e_xv > e_yv, e_xv, e_yv), "(if (x > y) then x else y)") return xv, e_xv
def __init__(self, m=5, J=500, m_l=1, J_l=0.5, l1=0.0, l2=0.0, k_g=2e3, b_g=20, \ g=9.8, flight_step_size = 1e-2, contact_step_size = 5e-3, descend_step_size_switch_threshold=2e-2, \ ground_height_function=lambda x: 0, initial_state=np.asarray([0.,0.,0.,1.5,1.0,0.,0.,0.,0.,0.])): ''' 2D hopper with actuated piston at the end of the leg. The model of the hopper follows the one described in "Hopping in Legged Systems" (Raibert, 1984) ''' self.m = m self.J = J self.m_l = m_l self.J_l = J_l self.l1 = l1 self.l2 = l2 self.k_g_y = k_g self.k_g_x = 2e3 self.b_g_x = 200 self.b_g = b_g self.g = g self.ground_height_function = ground_height_function self.r0 = 1.5 # state machine for touchdown detection self.xTD = sym.Variable('xTD') self.was_in_contact = False # Symbolic variables # State variables are s = [x_ft, y_ft, theta, phi, r] # self.x = [s, sdot] # Inputs are self.u = [tau, chi] self.x = np.array([sym.Variable('x_' + str(i)) for i in range(10)]) self.u = np.array([sym.Variable('u_' + str(i)) for i in range(2)]) # Initial state self.initial_env = {} for i, state in enumerate(initial_state): self.initial_env[self.x[i]] = state self.initial_env[self.xTD] = 0 self.k0 = 800 self.b_leg = 2 self.k0_stabilize = 40 self.b0_stabilize = 10 self.k0_restore = 60 self.b0_restore = 15 # self.flight_step_size = flight_step_size # self.contact_step_size = contact_step_size # self.descend_step_size_switch_threshold = descend_step_size_switch_threshold # self.hover_step_size_switch_threshold=-0.75 # print(self.initial_env) # Dynamic modes Fx_contact = -self.k_g_x * (self.x[0] - self.xTD) - self.b_g_x * self.x[5] Fx_flight = 0. Fy_contact = -self.k_g_y * (self.x[1] - self.ground_height_function( self.x[0])) - self.b_g * self.x[6] * (1 - np.exp(self.x[1] * 16)) Fy_flight = 0. R = self.x[4] - self.l1 # EOM is obtained from Russ Tedrake's Thesis a1 = -self.m_l * R a2 = (self.J_l - self.m_l * R * self.l1) * sym.cos(self.x[2]) b1 = self.m_l * R b2 = (self.J_l - self.m_l * R * self.l1) * sym.sin(self.x[2]) c1 = self.m * R c2 = (self.J_l + self.m * R * self.x[4]) * sym.cos(self.x[2]) c3 = self.m * R * self.l2 * sym.cos(self.x[3]) c4 = self.m * R * sym.sin(self.x[2]) d1 = -self.m * R d2 = (self.J_l + self.m * R * self.x[4]) * sym.sin(self.x[2]) d3 = self.m * R * self.l2 * sym.sin(self.x[3]) d4 = -self.m * R * sym.cos(self.x[2]) e1 = self.J_l * self.l2 * sym.cos(self.x[2] - self.x[3]) e2 = -self.J * R self.b_r_ascend = 0. r_diff = self.x[4] - self.r0 F_leg_flight = -self.k0_restore * r_diff - self.b0_restore * self.x[9] F_leg_ascend = -self.u[1] * r_diff - self.b_r_ascend * self.x[ 9] #self.u[1] * (1-np.exp(10*r_diff_upper)/(np.exp(10*r_diff_upper)+1))#+(- self.k0_stabilize * r_diff_upper - self.b0_stabilize * self.x[9])*(np.exp(10*r_diff_upper)/(np.exp(10*r_diff_upper)+1)) F_leg_descend = -self.k0 * r_diff - self.b_leg * self.x[9] # F_leg_descend = F_leg_ascend self.tau_p = 400. self.tau_d = 10. hip_x_dot = self.x[5] + self.x[9] * sym.sin( self.x[2]) + self.x[4] * sym.cos(self.x[2]) * self.x[7] hip_y_dot = self.x[6] + self.x[9] * sym.cos( self.x[2]) - self.x[4] * sym.sin(self.x[2]) * self.x[7] alpha_des_ascend = 0.6 * sym.atan(hip_x_dot / ( -hip_y_dot - 1e-6)) #-sym.atan(self.x[5]/self.x[6]) # point toward alpha_des_descend = 0.6 * sym.atan( hip_x_dot / (hip_y_dot + 1e-6)) # point toward landing point tau_leg_flight_ascend = (self.tau_p * (alpha_des_ascend - self.x[2]) - self.tau_d * self.x[7]) * -1 tau_leg_flight_descend = (self.tau_p * (alpha_des_descend - self.x[2]) - self.tau_d * self.x[7]) * -1 tau_leg_contact = self.u[0] def get_ddots(Fx, Fy, F_leg, u0): alpha = (self.l1 * Fy * sym.sin(self.x[2]) - self.l1 * Fx * sym.cos(self.x[2]) - u0) A = sym.cos(self.x[2]) * alpha - R * ( Fx - F_leg * sym.sin(self.x[2]) - self.m_l * self.l1 * self.x[7]**2 * sym.sin(self.x[2])) B = sym.sin(self.x[2]) * alpha + R * ( self.m_l * self.l1 * self.x[7]**2 * sym.cos(self.x[2]) + Fy - F_leg * sym.cos(self.x[2]) - self.m_l * self.g) C = sym.cos(self.x[2]) * alpha + R * F_leg * sym.sin( self.x[2]) + self.m * R * ( self.x[4] * self.x[7]**2 * sym.sin(self.x[2]) + self.l2 * self.x[8]**2 * sym.sin(self.x[3]) - 2 * self.x[9] * self.x[7] * sym.cos(self.x[2])) D = sym.sin(self.x[2]) * alpha - R * ( F_leg * sym.cos(self.x[2]) - self.m * self.g) - self.m * R * ( 2 * self.x[9] * self.x[7] * sym.sin(self.x[2]) + self.x[4] * self.x[7]**2 * sym.cos(self.x[2]) + self.l2 * self.x[8]**2 * sym.cos(self.x[3])) E = self.l2 * sym.cos(self.x[2] - self.x[3]) * alpha - R * ( self.l2 * F_leg * sym.sin(self.x[3] - self.x[2]) + u0) return np.asarray([(A*b1*c2*d4*e2 - A*b1*c3*d4*e1 - A*b1*c4*d2*e2 + A*b1*c4*d3*e1 + A*b2*c4*d1*e2 - B*a2*c4*d1*e2 - C*a2*b1*d4*e2 + D*a2*b1*c4*e2 + E*a2*b1*c3*d4 - E*a2*b1*c4*d3)/(a1*b1*c2*d4*e2 - a1*b1*c3*d4*e1 - a1*b1*c4*d2*e2 + a1*b1*c4*d3*e1 + a1*b2*c4*d1*e2 - a2*b1*c1*d4*e2), \ (A*b2*c1*d4*e2 + B*a1*c2*d4*e2 - B*a1*c3*d4*e1 - B*a1*c4*d2*e2 + B*a1*c4*d3*e1 - B*a2*c1*d4*e2 - C*a1*b2*d4*e2 + D*a1*b2*c4*e2 + E*a1*b2*c3*d4 - E*a1*b2*c4*d3)/(a1*b1*c2*d4*e2 - a1*b1*c3*d4*e1 - a1*b1*c4*d2*e2 + a1*b1*c4*d3*e1 + a1*b2*c4*d1*e2 - a2*b1*c1*d4*e2), \ -(A*b1*c1*d4*e2 - B*a1*c4*d1*e2 - C*a1*b1*d4*e2 + D*a1*b1*c4*e2 + E*a1*b1*c3*d4 - E*a1*b1*c4*d3)/(a1*b1*c2*d4*e2 - a1*b1*c3*d4*e1 - a1*b1*c4*d2*e2 + a1*b1*c4*d3*e1 + a1*b2*c4*d1*e2 - a2*b1*c1*d4*e2), \ (A*b1*c1*d4*e1 - B*a1*c4*d1*e1 - C*a1*b1*d4*e1 + D*a1*b1*c4*e1 + E*a1*b1*c2*d4 - E*a1*b1*c4*d2 + E*a1*b2*c4*d1 - E*a2*b1*c1*d4)/(a1*b1*c2*d4*e2 - a1*b1*c3*d4*e1 - a1*b1*c4*d2*e2 + a1*b1*c4*d3*e1 + a1*b2*c4*d1*e2 - a2*b1*c1*d4*e2), \ (A*b1*c1*d2*e2 - A*b1*c1*d3*e1 - A*b2*c1*d1*e2 - B*a1*c2*d1*e2 + B*a1*c3*d1*e1 + B*a2*c1*d1*e2 - C*a1*b1*d2*e2 + C*a1*b1*d3*e1 + C*a1*b2*d1*e2 + D*a1*b1*c2*e2 - D*a1*b1*c3*e1 - D*a2*b1*c1*e2 - E*a1*b1*c2*d3 + E*a1*b1*c3*d2 - E*a1*b2*c3*d1 + E*a2*b1*c1*d3)/(a1*b1*c2*d4*e2 - a1*b1*c3*d4*e1 - a1*b1*c4*d2*e2 + a1*b1*c4*d3*e1 + a1*b2*c4*d1*e2 - a2*b1*c1*d4*e2)]) flight_ascend_dynamics = np.hstack( (self.x[5:], get_ddots(Fx_flight, Fy_flight, F_leg_flight, tau_leg_flight_ascend))) flight_descend_dynamics = np.hstack( (self.x[5:], get_ddots(Fx_flight, Fy_flight, F_leg_flight, tau_leg_flight_descend))) contact_descend_dynamics = np.hstack( (self.x[5:], get_ddots(Fx_contact, Fy_contact, F_leg_descend, tau_leg_contact))) contact_ascend_dynamics = np.hstack( (self.x[5:], get_ddots(Fx_contact, Fy_contact, F_leg_ascend, tau_leg_contact))) flight_ascend_conditions = np.asarray([ self.x[1] > self.ground_height_function(self.x[0]), hip_y_dot > 0 ]) flight_descend_conditions = np.asarray([ self.x[1] > self.ground_height_function(self.x[0]), hip_y_dot <= 0 ]) contact_descend_coditions = np.asarray([ self.x[1] <= self.ground_height_function(self.x[0]), self.x[9] < 0 ]) contact_ascend_coditions = np.asarray([ self.x[1] <= self.ground_height_function(self.x[0]), self.x[9] >= 0 ]) self.f_list = np.asarray([ flight_ascend_dynamics, flight_descend_dynamics, contact_descend_dynamics, contact_ascend_dynamics ]) self.f_type_list = np.asarray( ['continuous', 'continuous', 'continuous', 'continuous']) self.c_list = np.asarray([ flight_ascend_conditions, flight_descend_conditions, contact_descend_coditions, contact_ascend_coditions ]) DTHybridSystem.__init__(self, self.f_list, self.f_type_list, self.x, self.u, self.c_list, \ self.initial_env, input_limits=np.vstack([[-500,1.4e3], [500,2.5e3]]))