def generate_mc(self, states, window, T): # set transition p = np.array([[0.2, 0.8], [0.6, 0.4]]) mc = MarkovChain(p, states) # set of transions transitions = mc.walk(int(T / window)) data = [] for i in range(len(transitions)): for c in self.generate_zipf(float(transitions[i]), window): data.append(c) return data
def generate_mc(self, states, window, T, available=False): # set transition p = np.array([[0.4, 0.6], [0.75, 0.25]]) mc = MarkovChain(p, states) # set of transions transitions = mc.walk(int(T / window)) data = []; for transition in range(len(transitions)): for c in self.generate_zipf(float(transitions[transition]), window, transition=transition, available=available): data.append(c) return data