예제 #1
0
class Input_Info(QWidget):
    """
    Create widget for displaying infos about filter specs and filter design method
    """
    sig_rx = pyqtSignal(object)  # incoming signals from input_tab_widgets
    sig_tx = pyqtSignal(object)
    from pyfda.libs.pyfda_qt_lib import emit

    def __init__(self, parent=None):
        super(Input_Info, self).__init__(parent)

        self.tab_label = 'Info'
        self.tool_tip = (
            "<span>Display the achieved filter specifications"
            " and more info about the filter design algorithm.</span>")

        self._construct_UI()
        self.load_dict()

    def process_sig_rx(self, dict_sig=None):
        """
        Process signals coming from sig_rx
        """
        # logger.debug("Processing {0}: {1}".format(type(dict_sig).__name__, dict_sig))
        if 'data_changed' in dict_sig or 'view_changed' in dict_sig\
                or 'specs_changed' in dict_sig:
            self.load_dict()

    def _construct_UI(self):
        """
        Intitialize the widget, consisting of:
        - Checkboxes for selecting the info to be displayed
        - A large text window for displaying infos about the filter design
          algorithm
        """
        bfont = QFont()
        bfont.setBold(True)

        # ============== UI Layout =====================================
        # widget / subwindow for filter infos
#        self.butFiltPerf = QToolButton("H(f)", self)
        self.butFiltPerf = QPushButton(self)
        self.butFiltPerf.setText("H(f)")
        self.butFiltPerf.setCheckable(True)
        self.butFiltPerf.setChecked(True)
        self.butFiltPerf.setToolTip("Display frequency response at test frequencies.")

        self.butDebug = QPushButton(self)
        self.butDebug.setText("Debug")
        self.butDebug.setCheckable(True)
        self.butDebug.setChecked(False)
        self.butDebug.setToolTip("Show debugging options.")

        self.butAbout = QPushButton("About", self)  # pop-up "About" window

        self.butSettings = QPushButton("Settings", self)  #
        self.butSettings.setCheckable(True)
        self.butSettings.setChecked(False)
        self.butSettings.setToolTip("Display and set some settings")

        layHControls1 = QHBoxLayout()
        layHControls1.addWidget(self.butFiltPerf)
        layHControls1.addWidget(self.butAbout)
        layHControls1.addWidget(self.butSettings)
        layHControls1.addWidget(self.butDebug)

        self.butDocstring = QPushButton("Doc$", self)
        self.butDocstring.setCheckable(True)
        self.butDocstring.setChecked(False)
        self.butDocstring.setToolTip("Display docstring from python filter method.")

        self.butRichText = QPushButton("RTF", self)
        self.butRichText.setCheckable(HAS_DOCUTILS)
        self.butRichText.setChecked(HAS_DOCUTILS)
        self.butRichText.setEnabled(HAS_DOCUTILS)
        self.butRichText.setToolTip("Render documentation in Rich Text Format.")

        self.butFiltDict = QPushButton("FiltDict", self)
        self.butFiltDict.setToolTip("Show filter dictionary for debugging.")
        self.butFiltDict.setCheckable(True)
        self.butFiltDict.setChecked(False)

        self.butFiltTree = QPushButton("FiltTree", self)
        self.butFiltTree.setToolTip("Show filter tree for debugging.")
        self.butFiltTree.setCheckable(True)
        self.butFiltTree.setChecked(False)

        layHControls2 = QHBoxLayout()
        layHControls2.addWidget(self.butDocstring)
        # layHControls2.addStretch(1)
        layHControls2.addWidget(self.butRichText)
        # layHControls2.addStretch(1)
        layHControls2.addWidget(self.butFiltDict)
        # layHControls2.addStretch(1)
        layHControls2.addWidget(self.butFiltTree)

        self.frmControls2 = QFrame(self)
        self.frmControls2.setLayout(layHControls2)
        self.frmControls2.setVisible(self.butDebug.isChecked())
        self.frmControls2.setContentsMargins(0, 0, 0, 0)

        lbl_settings_NFFT = QLabel(to_html("N_FFT =", frmt='bi'), self)
        self.led_settings_NFFT = QLineEdit(self)
        self.led_settings_NFFT.setText(str(params['N_FFT']))
        self.led_settings_NFFT.setToolTip("<span>Number of FFT points for frequency "
                                          "domain widgets.</span>")

        layGSettings = QGridLayout()
        layGSettings.addWidget(lbl_settings_NFFT, 1, 0)
        layGSettings.addWidget(self.led_settings_NFFT, 1, 1)

        self.frmSettings = QFrame(self)
        self.frmSettings.setLayout(layGSettings)
        self.frmSettings.setVisible(self.butSettings.isChecked())
        self.frmSettings.setContentsMargins(0, 0, 0, 0)

        layVControls = QVBoxLayout()
        layVControls.addLayout(layHControls1)
        layVControls.addWidget(self.frmControls2)
        layVControls.addWidget(self.frmSettings)

        self.frmMain = QFrame(self)
        self.frmMain.setLayout(layVControls)

        self.tblFiltPerf = QTableWidget(self)
        self.tblFiltPerf.setAlternatingRowColors(True)
#        self.tblFiltPerf.verticalHeader().setVisible(False)
        self.tblFiltPerf.horizontalHeader().setHighlightSections(False)
        self.tblFiltPerf.horizontalHeader().setFont(bfont)
        self.tblFiltPerf.verticalHeader().setHighlightSections(False)
        self.tblFiltPerf.verticalHeader().setFont(bfont)

        self.txtFiltInfoBox = QTextBrowser(self)
        self.txtFiltDict = QTextBrowser(self)
        self.txtFiltTree = QTextBrowser(self)

        layVMain = QVBoxLayout()
        layVMain.addWidget(self.frmMain)

#        layVMain.addLayout(self.layHControls)
        splitter = QSplitter(self)
        splitter.setOrientation(Qt.Vertical)
        splitter.addWidget(self.tblFiltPerf)
        splitter.addWidget(self.txtFiltInfoBox)
        splitter.addWidget(self.txtFiltDict)
        splitter.addWidget(self.txtFiltTree)
        # setSizes uses absolute pixel values, but can be "misused" by specifying values
        # that are way too large: in this case, the space is distributed according
        # to the _ratio_ of the values:
        splitter.setSizes([3000, 10000, 1000, 1000])
        layVMain.addWidget(splitter)

        layVMain.setContentsMargins(*params['wdg_margins'])

        self.setLayout(layVMain)

        # ----------------------------------------------------------------------
        # GLOBAL SIGNALS & SLOTs
        # ----------------------------------------------------------------------
        self.sig_rx.connect(self.process_sig_rx)
        # ----------------------------------------------------------------------
        # LOCAL SIGNALS & SLOTs
        # ----------------------------------------------------------------------
        self.butFiltPerf.clicked.connect(self._show_filt_perf)
        self.butAbout.clicked.connect(self._about_window)
        self.butSettings.clicked.connect(self._show_settings)
        self.led_settings_NFFT.editingFinished.connect(self._update_settings_nfft)
        self.butDebug.clicked.connect(self._show_debug)

        self.butFiltDict.clicked.connect(self._show_filt_dict)
        self.butFiltTree.clicked.connect(self._show_filt_tree)
        self.butDocstring.clicked.connect(self._show_doc)
        self.butRichText.clicked.connect(self._show_doc)

    def _about_window(self):
        self.about_widget = AboutWindow(self)  # important: Handle must be class attribute
        # self.opt_widget.show() # modeless dialog, i.e. non-blocking
        self.about_widget.exec_()  # modal dialog (blocking)

# ------------------------------------------------------------------------------
    def _show_debug(self):
        """
        Show / hide debug options depending on the state of the debug button
        """
        self.frmControls2.setVisible(self.butDebug.isChecked())

# ------------------------------------------------------------------------------
    def _show_settings(self):
        """
        Show / hide settings options depending on the state of the settings button
        """
        self.frmSettings.setVisible(self.butSettings.isChecked())

    def _update_settings_nfft(self):
        """ Update value for self.par1 from QLineEdit Widget"""
        params['N_FFT'] = safe_eval(self.led_settings_NFFT.text(), params['N_FFT'],
                                    sign='pos', return_type='int')
        self.led_settings_NFFT.setText(str(params['N_FFT']))
        self.emit({'data_changed': 'n_fft'})

# ------------------------------------------------------------------------------
    def load_dict(self):
        """
        update docs and filter performance
        """
        self._show_doc()
        self._show_filt_perf()
        self._show_filt_dict()
        self._show_filt_tree()

# ------------------------------------------------------------------------------
    def _show_doc(self):
        """
        Display info from filter design file and docstring
        """
        if hasattr(ff.fil_inst, 'info'):
            if self.butRichText.isChecked():
                self.txtFiltInfoBox.setText(publish_string(
                    self._clean_doc(ff.fil_inst.info), writer_name='html',
                    settings_overrides={'output_encoding': 'unicode'}))
            else:
                self.txtFiltInfoBox.setText(textwrap.dedent(ff.fil_inst.info))
        else:
            self.txtFiltInfoBox.setText("")

        if self.butDocstring.isChecked() and hasattr(ff.fil_inst, 'info_doc'):
            if self.butRichText.isChecked():
                self.txtFiltInfoBox.append(
                    '<hr /><b>Python module docstring:</b>\n')
                for doc in ff.fil_inst.info_doc:
                    self.txtFiltInfoBox.append(publish_string(
                     self._clean_doc(doc), writer_name='html',
                     settings_overrides={'output_encoding': 'unicode'}))
            else:
                self.txtFiltInfoBox.append('\nPython module docstring:\n')
                for doc in ff.fil_inst.info_doc:
                    self.txtFiltInfoBox.append(self._clean_doc(doc))

        self.txtFiltInfoBox.moveCursor(QTextCursor.Start)

    def _clean_doc(self, doc):
        """
        Remove uniform number of leading blanks from docstrings for subsequent
        processing of rich text. The first line is treated differently, _all_
        leading blanks are removed (if any). This allows for different formats
        of docstrings.
        """
        lines = doc.splitlines()
        result = lines[0].lstrip() + "\n" + textwrap.dedent("\n".join(lines[1:]))
        return result

# ------------------------------------------------------------------------------
    def _show_filt_perf(self):
        """
        Print filter properties in a table at frequencies of interest. When
        specs are violated, colour the table entry in red.
        """

        antiC = False

        def _find_min_max(self, f_start, f_stop, unit='dB'):
            """
            Find minimum and maximum magnitude and the corresponding frequencies
            for the filter defined in the filter dict in a given frequency band
            [f_start, f_stop].
            """
            w = np.linspace(f_start, f_stop, params['N_FFT'])*2*np.pi
            [w, H] = sig.freqz(bb, aa, worN=w)

            # add antiCausals if we have them
            if (antiC):
               #
               # Evaluate transfer function of anticausal half on the same freq grid.
               #
               wa, ha = sig.freqz(bbA, aaA, worN=w)
               ha = ha.conjugate()
               #
               # Total transfer function is the product
               #
               H = H*ha

            f = w / (2.0 * pi)  # frequency normalized to f_S
            H_abs = abs(H)
            H_max = max(H_abs)
            H_min = min(H_abs)
            F_max = f[np.argmax(H_abs)]  # find the frequency where H_abs
            F_min = f[np.argmin(H_abs)]  # becomes max resp. min
            if unit == 'dB':
                H_max = 20*log10(H_max)
                H_min = 20*log10(H_min)
            return F_min, H_min, F_max, H_max
        # ------------------------------------------------------------------

        self.tblFiltPerf.setVisible(self.butFiltPerf.isChecked())
        if self.butFiltPerf.isChecked():

            bb = fb.fil[0]['ba'][0]
            aa = fb.fil[0]['ba'][1]

            # 'rpk' means nonCausal filter
            if 'rpk' in fb.fil[0]:
                antiC = True
                bbA = fb.fil[0]['baA'][0]
                aaA = fb.fil[0]['baA'][1]
                bbA = bbA.conjugate()
                aaA = aaA.conjugate()

            f_S = fb.fil[0]['f_S']

            f_lbls = []
            f_vals = []
            a_lbls = []
            a_targs = []
            a_targs_dB = []
            a_test = []
            ft = fb.fil[0]['ft']  # get filter type ('IIR', 'FIR')
            unit = fb.fil[0]['amp_specs_unit']
            unit = 'dB'  # fix this for the moment
            # construct pairs of corner frequency and corresponding amplitude
            # labels in ascending frequency for each response type
            if fb.fil[0]['rt'] in {'LP', 'HP', 'BP', 'BS', 'HIL'}:
                if fb.fil[0]['rt'] == 'LP':
                    f_lbls = ['F_PB', 'F_SB']
                    a_lbls = ['A_PB', 'A_SB']
                elif fb.fil[0]['rt'] == 'HP':
                    f_lbls = ['F_SB', 'F_PB']
                    a_lbls = ['A_SB', 'A_PB']
                elif fb.fil[0]['rt'] == 'BP':
                    f_lbls = ['F_SB', 'F_PB', 'F_PB2', 'F_SB2']
                    a_lbls = ['A_SB', 'A_PB', 'A_PB', 'A_SB2']
                elif fb.fil[0]['rt'] == 'BS':
                    f_lbls = ['F_PB', 'F_SB', 'F_SB2', 'F_PB2']
                    a_lbls = ['A_PB', 'A_SB', 'A_SB', 'A_PB2']
                elif fb.fil[0]['rt'] == 'HIL':
                    f_lbls = ['F_PB', 'F_PB2']
                    a_lbls = ['A_PB', 'A_PB']

            # Try to get lists of frequency / amplitude specs from the filter dict
            # that correspond to the f_lbls / a_lbls pairs defined above
            # When one of the labels doesn't exist in the filter dict, delete
            # all corresponding amplitude and frequency entries.
                err = [False] * len(f_lbls)  # initialize error list
                f_vals = []
                a_targs = []
                for i in range(len(f_lbls)):
                    try:
                        f = fb.fil[0][f_lbls[i]]
                        f_vals.append(f)
                    except KeyError as e:
                        f_vals.append('')
                        err[i] = True
                        logger.debug(e)
                    try:
                        a = fb.fil[0][a_lbls[i]]
                        a_dB = lin2unit(fb.fil[0][a_lbls[i]], ft, a_lbls[i], unit)
                        a_targs.append(a)
                        a_targs_dB.append(a_dB)
                    except KeyError as e:
                        a_targs.append('')
                        a_targs_dB.append('')
                        err[i] = True
                        logger.debug(e)

                for i in range(len(f_lbls)):
                    if err[i]:
                        del f_lbls[i]
                        del f_vals[i]
                        del a_lbls[i]
                        del a_targs[i]
                        del a_targs_dB[i]

                f_vals = np.asarray(f_vals)  # convert to numpy array

                logger.debug("F_test_labels = %s" % f_lbls)

                # Calculate frequency response at test frequencies
                [w_test, a_test] = sig.freqz(bb, aa, 2.0 * pi * f_vals.astype(float))
                # add antiCausals if we have them
                if (antiC):
                   wa, ha = sig.freqz(bbA, aaA, 2.0 * pi * f_vals.astype(float))
                   ha = ha.conjugate()
                   a_test = a_test*ha

            (F_min, H_min, F_max, H_max) = _find_min_max(self, 0, 1, unit='V')
            # append frequencies and values for min. and max. filter reponse to
            # test vector

            f_lbls += ['Min.', 'Max.']
            # QTableView does not support direct formatting, use QLabel

            f_vals = np.append(f_vals, [F_min, F_max])
            a_targs = np.append(a_targs, [np.nan, np.nan])
            a_targs_dB = np.append(a_targs_dB, [np.nan, np.nan])
            a_test = np.append(a_test, [H_min, H_max])
            # calculate response of test frequencies in dB
            a_test_dB = -20*log10(abs(a_test))

            # get filter type ('IIR', 'FIR') for dB <-> lin conversion
            ft = fb.fil[0]['ft']
#            unit = fb.fil[0]['amp_specs_unit']
            unit = 'dB'  # make this fixed for the moment

            # build a list with the corresponding target specs:
            a_targs_pass = []
            eps = 1e-3
            for i in range(len(f_lbls)):
                if 'PB' in f_lbls[i]:
                    a_targs_pass.append((a_test_dB[i] - a_targs_dB[i]) < eps)
                    a_test[i] = 1 - abs(a_test[i])
                elif 'SB' in f_lbls[i]:
                    a_targs_pass.append(a_test_dB[i] >= a_targs_dB[i])
                else:
                    a_targs_pass.append(True)

            self.targs_spec_passed = np.all(a_targs_pass)

            logger.debug(
                "H_targ = {0}\n"
                "H_test = {1}\n"
                "H_test_dB = {2}\n"
                "F_test = {3}\n"
                "H_targ_pass = {4}\n"
                "passed: {5}\n".format(a_targs,  a_test,  a_test_dB, f_vals,
                                       a_targs_pass, self.targs_spec_passed))

            self.tblFiltPerf.setRowCount(len(a_test))  # number of table rows
            self.tblFiltPerf.setColumnCount(5)  # number of table columns

            self.tblFiltPerf.setHorizontalHeaderLabels([
                'f/{0:s}'.format(fb.fil[0]['freq_specs_unit']), 'Spec\n(dB)',
                '|H(f)|\n(dB)', 'Spec', '|H(f)|'])
            self.tblFiltPerf.setVerticalHeaderLabels(f_lbls)
            for row in range(len(a_test)):
                self.tblFiltPerf.setItem(
                    row, 0, QTableWidgetItem(str('{0:.4g}'.format(f_vals[row]*f_S))))
                self.tblFiltPerf.setItem(
                    row, 1, QTableWidgetItem(str('%2.3g'%(-a_targs_dB[row]))))
                self.tblFiltPerf.setItem(
                    row, 2, QTableWidgetItem(str('%2.3f'%(-a_test_dB[row]))))
                if a_targs[row] < 0.01:
                    self.tblFiltPerf.setItem(
                        row, 3, QTableWidgetItem(str('%.3e'%(a_targs[row]))))
                else:
                    self.tblFiltPerf.setItem(
                        row, 3, QTableWidgetItem(str('%2.4f'%(a_targs[row]))))
                if a_test[row] < 0.01:
                    self.tblFiltPerf.setItem(
                        row, 4, QTableWidgetItem(str('%.3e'%(abs(a_test[row])))))
                else:
                    self.tblFiltPerf.setItem(
                        row, 4, QTableWidgetItem(str('%.4f'%(abs(a_test[row])))))

                if not a_targs_pass[row]:
                    self.tblFiltPerf.item(row, 1).setBackground(QtGui.QColor('red'))
                    self.tblFiltPerf.item(row, 3).setBackground(QtGui.QColor('red'))

            self.tblFiltPerf.resizeColumnsToContents()
            self.tblFiltPerf.resizeRowsToContents()

# ------------------------------------------------------------------------------
    def _show_filt_dict(self):
        """
        Print filter dict for debugging
        """
        self.txtFiltDict.setVisible(self.butFiltDict.isChecked())

        fb_sorted = [str(key) + ' : ' + str(fb.fil[0][key])
                     for key in sorted(fb.fil[0].keys())]
        dictstr = pprint.pformat(fb_sorted)
#        dictstr = pprint.pformat(fb.fil[0])
        self.txtFiltDict.setText(dictstr)

# ------------------------------------------------------------------------------
    def _show_filt_tree(self):
        """
        Print filter tree for debugging
        """
        self.txtFiltTree.setVisible(self.butFiltTree.isChecked())

        ftree_sorted = ['<b>' + str(key) + ' : ' + '</b>' + str(fb.fil_tree[key])
                        for key in sorted(fb.fil_tree.keys())]
        dictstr = pprint.pformat(ftree_sorted, indent=4)
#        dictstr = pprint.pformat(fb.fil[0])
        self.txtFiltTree.setText(dictstr)
예제 #2
0
class Plot_FFT_win(QDialog):
    """
    Create a pop-up widget for displaying time and frequency view of an FFT
    window.

    Data is passed via the dictionary `win_dict` that is passed during construction.
    """
    # incoming
    sig_rx = pyqtSignal(object)
    # outgoing
    sig_tx = pyqtSignal(object)

    def __init__(self,
                 parent,
                 win_dict=fb.fil[0]['win_fft'],
                 sym=True,
                 title='pyFDA Window Viewer'):
        super(Plot_FFT_win, self).__init__(parent)

        self.needs_calc = True
        self.needs_draw = True
        self.needs_redraw = True

        self.bottom_f = -80  # min. value for dB display
        self.bottom_t = -60
        self.N = 32  # initial number of data points
        self.N_auto = win_dict['win_len']

        self.pad = 16  # amount of zero padding

        self.win_dict = win_dict
        self.sym = sym

        self.tbl_rows = 2
        self.tbl_cols = 6
        # initial settings for checkboxes
        self.tbl_sel = [True, True, False, False]

        self.setAttribute(Qt.WA_DeleteOnClose)
        self.setWindowTitle(title)
        self._construct_UI()

        qwindow_stay_on_top(self, True)

#------------------------------------------------------------------------------

    def closeEvent(self, event):
        """
        Catch closeEvent (user has tried to close the window) and send a
        signal to parent where window closing is registered before actually
        closing the window.
        """
        self.sig_tx.emit({'sender': __name__, 'closeEvent': ''})
        event.accept()

#------------------------------------------------------------------------------

    def process_sig_rx(self, dict_sig=None):
        """
        Process signals coming from the navigation toolbar and from sig_rx
        """
        logger.debug("PROCESS_SIG_RX - vis: {0}\n{1}"\
                     .format(self.isVisible(), pprint_log(dict_sig)))
        if ('view_changed' in dict_sig and dict_sig['view_changed'] == 'win')\
            or ('filt_changed' in dict_sig and dict_sig['filt_changed'] == 'firwin')\
            or self.needs_calc:
            # logger.warning("Auto: {0} - WinLen: {1}".format(self.N_auto, self.win_dict['win_len']))
            self.N_auto = self.win_dict['win_len']
            self.calc_N()

            if self.isVisible():
                self.draw()
                self.needs_calc = False
            else:
                self.needs_calc = True

        elif 'home' in dict_sig:
            self.update_view()

        else:
            logger.error("Unknown content of dict_sig: {0}".format(dict_sig))

#------------------------------------------------------------------------------

    def _construct_UI(self):
        """
        Intitialize the widget, consisting of:
        - Matplotlib widget with NavigationToolbar
        - Frame with control elements
        """
        self.bfont = QFont()
        self.bfont.setBold(True)

        self.chk_auto_N = QCheckBox(self)
        self.chk_auto_N.setChecked(False)
        self.chk_auto_N.setToolTip(
            "Use number of points from calling routine.")

        self.lbl_auto_N = QLabel("Auto " + to_html("N", frmt='i'))

        self.led_N = QLineEdit(self)
        self.led_N.setText(str(self.N))
        self.led_N.setMaximumWidth(70)
        self.led_N.setToolTip("<span>Number of window data points.</span>")

        self.chk_log_t = QCheckBox("Log", self)
        self.chk_log_t.setChecked(False)
        self.chk_log_t.setToolTip("Display in dB")

        self.led_log_bottom_t = QLineEdit(self)
        self.led_log_bottom_t.setText(str(self.bottom_t))
        self.led_log_bottom_t.setMaximumWidth(50)
        self.led_log_bottom_t.setEnabled(self.chk_log_t.isChecked())
        self.led_log_bottom_t.setToolTip(
            "<span>Minimum display value for log. scale.</span>")

        self.lbl_log_bottom_t = QLabel("dB", self)
        self.lbl_log_bottom_t.setEnabled(self.chk_log_t.isChecked())

        self.chk_norm_f = QCheckBox("Norm", self)
        self.chk_norm_f.setChecked(True)
        self.chk_norm_f.setToolTip(
            "Normalize window spectrum for a maximum of 1.")

        self.chk_half_f = QCheckBox("Half", self)
        self.chk_half_f.setChecked(True)
        self.chk_half_f.setToolTip(
            "Display window spectrum in the range 0 ... 0.5 f_S.")

        self.chk_log_f = QCheckBox("Log", self)
        self.chk_log_f.setChecked(True)
        self.chk_log_f.setToolTip("Display in dB")

        self.led_log_bottom_f = QLineEdit(self)
        self.led_log_bottom_f.setText(str(self.bottom_f))
        self.led_log_bottom_f.setMaximumWidth(50)
        self.led_log_bottom_f.setEnabled(self.chk_log_f.isChecked())
        self.led_log_bottom_f.setToolTip(
            "<span>Minimum display value for log. scale.</span>")

        self.lbl_log_bottom_f = QLabel("dB", self)
        self.lbl_log_bottom_f.setEnabled(self.chk_log_f.isChecked())

        layHControls = QHBoxLayout()
        layHControls.addWidget(self.chk_auto_N)
        layHControls.addWidget(self.lbl_auto_N)
        layHControls.addWidget(self.led_N)
        layHControls.addStretch(1)
        layHControls.addWidget(self.chk_log_t)
        layHControls.addWidget(self.led_log_bottom_t)
        layHControls.addWidget(self.lbl_log_bottom_t)
        layHControls.addStretch(10)
        layHControls.addWidget(self.chk_norm_f)
        layHControls.addStretch(1)
        layHControls.addWidget(self.chk_half_f)
        layHControls.addStretch(1)
        layHControls.addWidget(self.chk_log_f)
        layHControls.addWidget(self.led_log_bottom_f)
        layHControls.addWidget(self.lbl_log_bottom_f)

        self.tblWinProperties = QTableWidget(self.tbl_rows, self.tbl_cols,
                                             self)
        self.tblWinProperties.setAlternatingRowColors(True)
        self.tblWinProperties.verticalHeader().setVisible(False)
        self.tblWinProperties.horizontalHeader().setVisible(False)
        self._init_table(self.tbl_rows, self.tbl_cols, " ")

        self.txtInfoBox = QTextBrowser(self)

        #----------------------------------------------------------------------
        #               ### frmControls ###
        #
        # This widget encompasses all control subwidgets
        #----------------------------------------------------------------------
        self.frmControls = QFrame(self)
        self.frmControls.setObjectName("frmControls")
        self.frmControls.setLayout(layHControls)

        #----------------------------------------------------------------------
        #               ### mplwidget ###
        #
        # main widget: Layout layVMainMpl (VBox) is defined with MplWidget,
        #              additional widgets can be added (like self.frmControls)
        #              The widget encompasses all other widgets.
        #----------------------------------------------------------------------
        self.mplwidget = MplWidget(self)
        self.mplwidget.layVMainMpl.addWidget(self.frmControls)
        self.mplwidget.layVMainMpl.setContentsMargins(*params['wdg_margins'])

        #----------------------------------------------------------------------
        #               ### frmInfo ###
        #
        # This widget encompasses the text info box and the table with window
        # parameters.
        #----------------------------------------------------------------------
        layVInfo = QVBoxLayout(self)
        layVInfo.addWidget(self.tblWinProperties)
        layVInfo.addWidget(self.txtInfoBox)

        self.frmInfo = QFrame(self)
        self.frmInfo.setObjectName("frmInfo")
        self.frmInfo.setLayout(layVInfo)

        #----------------------------------------------------------------------
        #               ### splitter ###
        #
        # This widget encompasses all control subwidgets
        #----------------------------------------------------------------------

        splitter = QSplitter(self)
        splitter.setOrientation(Qt.Vertical)
        splitter.addWidget(self.mplwidget)
        splitter.addWidget(self.frmInfo)

        # setSizes uses absolute pixel values, but can be "misused" by specifying values
        # that are way too large: in this case, the space is distributed according
        # to the _ratio_ of the values:
        splitter.setSizes([3000, 1000])

        layVMain = QVBoxLayout()
        layVMain.addWidget(splitter)
        self.setLayout(layVMain)

        #----------------------------------------------------------------------
        #           Set subplots
        #
        self.ax = self.mplwidget.fig.subplots(nrows=1, ncols=2)
        self.ax_t = self.ax[0]
        self.ax_f = self.ax[1]

        self.draw()  # initial drawing

        #----------------------------------------------------------------------
        # GLOBAL SIGNALS & SLOTs
        #----------------------------------------------------------------------
        self.sig_rx.connect(self.process_sig_rx)

        #----------------------------------------------------------------------
        # LOCAL SIGNALS & SLOTs
        #----------------------------------------------------------------------
        self.chk_log_f.clicked.connect(self.update_view)
        self.chk_log_t.clicked.connect(self.update_view)
        self.led_log_bottom_t.editingFinished.connect(self.update_bottom)
        self.led_log_bottom_f.editingFinished.connect(self.update_bottom)

        self.chk_auto_N.clicked.connect(self.calc_N)
        self.led_N.editingFinished.connect(self.draw)

        self.chk_norm_f.clicked.connect(self.draw)
        self.chk_half_f.clicked.connect(self.update_view)

        self.mplwidget.mplToolbar.sig_tx.connect(self.process_sig_rx)
        self.tblWinProperties.itemClicked.connect(self._handle_item_clicked)
#------------------------------------------------------------------------------

    def _init_table(self, rows, cols, val):
        for r in range(rows):
            for c in range(cols):
                item = QTableWidgetItem(val)
                if c % 3 == 0:
                    item.setFlags(Qt.ItemIsUserCheckable | Qt.ItemIsEnabled)
                    if self.tbl_sel[r * 2 + c % 3]:
                        item.setCheckState(Qt.Checked)
                    else:
                        item.setCheckState(Qt.Unchecked)
                self.tblWinProperties.setItem(r, c, item)
#   https://stackoverflow.com/questions/12366521/pyqt-checkbox-in-qtablewidget

#------------------------------------------------------------------------------

    def _set_table_item(self, row, col, val, font=None, sel=None):
        """
        Set the table item with the index `row, col` and the value val
        """
        item = self.tblWinProperties.item(row, col)
        item.setText(str(val))

        if font:
            self.tblWinProperties.item(row, col).setFont(font)

        if sel == True:
            item.setCheckState(Qt.Checked)
        if sel == False:
            item.setCheckState(Qt.Unchecked)
        # when sel is not specified, don't change anything

#------------------------------------------------------------------------------

    def _handle_item_clicked(self, item):
        if item.column() % 3 == 0:  # clicked on checkbox
            num = item.row() * 2 + item.column() // 3
            if item.checkState() == Qt.Checked:
                self.tbl_sel[num] = True
                logger.debug('"{0}:{1}" Checked'.format(item.text(), num))
            else:
                self.tbl_sel[num] = False
                logger.debug('"{0}:{1}" Unchecked'.format(item.text(), num))

        elif item.column() % 3 == 1:  # clicked on value field
            logger.info("{0:s} copied to clipboard.".format(item.text()))
            fb.clipboard.setText(item.text())

        self.update_view()

#------------------------------------------------------------------------------

    def update_bottom(self):
        """
        Update log bottom settings
        """
        self.bottom_t = safe_eval(self.led_log_bottom_t.text(),
                                  self.bottom_t,
                                  sign='neg',
                                  return_type='float')
        self.led_log_bottom_t.setText(str(self.bottom_t))

        self.bottom_f = safe_eval(self.led_log_bottom_f.text(),
                                  self.bottom_f,
                                  sign='neg',
                                  return_type='float')
        self.led_log_bottom_f.setText(str(self.bottom_f))

        self.update_view()

#------------------------------------------------------------------------------

    def calc_N(self):
        """
        (Re-)Calculate the number of data points when Auto N chkbox has been
        clicked or when the number of data points has been updated outside this
        class
        """
        if self.chk_auto_N.isChecked():
            self.N = self.N_auto

        self.draw()

#------------------------------------------------------------------------------

    def calc_win(self):
        """
        (Re-)Calculate the window and its FFT
        """
        self.led_N.setEnabled(not self.chk_auto_N.isChecked())

        if not self.chk_auto_N.isChecked():
            self.N = safe_eval(self.led_N.text(),
                               self.N,
                               sign='pos',
                               return_type='int')

    # else:
    #self.N = self.win_dict['win_len']

        self.led_N.setText(str(self.N))

        self.n = np.arange(self.N)

        self.win = calc_window_function(self.win_dict,
                                        self.win_dict['name'],
                                        self.N,
                                        sym=self.sym)

        self.nenbw = self.N * np.sum(np.square(self.win)) / (np.square(
            np.sum(self.win)))
        self.cgain = np.sum(self.win) / self.N

        self.F = fftfreq(self.N * self.pad,
                         d=1. / fb.fil[0]['f_S'])  # use zero padding
        self.Win = np.abs(fft(self.win, self.N * self.pad))
        if self.chk_norm_f.isChecked():
            self.Win /= (self.N * self.cgain
                         )  # correct gain for periodic signals (coherent gain)

        first_zero = argrelextrema(self.Win[:(self.N * self.pad) // 2],
                                   np.less)
        if np.shape(first_zero)[1] > 0:
            first_zero = first_zero[0][0]
            self.first_zero_f = self.F[first_zero]
            self.sidelobe_level = np.max(
                self.Win[first_zero:(self.N * self.pad) // 2])
        else:
            self.first_zero_f = np.nan
            self.sidelobe_level = 0

#------------------------------------------------------------------------------

    def draw(self):
        """
        Main entry point:
        Re-calculate \|H(f)\| and draw the figure
        """
        self.calc_win()
        self.update_view()

#------------------------------------------------------------------------------

    def update_view(self):
        """
        Draw the figure with new limits, scale etc without recalculating the
        window.
        """
        # suppress "divide by zero in log10" warnings
        old_settings_seterr = np.seterr()
        np.seterr(divide='ignore')

        self.ax_t.cla()
        self.ax_f.cla()

        self.ax_t.set_xlabel(fb.fil[0]['plt_tLabel'])
        self.ax_t.set_ylabel(r'$w[n] \; \rightarrow$')

        self.ax_f.set_xlabel(fb.fil[0]['plt_fLabel'])
        self.ax_f.set_ylabel(r'$W(f) \; \rightarrow$')

        if self.chk_log_t.isChecked():
            self.ax_t.plot(
                self.n,
                np.maximum(20 * np.log10(np.abs(self.win)), self.bottom_t))
        else:
            self.ax_t.plot(self.n, self.win)

        if self.chk_half_f.isChecked():
            F = self.F[:len(self.F * self.pad) // 2]
            Win = self.Win[:len(self.F * self.pad) // 2]
        else:
            F = fftshift(self.F)
            Win = fftshift(self.Win)

        if self.chk_log_f.isChecked():
            self.ax_f.plot(
                F, np.maximum(20 * np.log10(np.abs(Win)), self.bottom_f))
            self.nenbw_disp = 10 * np.log10(self.nenbw)
            self.cgain_disp = 20 * np.log10(self.cgain)
            self.sidelobe_level_disp = 20 * np.log10(self.sidelobe_level)
            self.unit_nenbw = "dB"
            self.unit_scale = "dB"
        else:
            self.ax_f.plot(F, Win)
            self.nenbw_disp = self.nenbw
            self.cgain_disp = self.cgain
            self.sidelobe_level_disp = self.sidelobe_level
            self.unit_nenbw = "bins"
            self.unit_scale = ""

        self.led_log_bottom_t.setEnabled(self.chk_log_t.isChecked())
        self.lbl_log_bottom_t.setEnabled(self.chk_log_t.isChecked())
        self.led_log_bottom_f.setEnabled(self.chk_log_f.isChecked())
        self.lbl_log_bottom_f.setEnabled(self.chk_log_f.isChecked())

        window_name = self.win_dict['name']
        param_txt = ""
        if self.win_dict['n_par'] > 0:
            param_txt = " (" + self.win_dict['par'][0][
                'name_tex'] + " = {0:.3g})".format(
                    self.win_dict['par'][0]['val'])
        if self.win_dict['n_par'] > 1:
            param_txt = param_txt[:-1]\
                + ", {0:s} = {1:.3g})".format(self.win_dict['par'][1]['name_tex'], self.win_dict['par'][1]['val'])

        self.mplwidget.fig.suptitle(r'{0} Window'.format(window_name) +
                                    param_txt)

        # plot a line at the max. sidelobe level
        if self.tbl_sel[3]:
            self.ax_f.axhline(self.sidelobe_level_disp, ls='dotted', c='b')

        patch = mpl_patches.Rectangle((0, 0),
                                      1,
                                      1,
                                      fc="white",
                                      ec="white",
                                      lw=0,
                                      alpha=0)
        # Info legend for time domain window
        labels_t = []
        labels_t.append("$N$ = {0:d}".format(self.N))
        self.ax_t.legend([patch],
                         labels_t,
                         loc='best',
                         fontsize='small',
                         fancybox=True,
                         framealpha=0.7,
                         handlelength=0,
                         handletextpad=0)

        # Info legend for frequency domain window
        labels_f = []
        N_patches = 0
        if self.tbl_sel[0]:
            labels_f.append("$NENBW$ = {0:.4g} {1}".format(
                self.nenbw_disp, self.unit_nenbw))
            N_patches += 1
        if self.tbl_sel[1]:
            labels_f.append("$CGAIN$ = {0:.4g} {1}".format(
                self.cgain_disp, self.unit_scale))
            N_patches += 1
        if self.tbl_sel[2]:
            labels_f.append("1st Zero = {0:.4g}".format(self.first_zero_f))
            N_patches += 1
        if N_patches > 0:
            self.ax_f.legend([patch] * N_patches,
                             labels_f,
                             loc='best',
                             fontsize='small',
                             fancybox=True,
                             framealpha=0.7,
                             handlelength=0,
                             handletextpad=0)
        np.seterr(**old_settings_seterr)

        self.update_info()
        self.redraw()

#------------------------------------------------------------------------------

    def update_info(self):
        """
        Update the text info box for the window
        """
        if 'info' in self.win_dict:
            self.txtInfoBox.setText(self.win_dict['info'])

        self._set_table_item(0, 0, "ENBW", font=self.bfont)  #, sel=True)
        self._set_table_item(0, 1, "{0:.5g}".format(self.nenbw_disp))
        self._set_table_item(0, 2, self.unit_nenbw)
        self._set_table_item(0, 3, "Scale", font=self.bfont)  #, sel=True)
        self._set_table_item(0, 4, "{0:.5g}".format(self.cgain_disp))
        self._set_table_item(0, 5, self.unit_scale)

        self._set_table_item(1, 0, "1st Zero", font=self.bfont)  #, sel=True)
        self._set_table_item(1, 1, "{0:.5g}".format(self.first_zero_f))
        self._set_table_item(1, 2, "f_S")

        self._set_table_item(1, 3, "Sidelobes", font=self.bfont)  #, sel=True)
        self._set_table_item(1, 4, "{0:.5g}".format(self.sidelobe_level_disp))
        self._set_table_item(1, 5, self.unit_scale)

        self.tblWinProperties.resizeColumnsToContents()
        self.tblWinProperties.resizeRowsToContents()
#------------------------------------------------------------------------------

    def redraw(self):
        """
        Redraw the canvas when e.g. the canvas size has changed
        """
        self.mplwidget.redraw()
        self.needs_redraw = False
예제 #3
0
파일: input_pz.py 프로젝트: xfunture/pyfda
class Input_PZ(QWidget):
    """
    Create the window for entering exporting / importing and saving / loading data
    """
    sig_rx = pyqtSignal(object)  # incoming from input_tab_widgets
    sig_tx = pyqtSignal(object)  # emitted when filter has been saved

    def __init__(self, parent):
        super(Input_PZ, self).__init__(parent)

        self.data_changed = True  # initialize flag: filter data has been changed

        self.Hmax_last = 1  # initial setting for maximum gain
        self.angle_char = "\u2220"

        self.tab_label = "P/Z"
        self.tool_tip = "Display and edit filter poles and zeros."

        self.ui = Input_PZ_UI(self)  # create the UI part with buttons etc.
        self.norm_last = qget_cmb_box(self.ui.cmbNorm,
                                      data=False)  # initial setting of cmbNorm
        self._construct_UI()  # construct the rest of the UI

        self.load_dict()  # initialize table from filterbroker
        self._refresh_table()  # initialize table with values

        self.setup_signal_slot(
        )  # setup signal-slot connections and eventFilters

#------------------------------------------------------------------------------

    def process_sig_rx(self, dict_sig=None):
        """
        Process signals coming from sig_rx
        """

        if dict_sig['sender'] == __name__:
            logger.debug("Stopped infinite loop:\n{0}".format(
                pprint_log(dict_sig)))
            return
        else:
            logger.debug("SIG_RX - data_changed = {0}, vis = {1}\n{2}"\
                     .format(self.data_changed, self.isVisible(), pprint_log(dict_sig)))

        if 'ui_changed' in dict_sig and dict_sig['ui_changed'] == 'csv':
            self.ui._set_load_save_icons()
            #self.sig_tx.emit(dict_sig)

        elif self.isVisible():
            if 'data_changed' in dict_sig or self.data_changed:
                self.load_dict()
                self.data_changed = False
        else:
            # TODO: draw wouldn't be necessary for 'view_changed', only update view
            if 'data_changed' in dict_sig:
                self.data_changed = True

#------------------------------------------------------------------------------

    def _construct_UI(self):
        """
        Intitialize the widget
        """
        self.tblPZ = QTableWidget(self)
        #        self.tblPZ.setEditTriggers(QTableWidget.AllEditTriggers) # make everything editable
        self.tblPZ.setAlternatingRowColors(True)  # alternating row colors)
        self.tblPZ.setObjectName("tblPZ")

        self.tblPZ.horizontalHeader().setHighlightSections(
            True)  # highlight when selected
        self.tblPZ.horizontalHeader().setFont(self.ui.bfont)

        self.tblPZ.verticalHeader().setHighlightSections(True)
        self.tblPZ.verticalHeader().setFont(self.ui.bfont)
        self.tblPZ.setColumnCount(2)
        self.tblPZ.setItemDelegate(ItemDelegate(self))

        layVMain = QVBoxLayout()
        layVMain.setAlignment(
            Qt.AlignTop)  # this affects only the first widget (intended here)
        layVMain.addWidget(self.ui)
        layVMain.addWidget(self.tblPZ)

        layVMain.setContentsMargins(*params['wdg_margins'])

        self.setLayout(layVMain)

    def setup_signal_slot(self):
        """
        Setup setup signal-slot connections
        """
        #----------------------------------------------------------------------
        # GLOBAL SIGNALS & SLOTs
        #----------------------------------------------------------------------
        self.sig_rx.connect(self.process_sig_rx)
        self.ui.sig_tx.connect(self.sig_tx)

        #----------------------------------------------------------------------
        # LOCAL (UI) SIGNALS & SLOTs
        #----------------------------------------------------------------------
        self.ui.cmbPZFrmt.activated.connect(self._refresh_table)
        self.ui.spnDigits.editingFinished.connect(self._refresh_table)
        self.ui.butLoad.clicked.connect(self.load_dict)
        self.ui.butEnable.clicked.connect(self.load_dict)

        self.ui.butSave.clicked.connect(self._save_entries)
        self.ui.cmbNorm.activated.connect(self._normalize_gain)

        self.ui.butDelCells.clicked.connect(self._delete_cells)
        self.ui.butAddCells.clicked.connect(self._add_rows)
        self.ui.butClear.clicked.connect(self._clear_table)

        self.ui.butFromTable.clicked.connect(self._copy_from_table)
        self.ui.butToTable.clicked.connect(self._copy_to_table)

        self.ui.butSetZero.clicked.connect(self._zero_PZ)

        self.ui.ledGain.installEventFilter(self)
        self.ui.ledEps.editingFinished.connect(self._set_eps)

        #----------------------------------------------------------------------
        # self.tblPZ.itemSelectionChanged.connect(self._copy_item)
        #
        # Every time a table item is edited, call self._copy_item to copy the
        # item content to self.zpk. This is triggered by the itemChanged signal.
        # The event filter monitors the focus of the input fields.

        # signal itemChanged is also triggered programmatically,
        # itemSelectionChanged is only triggered when entering cell

#------------------------------------------------------------------------------

    def eventFilter(self, source, event):
        """
        Filter all events generated by the QLineEdit widgets. Source and type
        of all events generated by monitored objects are passed to this eventFilter,
        evaluated and passed on to the next hierarchy level.

        - When a QLineEdit widget gains input focus (`QEvent.FocusIn`), display
          the stored value from filter dict with full precision
        - When a key is pressed inside the text field, set the `spec_edited` flag
          to True.
        - When a QLineEdit widget loses input focus (`QEvent.FocusOut`), store
          current value in linear format with full precision (only if
          `spec_edited == True`) and display the stored value in selected format
        """

        if isinstance(source, QLineEdit):
            if event.type() == QEvent.FocusIn:  # 8
                self.spec_edited = False
                self._restore_gain(source)
                return True  # event processing stops here

            elif event.type() == QEvent.KeyPress:
                self.spec_edited = True  # entry has been changed
                key = event.key()  # key press: 6, key release: 7
                if key in {QtCore.Qt.Key_Return,
                           QtCore.Qt.Key_Enter}:  # store entry
                    self._store_gain(source)
                    self._restore_gain(source)  # display in desired format
                    return True

                elif key == QtCore.Qt.Key_Escape:  # revert changes
                    self.spec_edited = False
                    self._restore_gain(source)
                    return True

            elif event.type() == QEvent.FocusOut:  # 9
                self._store_gain(source)
                self._restore_gain(source)  # display in desired format
                return True

        return super(Input_PZ, self).eventFilter(source, event)

#------------------------------------------------------------------------------

    def _store_gain(self, source):
        """
        When the textfield of `source` has been edited (flag `self.spec_edited` =  True),
        store it in the shadow dict. This is triggered by `QEvent.focusOut` or
        RETURN key.
        """
        if self.spec_edited:
            self.zpk[2] = safe_eval(source.text(), alt_expr=str(self.zpk[2]))
            self.spec_edited = False  # reset flag

#------------------------------------------------------------------------------

    def _normalize_gain(self):
        """
        Normalize the gain factor so that the maximum of |H(f)| stays 1 or a
        previously stored maximum value of |H(f)|. Do this every time a P or Z
        has been changed.
        Called by setModelData() and when cmbNorm is activated

        """
        norm = qget_cmb_box(self.ui.cmbNorm, data=False)
        self.ui.ledGain.setEnabled(norm == 'None')
        if norm != self.norm_last:
            qstyle_widget(self.ui.butSave, 'changed')
        if not np.isfinite(self.zpk[2]):
            self.zpk[2] = 1.
        self.zpk[2] = np.real_if_close(self.zpk[2]).item()
        if np.iscomplex(self.zpk[2]):
            logger.warning("Casting complex to real for gain k!")
            self.zpk[2] = np.abs(self.zpk[2])

        if norm != "None":
            b, a = zpk2tf(self.zpk[0], self.zpk[1], self.zpk[2])
            [w, H] = freqz(b, a, whole=True)
            Hmax = max(abs(H))
            if not np.isfinite(Hmax) or Hmax > 1e4 or Hmax < 1e-4:
                Hmax = 1.
            if norm == "1":
                self.zpk[2] = self.zpk[2] / Hmax  # normalize to 1
            elif norm == "Max":
                if norm != self.norm_last:  # setting has been changed -> 'Max'
                    self.Hmax_last = Hmax  # use current design to set Hmax_last
                self.zpk[2] = self.zpk[2] / Hmax * self.Hmax_last
        self.norm_last = norm  # store current setting of combobox

        self._restore_gain()

#------------------------------------------------------------------------------

    def _restore_gain(self, source=None):
        """
        Update QLineEdit with either full (has focus) or reduced precision (no focus)

        Called by eventFilter, _normalize_gain() and _refresh_table()
        """

        if self.ui.butEnable.isChecked():
            if len(self.zpk) == 3:
                pass
            elif len(self.zpk) == 2:  # k is missing in zpk:
                self.zpk.append(1.)  # use k = 1
            else:
                logger.error("P/Z list zpk has wrong length {0}".format(
                    len(self.zpk)))

            k = safe_eval(self.zpk[2], return_type='auto')

            if not self.ui.ledGain.hasFocus():  # no focus, round the gain
                self.ui.ledGain.setText(str(params['FMT'].format(k)))
            else:  # widget has focus, show gain with full precision
                self.ui.ledGain.setText(str(k))

#------------------------------------------------------------------------------

    def _refresh_table_item(self, row, col):
        """
        Refresh the table item with the index `row, col` from self.zpk
        """
        item = self.tblPZ.item(row, col)
        if item:  # does item exist?
            item.setText(str(self.zpk[col][row]).strip('()'))
        else:  # no, construct it:
            self.tblPZ.setItem(
                row, col,
                QTableWidgetItem(str(self.zpk[col][row]).strip('()')))
        self.tblPZ.item(row,
                        col).setTextAlignment(Qt.AlignRight | Qt.AlignCenter)

#------------------------------------------------------------------------------

    def _refresh_table(self):
        """
        (Re-)Create the displayed table from self.zpk with the
        desired number format.

        TODO:
        Update zpk[2]?

        Called by: load_dict(), _clear_table(), _zero_PZ(), _delete_cells(), 
                add_row(), _copy_to_table()
        """

        params['FMT_pz'] = int(self.ui.spnDigits.text())

        self.tblPZ.setVisible(self.ui.butEnable.isChecked())

        if self.ui.butEnable.isChecked():

            self.ui.butEnable.setIcon(QIcon(':/circle-x.svg'))

            self._restore_gain()

            self.tblPZ.setHorizontalHeaderLabels(["Zeros", "Poles"])
            self.tblPZ.setRowCount(max(len(self.zpk[0]), len(self.zpk[1])))

            self.tblPZ.blockSignals(True)
            for col in range(2):
                for row in range(len(self.zpk[col])):
                    self._refresh_table_item(row, col)

            self.tblPZ.blockSignals(False)

            self.tblPZ.resizeColumnsToContents()
            self.tblPZ.resizeRowsToContents()
            self.tblPZ.clearSelection()

        else:  # disable widgets
            self.ui.butEnable.setIcon(QIcon(':/circle-check.svg'))

#------------------------------------------------------------------------------

    def load_dict(self):
        """
        Load all entries from filter dict fb.fil[0]['zpk'] into the Zero/Pole/Gain list
        self.zpk and update the display via `self._refresh_table()`.
        The explicit np.array( ... ) statement enforces a deep copy of fb.fil[0],
        otherwise the filter dict would be modified inadvertedly.

        The filter dict is a "normal" numpy float array for z / p / k values
        The ZPK register `self.zpk` should be a list of float ndarrays to allow
        for different lengths of z / p / k subarrays while adding / deleting items.?
        """
        # TODO: check the above
        self.zpk = np.array(fb.fil[0]['zpk'])  # this enforces a deep copy
        qstyle_widget(self.ui.butSave, 'normal')
        self._refresh_table()

#------------------------------------------------------------------------------

    def _save_entries(self):
        """
        Save the values from self.zpk to the filter PZ dict,
        the QLineEdit for setting the gain has to be treated separately.
        """

        logger.debug("_save_entries called")

        fb.fil[0]['N'] = len(self.zpk[0])
        if np.any(self.zpk[1]):  # any non-zero poles?
            fb.fil[0]['fc'] = 'Manual_IIR'
        else:
            fb.fil[0]['fc'] = 'Manual_FIR'

        try:
            fil_save(fb.fil[0], self.zpk, 'zpk',
                     __name__)  # save with new gain
        except Exception as e:
            # catch exception due to malformatted P/Zs:
            logger.error("While saving the poles / zeros, "
                         "the following error occurred:\n{0}".format(e))

        if __name__ == '__main__':
            self.load_dict()  # only needed for stand-alone test

        self.sig_tx.emit({'sender': __name__, 'data_changed': 'input_pz'})
        # -> input_tab_widgets

        qstyle_widget(self.ui.butSave, 'normal')

        logger.debug("b,a = {0}\n\n"
                     "zpk = {1}\n".format(pformat(fb.fil[0]['ba']),
                                          pformat(fb.fil[0]['zpk'])))

#------------------------------------------------------------------------------

    def _clear_table(self):
        """
        Clear & initialize table and zpk for two poles and zeros @ origin,
        P = Z = [0; 0], k = 1
        """
        self.zpk = np.array([[0, 0], [0, 0], 1])
        self.Hmax_last = 1.0
        self.anti = False

        qstyle_widget(self.ui.butSave, 'changed')
        self._refresh_table()

#------------------------------------------------------------------------------

    def _get_selected(self, table):
        """
        get selected cells and return:
        - indices of selected cells
        - selected colums
        - selected rows
        - current cell
        """
        idx = []
        for _ in table.selectedItems():
            idx.append([
                _.column(),
                _.row(),
            ])
        cols = sorted(list({i[0] for i in idx}))
        rows = sorted(list({i[1] for i in idx}))
        cur = (table.currentColumn(), table.currentRow())
        #cur_idx_row = table.currentIndex().row()

        return {'idx': idx, 'cols': cols, 'rows': rows, 'cur': cur}

#------------------------------------------------------------------------------

    def _delete_cells(self):
        """
        Delete all selected elements by:
        - determining the indices of all selected cells in the P and Z arrays
        - deleting elements with those indices
        - equalizing the lengths of P and Z array by appending the required
          number of zeros.
        - deleting all P/Z pairs
        Finally, the table is refreshed from self.zpk.
        """
        sel = self._get_selected(self.tblPZ)['idx']  # get all selected indices
        Z = [s[1] for s in sel
             if s[0] == 0]  # all selected indices in 'Z' column
        P = [s[1] for s in sel
             if s[0] == 1]  # all selected indices in 'P' column

        # Delete array entries with selected indices. If nothing is selected
        # (Z and P are empty), delete the last row.
        if len(Z) < 1 and len(P) < 1:
            Z = [len(self.zpk[0]) - 1]
            P = [len(self.zpk[1]) - 1]
        self.zpk[0] = np.delete(self.zpk[0], Z)
        self.zpk[1] = np.delete(self.zpk[1], P)

        # test and equalize if P and Z array have different lengths:
        D = len(self.zpk[0]) - len(self.zpk[1])
        if D > 0:
            self.zpk[1] = np.append(self.zpk[1], np.zeros(D))
        elif D < 0:
            self.zpk[0] = np.append(self.zpk[0], np.zeros(-D))

        self._delete_PZ_pairs()
        self._normalize_gain()
        qstyle_widget(self.ui.butSave, 'changed')
        self._refresh_table()

#------------------------------------------------------------------------------

    def _add_rows(self):
        """
        Add the number of selected rows to the table and fill new cells with
        zeros. If nothing is selected, add one row.
        """
        row = self.tblPZ.currentRow()
        sel = len(self._get_selected(self.tblPZ)['rows'])
        # TODO: evaluate and create non-contiguous selections as well?

        if sel == 0:  # nothing selected ->
            sel = 1  # add at least one row ...
            row = min(len(self.zpk[0]), len(self.zpk[1]))  # ... at the bottom

        self.zpk[0] = np.insert(self.zpk[0], row, np.zeros(sel))
        self.zpk[1] = np.insert(self.zpk[1], row, np.zeros(sel))

        self._refresh_table()

#------------------------------------------------------------------------------

    def _set_eps(self):
        """
        Set tolerance value 
        """
        self.ui.eps = safe_eval(self.ui.ledEps.text(),
                                alt_expr=self.ui.eps,
                                sign='pos')
        self.ui.ledEps.setText(str(self.ui.eps))

#------------------------------------------------------------------------------

    def _zero_PZ(self):
        """
        Set all P/Zs = 0 with a magnitude less than eps and delete P/Z pairs
        afterwards.
        """
        changed = False
        targ_val = 0.
        test_val = 0
        sel = self._get_selected(self.tblPZ)['idx']  # get all selected indices

        if not sel:  # nothing selected, check all cells
            z_close = np.logical_and(
                np.isclose(self.zpk[0], test_val, rtol=0, atol=self.ui.eps),
                (self.zpk[0] != targ_val))
            p_close = np.logical_and(
                np.isclose(self.zpk[1], test_val, rtol=0, atol=self.ui.eps),
                (self.zpk[1] != targ_val))
            if z_close.any():
                self.zpk[0] = np.where(z_close, targ_val, self.zpk[0])
                changed = True
            if p_close.any():
                self.zpk[1] = np.where(p_close, targ_val, self.zpk[1])
                changed = True
        else:
            for i in sel:  # check only selected cells
                if np.logical_and(
                        np.isclose(self.zpk[i[0]][i[1]],
                                   test_val,
                                   rtol=0,
                                   atol=self.ui.eps),
                    (self.zpk[i[0]][i[1]] != targ_val)):
                    self.zpk[i[0]][i[1]] = targ_val
                    changed = True

        self._delete_PZ_pairs()
        self._normalize_gain()
        if changed:
            qstyle_widget(self.ui.butSave,
                          'changed')  # mark save button as changed
        self._refresh_table()

#------------------------------------------------------------------------------

    def _delete_PZ_pairs(self):
        """
        Find and delete pairs of poles and zeros in self.zpk
        The filter dict and the table have to be updated afterwards.
        """
        for z in range(len(self.zpk[0]) - 1, -1, -1):  # start at the bottom
            for p in range(len(self.zpk[1]) - 1, -1, -1):
                if np.isclose(self.zpk[0][z],
                              self.zpk[1][p],
                              rtol=0,
                              atol=self.ui.eps):
                    self.zpk[0] = np.delete(self.zpk[0], z)
                    self.zpk[1] = np.delete(self.zpk[1], p)
                    break  # ... out of loop

        if len(self.zpk[0]) < 1:  # no P / Z, add 1 row
            self.zpk[0] = np.append(self.zpk[0], 0.)
            self.zpk[1] = np.append(self.zpk[1], 0.)

    #------------------------------------------------------------------------------
    def cmplx2frmt(self, text, places=-1):
        """
        Convert number "text" (real or complex or string) to the format defined 
        by cmbPZFrmt.
        
        Returns: 
            string
        """
        # convert to "normal" string and prettify via safe_eval:
        data = safe_eval(qstr(text), return_type='auto')
        frmt = qget_cmb_box(self.ui.cmbPZFrmt)  # get selected format

        if places == -1:
            full_prec = True
        else:
            full_prec = False

        if frmt == 'cartesian' or not (type(data) == complex):
            if full_prec:
                return "{0}".format(data)
            else:
                return "{0:.{plcs}g}".format(data, plcs=places)

        elif frmt == 'polar_rad':
            r, phi = np.absolute(data), np.angle(data, deg=False)
            if full_prec:
                return "{r} * {angle_char}{p} rad"\
                    .format(r=r, p=phi, angle_char=self.angle_char)
            else:
                return "{r:.{plcs}g} * {angle_char}{p:.{plcs}g} rad"\
                    .format(r=r, p=phi, plcs=places, angle_char=self.angle_char)

        elif frmt == 'polar_deg':
            r, phi = np.absolute(data), np.angle(data, deg=True)
            if full_prec:
                return "{r} * {angle_char}{p}°"\
                    .format(r=r, p=phi, angle_char=self.angle_char)
            else:
                return "{r:.{plcs}g} * {angle_char}{p:.{plcs}g}°"\
                    .format(r=r, p=phi, plcs=places, angle_char=self.angle_char)

        elif frmt == 'polar_pi':
            r, phi = np.absolute(data), np.angle(data, deg=False) / np.pi
            if full_prec:
                return "{r} * {angle_char}{p} pi"\
                    .format(r=r, p=phi, angle_char=self.angle_char)
            else:
                return "{r:.{plcs}g} * {angle_char}{p:.{plcs}g} pi"\
                    .format(r=r, p=phi, plcs=places, angle_char=self.angle_char)

        else:
            logger.error("Unknown format {0}.".format(frmt))

    #------------------------------------------------------------------------------
    def frmt2cmplx(self, text, default=0.):
        """
        Convert format defined by cmbPZFrmt to real or complex
        """
        conv_error = False
        text = qstr(text).replace(
            " ", "")  # convert to "proper" string without blanks
        if qget_cmb_box(self.ui.cmbPZFrmt) == 'cartesian':
            return safe_eval(text, default, return_type='auto')
        else:
            polar_str = text.split('*' + self.angle_char, 1)
            if len(polar_str) < 2:  # input is real or imaginary
                r = safe_eval(re.sub('[' + self.angle_char + '<∠°]', '', text),
                              default,
                              return_type='auto')
                x = r.real
                y = r.imag
            else:
                r = safe_eval(polar_str[0], sign='pos')
                if safe_eval.err > 0:
                    conv_error = True

                if "°" in polar_str[1]:
                    scale = np.pi / 180.  # angle in degrees
                elif re.search('π$|pi$', polar_str[1]):
                    scale = np.pi
                else:
                    scale = 1.  # angle in rad

                # remove right-most special characters (regex $)
                polar_str[1] = re.sub(
                    '[' + self.angle_char + '<∠°π]$|rad$|pi$', '',
                    polar_str[1])
                phi = safe_eval(polar_str[1]) * scale
                if safe_eval.err > 0:
                    conv_error = True

                if not conv_error:
                    x = r * np.cos(phi)
                    y = r * np.sin(phi)
                else:
                    x = default.real
                    y = default.imag
                    logger.error(
                        "Expression {0} could not be evaluated.".format(text))
            return x + 1j * y

        #------------------------------------------------------------------------------
    def _copy_from_table(self):
        """
        Copy data from coefficient table `self.tblCoeff` to clipboard in CSV format
        or to file using a selected format
        """
        # pass table instance, numpy data and current class for accessing the
        # clipboard instance or for constructing a QFileDialog instance
        qtable2text(self.tblPZ,
                    self.zpk,
                    self,
                    'zpk',
                    title="Export Poles / Zeros")

    #------------------------------------------------------------------------------
    def _copy_to_table(self):
        """
        Read data from clipboard / file and copy it to `self.zpk` as array of complex
        # TODO: More checks for swapped row <-> col, single values, wrong data type ...
        """
        data_str = qtext2table(self, 'zpk', title="Import Poles / Zeros ")
        if data_str is None:  # file operation has been aborted
            return

        conv = self.frmt2cmplx  # routine for converting to cartesian coordinates

        if np.ndim(data_str) > 1:
            num_cols, num_rows = np.shape(data_str)
            orientation_horiz = num_cols > num_rows  # need to transpose data
        elif np.ndim(data_str) == 1:
            num_rows = len(data_str)
            num_cols = 1
            orientation_horiz = False
        else:
            logger.error("Imported data is a single value or None.")
            return None
        logger.debug("_copy_to_table: c x r:", num_cols, num_rows)
        if orientation_horiz:
            self.zpk = [[], []]
            for c in range(num_cols):
                self.zpk[0].append(conv(data_str[c][0]))
                if num_rows > 1:
                    self.zpk[1].append(conv(data_str[c][1]))
        else:
            self.zpk[0] = [conv(s) for s in data_str[0]]
            if num_cols > 1:
                self.zpk[1] = [conv(s) for s in data_str[1]]
            else:
                self.zpk[1] = [1]

        self.zpk[0] = np.asarray(self.zpk[0])
        self.zpk[1] = np.asarray(self.zpk[1])

        self._equalize_columns()
        qstyle_widget(self.ui.butSave, 'changed')
        self._refresh_table()

#------------------------------------------------------------------------------

    def _equalize_columns(self):
        """
        test and equalize if P and Z subarray have different lengths:
        """
        try:
            p_len = len(self.zpk[1])
        except IndexError:
            p_len = 0

        try:
            z_len = len(self.zpk[0])
        except IndexError:
            z_len = 0

        D = z_len - p_len

        if D > 0:  # more zeros than poles
            self.zpk[1] = np.append(self.zpk[1], np.zeros(D))
        elif D < 0:  # more poles than zeros
            self.zpk[0] = np.append(self.zpk[0], np.zeros(-D))
예제 #4
0
class Plot_FFT_win(QDialog):
    """
    Create a pop-up widget for displaying time and frequency view of an FFT
    window.

    Data is passed via the dictionary `win_dict` that is specified during
    construction. Available windows, parameters, tooltipps etc are provided
    by the widget `pyfda_fft_windows_lib.QFFTWinSelection`

    Parameters
    ----------

    parent : class instance
        reference to parent

    win_dict : dict
        dictionary derived from `pyfda_fft_windows_lib.all_windows_dict`
        with valid and available windows and their current settings (if applicable)

    sym : bool
        Passed to `get_window()`:
        When True, generate a symmetric window for use in filter design.
        When False (default), generate a periodic window for use in spectral analysis.

    title : str
        Title text for Qt Window

    ignore_close_event : bool
        Disable close event when True (Default)

    Methods
    -------

    - `self.calc_N()`
    - `self.update_view()`:
    - `self.draw()`: calculate window and FFT and draw both
    - `get_win(N)` : Get the window array
    """
    sig_rx = pyqtSignal(object)  # incoming
    sig_tx = pyqtSignal(object)  # outgoing
    from pyfda.libs.pyfda_qt_lib import emit

    def __init__(self,
                 parent,
                 win_dict,
                 sym=False,
                 title='pyFDA Window Viewer',
                 ignore_close_event=True):
        super(Plot_FFT_win, self).__init__(parent)
        # make window stay on top
        qwindow_stay_on_top(self, True)

        self.win_dict = win_dict
        self.sym = sym
        self.ignore_close_event = ignore_close_event
        self.setWindowTitle(title)

        self.needs_calc = True

        self.bottom_f = -80  # min. value for dB display
        self.bottom_t = -60
        # initial number of data points for visualization
        self.N_view = 32

        self.pad = 16  # zero padding factor for smooth FFT plot

        # initial settings for checkboxes
        self.tbl_sel = [True, True, False, False]
        #    False, False, False, False]
        self.tbl_cols = 6
        self.tbl_rows = len(self.tbl_sel) // (self.tbl_cols // 3)

        self._construct_UI()
        self.calc_win_draw()

# ------------------------------------------------------------------------------

    def closeEvent(self, event):
        """
        Catch `closeEvent` (user has tried to close the FFT window) and send a
        signal to parent to decide how to proceed.

        This can be disabled by setting `self.ignore_close_event = False` e.g.
        for instantiating the widget as a standalone window.
        """
        if self.ignore_close_event:
            event.ignore()
            self.emit({'closeEvent': ''})

# ------------------------------------------------------------------------------

    def process_sig_rx(self, dict_sig=None):
        """
        Process signals coming from the navigation toolbar and from sig_rx:

        - `self.calc_N`
        - `self.update_view`:
        - `self.draw`: calculate window and FFT and draw both
        """
        # logger.debug("PROCESS_SIG_RX - vis={0}, needs_calc={1}\n{2}"
        #              .format(self.isVisible(), self.needs_calc, pprint_log(dict_sig)))

        if dict_sig['id'] == id(self):
            logger.warning("Stopped infinite loop:\n{0}".format(
                pprint_log(dict_sig)))
            return

        elif not self.isVisible():
            self.needs_calc = True

        elif 'view_changed' in dict_sig and 'fft_win' in dict_sig['view_changed']\
                or self.needs_calc:

            self.calc_win_draw()
            self.needs_calc = False

        elif 'home' in dict_sig:
            self.update_view()

        else:
            logger.error("Unknown content of dict_sig: {0}".format(dict_sig))

# ------------------------------------------------------------------------------

    def _construct_UI(self):
        """
        Intitialize the widget, consisting of:
        - Matplotlib widget with NavigationToolbar
        - Frame with control elements
        """
        self.bfont = QFont()
        self.bfont.setBold(True)

        self.qfft_win_select = QFFTWinSelector(self, self.win_dict)

        self.lbl_N = QLabel(to_html("N =", frmt='bi'))
        self.led_N = QLineEdit(self)
        self.led_N.setText(str(self.N_view))
        self.led_N.setMaximumWidth(qtext_width(N_x=8))
        self.led_N.setToolTip(
            "<span>Number of window data points to display.</span>")

        # By default, the enter key triggers the default 'dialog action' in QDialog
        # widgets. This activates one of the pushbuttons.
        self.but_log_t = QPushButton("dB", default=False, autoDefault=False)
        self.but_log_t.setMaximumWidth(qtext_width(" dB "))
        self.but_log_t.setObjectName("chk_log_time")
        self.but_log_t.setCheckable(True)
        self.but_log_t.setChecked(False)
        self.but_log_t.setToolTip("Display in dB")

        self.led_log_bottom_t = QLineEdit(self)
        self.led_log_bottom_t.setVisible(self.but_log_t.isChecked())
        self.led_log_bottom_t.setText(str(self.bottom_t))
        self.led_log_bottom_t.setMaximumWidth(qtext_width(N_x=6))
        self.led_log_bottom_t.setToolTip(
            "<span>Minimum display value for log. scale.</span>")

        self.lbl_log_bottom_t = QLabel(to_html("min =", frmt='bi'), self)
        self.lbl_log_bottom_t.setVisible(self.but_log_t.isChecked())

        self.but_norm_f = QPushButton("Max=1",
                                      default=False,
                                      autoDefault=False)
        self.but_norm_f.setCheckable(True)
        self.but_norm_f.setChecked(True)
        self.but_norm_f.setMaximumWidth(qtext_width(text=" Max=1 "))
        self.but_norm_f.setToolTip(
            "Normalize window spectrum for a maximum of 1.")

        self.but_half_f = QPushButton("0...½",
                                      default=False,
                                      autoDefault=False)
        self.but_half_f.setCheckable(True)
        self.but_half_f.setChecked(True)
        self.but_half_f.setMaximumWidth(qtext_width(text=" 0...½ "))
        self.but_half_f.setToolTip(
            "Display window spectrum in the range 0 ... 0.5 f_S.")

        # By default, the enter key triggers the default 'dialog action' in QDialog
        # widgets. This activates one of the pushbuttons.
        self.but_log_f = QPushButton("dB", default=False, autoDefault=False)
        self.but_log_f.setMaximumWidth(qtext_width(" dB "))
        self.but_log_f.setObjectName("chk_log_freq")
        self.but_log_f.setToolTip("<span>Display in dB.</span>")
        self.but_log_f.setCheckable(True)
        self.but_log_f.setChecked(True)

        self.lbl_log_bottom_f = QLabel(to_html("min =", frmt='bi'), self)
        self.lbl_log_bottom_f.setVisible(self.but_log_f.isChecked())

        self.led_log_bottom_f = QLineEdit(self)
        self.led_log_bottom_f.setVisible(self.but_log_t.isChecked())
        self.led_log_bottom_f.setText(str(self.bottom_f))
        self.led_log_bottom_f.setMaximumWidth(qtext_width(N_x=6))
        self.led_log_bottom_f.setToolTip(
            "<span>Minimum display value for log. scale.</span>")

        # ----------------------------------------------------------------------
        #               ### frmControls ###
        #
        # This widget encompasses all control subwidgets
        # ----------------------------------------------------------------------
        layH_win_select = QHBoxLayout()
        layH_win_select.addWidget(self.qfft_win_select)
        layH_win_select.setContentsMargins(0, 0, 0, 0)
        layH_win_select.addStretch(1)
        frmQFFT = QFrame(self)
        frmQFFT.setObjectName("frmQFFT")
        frmQFFT.setLayout(layH_win_select)

        hline = QHLine()

        layHControls = QHBoxLayout()
        layHControls.addWidget(self.lbl_N)
        layHControls.addWidget(self.led_N)
        layHControls.addStretch(1)
        layHControls.addWidget(self.lbl_log_bottom_t)
        layHControls.addWidget(self.led_log_bottom_t)
        layHControls.addWidget(self.but_log_t)
        layHControls.addStretch(5)
        layHControls.addWidget(QVLine(width=2))
        layHControls.addStretch(5)
        layHControls.addWidget(self.but_norm_f)
        layHControls.addStretch(1)
        layHControls.addWidget(self.but_half_f)
        layHControls.addStretch(1)
        layHControls.addWidget(self.lbl_log_bottom_f)
        layHControls.addWidget(self.led_log_bottom_f)
        layHControls.addWidget(self.but_log_f)

        layVControls = QVBoxLayout()
        layVControls.addWidget(frmQFFT)
        layVControls.addWidget(hline)
        layVControls.addLayout(layHControls)

        frmControls = QFrame(self)
        frmControls.setObjectName("frmControls")
        frmControls.setLayout(layVControls)

        # ----------------------------------------------------------------------
        #               ### mplwidget ###
        #
        # Layout layVMainMpl (VBox) is defined within MplWidget, additional
        # widgets can be added below the matplotlib widget (here: frmControls)
        #
        # ----------------------------------------------------------------------
        self.mplwidget = MplWidget(self)
        self.mplwidget.layVMainMpl.addWidget(frmControls)
        self.mplwidget.layVMainMpl.setContentsMargins(0, 0, 0, 0)

        # ----------------------------------------------------------------------
        #               ### frmInfo ###
        #
        # This widget encompasses the text info box and the table with window
        # parameters.
        # ----------------------------------------------------------------------
        self.tbl_win_props = QTableWidget(self.tbl_rows, self.tbl_cols, self)
        self.tbl_win_props.setAlternatingRowColors(True)
        # Auto-resize of table can be set using the header (although it is invisible)
        self.tbl_win_props.verticalHeader().setSectionResizeMode(
            QHeaderView.Stretch)
        # Only the columns with data are stretched, the others are minimum size
        self.tbl_win_props.horizontalHeader().setSectionResizeMode(
            1, QHeaderView.Stretch)
        self.tbl_win_props.horizontalHeader().setSectionResizeMode(
            4, QHeaderView.Stretch)
        self.tbl_win_props.verticalHeader().setVisible(False)
        self.tbl_win_props.horizontalHeader().setVisible(False)
        self.tbl_win_props.setSizePolicy(QSizePolicy.MinimumExpanding,
                                         QSizePolicy.MinimumExpanding)
        self.tbl_win_props.setFixedHeight(
            self.tbl_win_props.rowHeight(0) * self.tbl_rows +
            self.tbl_win_props.frameWidth() * 2)
        # self.tbl_win_props.setVerticalScrollBarPolicy(
        #     Qt.ScrollBarAlwaysOff)
        # self.tbl_win_props.setHorizontalScrollBarPolicy(
        #     Qt.ScrollBarAlwaysOff)

        self._construct_table(self.tbl_rows, self.tbl_cols, " ")

        self.txtInfoBox = QTextBrowser(self)

        layVInfo = QVBoxLayout(self)
        layVInfo.addWidget(self.tbl_win_props)
        layVInfo.addWidget(self.txtInfoBox)

        frmInfo = QFrame(self)
        frmInfo.setObjectName("frmInfo")
        frmInfo.setLayout(layVInfo)

        # ----------------------------------------------------------------------
        #               ### splitter ###
        #
        # This widget encompasses all subwidgets
        # ----------------------------------------------------------------------

        splitter = QSplitter(self)
        splitter.setOrientation(Qt.Vertical)
        splitter.addWidget(self.mplwidget)
        splitter.addWidget(frmInfo)

        # setSizes uses absolute pixel values, but can be "misused" by
        # specifying values that are way too large: in this case, the space
        # is distributed according to the _ratio_ of the values:
        splitter.setSizes([3000, 800])

        layVMain = QVBoxLayout()
        layVMain.addWidget(splitter)
        self.setLayout(layVMain)

        # ----------------------------------------------------------------------
        #           Set subplots
        #
        self.ax = self.mplwidget.fig.subplots(nrows=1, ncols=2)
        self.ax_t = self.ax[0]
        self.ax_f = self.ax[1]

        self.calc_win_draw()  # initial calculation and drawing

        # ----------------------------------------------------------------------
        # GLOBAL SIGNALS & SLOTs
        # ----------------------------------------------------------------------
        self.sig_rx.connect(self.process_sig_rx)
        self.sig_rx.connect(self.qfft_win_select.sig_rx)

        # ----------------------------------------------------------------------
        # LOCAL SIGNALS & SLOTs
        # ----------------------------------------------------------------------
        self.but_log_f.clicked.connect(self.update_view)
        self.but_log_t.clicked.connect(self.update_view)
        self.led_log_bottom_t.editingFinished.connect(self.update_bottom)
        self.led_log_bottom_f.editingFinished.connect(self.update_bottom)

        self.led_N.editingFinished.connect(self.calc_win_draw)

        self.but_norm_f.clicked.connect(self.calc_win_draw)
        self.but_half_f.clicked.connect(self.update_view)

        self.mplwidget.mplToolbar.sig_tx.connect(self.process_sig_rx)
        self.tbl_win_props.itemClicked.connect(self._handle_item_clicked)

        self.qfft_win_select.sig_tx.connect(self.update_fft_win)

# ------------------------------------------------------------------------------

    def _construct_table(self, rows, cols, val):
        """
        Create a table with `rows` and `cols`, organized in sets of 3:
        Name (with a checkbox) - value - unit
        each item.

        Parameters
        ----------

        rows : int
            number of rows

        cols : int
            number of columns (must be multiple of 3)

        val : str
            initialization value for the table

        Returns
        -------
        None
        """
        for r in range(rows):
            for c in range(cols):
                item = QTableWidgetItem(val)
                if c % 3 == 0:
                    item.setFlags(Qt.ItemIsUserCheckable | Qt.ItemIsEnabled)
                    if self.tbl_sel[r * 2 + c % 3]:
                        item.setCheckState(Qt.Checked)
                    else:
                        item.setCheckState(Qt.Unchecked)
                self.tbl_win_props.setItem(r, c, item)

    # https://stackoverflow.com/questions/12366521/pyqt-checkbox-in-qtablewidget

# ------------------------------------------------------------------------------

    def update_fft_win(self, dict_sig=None):
        """
        Update FFT window when window or parameters have changed and
        pass thru 'view_changed':'fft_win_type' or 'fft_win_par'
        """
        self.calc_win_draw()
        self.emit(dict_sig)

# ------------------------------------------------------------------------------

    def calc_win_draw(self):
        """
        (Re-)Calculate the window, its FFT and some characteristic values and update
        the plot of the window and its FFT. This should be triggered when the
        window type or length or a parameters has been changed.

        Returns
        -------
        None

        Attributes
        ----------

        """
        self.N_view = safe_eval(self.led_N.text(),
                                self.N_view,
                                sign='pos',
                                return_type='int')
        self.led_N.setText(str(self.N_view))
        self.n = np.arange(self.N_view)
        self.win_view = self.qfft_win_select.get_window(self.N_view,
                                                        sym=self.sym)

        if self.qfft_win_select.err:
            self.qfft_win_select.dict2ui()

        self.nenbw = self.N_view * np.sum(np.square(self.win_view))\
            / np.square(np.sum(self.win_view))
        self.cgain = np.sum(self.win_view) / self.N_view  # coherent gain

        # calculate the FFT of the window with a zero padding factor
        # of `self.pad`
        self.F = fftfreq(self.N_view * self.pad, d=1. / fb.fil[0]['f_S'])
        self.Win = np.abs(fft(self.win_view, self.N_view * self.pad))

        # Correct gain for periodic signals (coherent gain)
        if self.but_norm_f.isChecked():
            self.Win /= (self.N_view * self.cgain)

        # calculate frequency of first zero and maximum sidelobe level
        first_zero = argrelextrema(self.Win[:(self.N_view * self.pad) // 2],
                                   np.less)
        if np.shape(first_zero)[1] > 0:
            first_zero = first_zero[0][0]
            self.first_zero_f = self.F[first_zero]
            self.sidelobe_level = np.max(
                self.Win[first_zero:(self.N_view * self.pad) // 2])
        else:
            self.first_zero_f = np.nan
            self.sidelobe_level = 0

        self.update_view()

# ------------------------------------------------------------------------------

    def _set_table_item(self, row, col, val, font=None, sel=None):
        """
        Set the table item with the index `row, col` and the value val
        """
        item = self.tbl_win_props.item(row, col)
        item.setText(str(val))

        if font:
            self.tbl_win_props.item(row, col).setFont(font)

        if sel is True:
            item.setCheckState(Qt.Checked)
        if sel is False:
            item.setCheckState(Qt.Unchecked)
        # when sel is not specified, don't change anything

# ------------------------------------------------------------------------------

    def _handle_item_clicked(self, item):
        if item.column() % 3 == 0:  # clicked on checkbox
            num = item.row() * 2 + item.column() // 3
            if item.checkState() == Qt.Checked:
                self.tbl_sel[num] = True
                logger.debug('"{0}:{1}" Checked'.format(item.text(), num))
            else:
                self.tbl_sel[num] = False
                logger.debug('"{0}:{1}" Unchecked'.format(item.text(), num))

        elif item.column() % 3 == 1:  # clicked on value field
            logger.info("{0:s} copied to clipboard.".format(item.text()))
            fb.clipboard.setText(item.text())

        self.update_view()

# ------------------------------------------------------------------------------

    def update_bottom(self):
        """
        Update log bottom settings
        """
        self.bottom_t = safe_eval(self.led_log_bottom_t.text(),
                                  self.bottom_t,
                                  sign='neg',
                                  return_type='float')
        self.led_log_bottom_t.setText(str(self.bottom_t))

        self.bottom_f = safe_eval(self.led_log_bottom_f.text(),
                                  self.bottom_f,
                                  sign='neg',
                                  return_type='float')
        self.led_log_bottom_f.setText(str(self.bottom_f))

        self.update_view()

# ------------------------------------------------------------------------------

    def update_view(self):
        """
        Draw the figure with new limits, scale, lin/log  etc without
        recalculating the window or its FFT.
        """
        # suppress "divide by zero in log10" warnings
        old_settings_seterr = np.seterr()
        np.seterr(divide='ignore')

        self.ax_t.cla()
        self.ax_f.cla()

        self.ax_t.set_xlabel(fb.fil[0]['plt_tLabel'])
        self.ax_t.set_ylabel(r'$w[n] \; \rightarrow$')

        self.ax_f.set_xlabel(fb.fil[0]['plt_fLabel'])
        self.ax_f.set_ylabel(r'$W(f) \; \rightarrow$')

        if self.but_log_t.isChecked():
            self.ax_t.plot(
                self.n,
                np.maximum(20 * np.log10(np.abs(self.win_view)),
                           self.bottom_t))
        else:
            self.ax_t.plot(self.n, self.win_view)

        if self.but_half_f.isChecked():
            F = self.F[:len(self.F * self.pad) // 2]
            Win = self.Win[:len(self.F * self.pad) // 2]
        else:
            F = fftshift(self.F)
            Win = fftshift(self.Win)

        if self.but_log_f.isChecked():
            self.ax_f.plot(
                F, np.maximum(20 * np.log10(np.abs(Win)), self.bottom_f))
            self.nenbw_disp = 10 * np.log10(self.nenbw)
            self.cgain_disp = 20 * np.log10(self.cgain)
            self.sidelobe_level_disp = 20 * np.log10(self.sidelobe_level)
            self.nenbw_unit = "dB"
            self.cgain_unit = "dB"
        else:
            self.ax_f.plot(F, Win)
            self.nenbw_disp = self.nenbw
            self.cgain_disp = self.cgain
            self.sidelobe_level_disp = self.sidelobe_level
            self.nenbw_unit = "bins"
            self.cgain_unit = ""

        self.led_log_bottom_t.setVisible(self.but_log_t.isChecked())
        self.lbl_log_bottom_t.setVisible(self.but_log_t.isChecked())
        self.led_log_bottom_f.setVisible(self.but_log_f.isChecked())
        self.lbl_log_bottom_f.setVisible(self.but_log_f.isChecked())

        cur = self.win_dict['cur_win_name']
        cur_win_d = self.win_dict[cur]
        param_txt = ""
        if cur_win_d['n_par'] > 0:
            if type(cur_win_d['par'][0]['val']) in {str}:
                p1 = cur_win_d['par'][0]['val']
            else:
                p1 = "{0:.3g}".format(cur_win_d['par'][0]['val'])
            param_txt = " ({0:s} = {1:s})".format(
                cur_win_d['par'][0]['name_tex'], p1)

        if self.win_dict[cur]['n_par'] > 1:
            if type(cur_win_d['par'][1]['val']) in {str}:
                p2 = cur_win_d['par'][1]['val']
            else:
                p2 = "{0:.3g}".format(cur_win_d['par'][1]['val'])
            param_txt = param_txt[:-1]\
                + ", {0:s} = {1:s})".format(cur_win_d['par'][1]['name_tex'], p2)

        self.mplwidget.fig.suptitle(r'{0} Window'.format(cur) + param_txt)

        # plot a line at the max. sidelobe level
        if self.tbl_sel[3]:
            self.ax_f.axhline(self.sidelobe_level_disp, ls='dotted', c='b')

        patch = mpl_patches.Rectangle((0, 0),
                                      1,
                                      1,
                                      fc="white",
                                      ec="white",
                                      lw=0,
                                      alpha=0)
        # Info legend for time domain window
        labels_t = []
        labels_t.append("$N$ = {0:d}".format(self.N_view))
        self.ax_t.legend([patch],
                         labels_t,
                         loc='best',
                         fontsize='small',
                         fancybox=True,
                         framealpha=0.7,
                         handlelength=0,
                         handletextpad=0)

        # Info legend for frequency domain window
        labels_f = []
        N_patches = 0
        if self.tbl_sel[0]:
            labels_f.append("$NENBW$ = {0:.4g} {1}".format(
                self.nenbw_disp, self.nenbw_unit))
            N_patches += 1
        if self.tbl_sel[1]:
            labels_f.append("$CGAIN$ = {0:.4g} {1}".format(
                self.cgain_disp, self.cgain_unit))
            N_patches += 1
        if self.tbl_sel[2]:
            labels_f.append("1st Zero = {0:.4g}".format(self.first_zero_f))
            N_patches += 1

        if N_patches > 0:
            self.ax_f.legend([patch] * N_patches,
                             labels_f,
                             loc='best',
                             fontsize='small',
                             fancybox=True,
                             framealpha=0.7,
                             handlelength=0,
                             handletextpad=0)
        np.seterr(**old_settings_seterr)

        self.update_info()
        self.redraw()

# ------------------------------------------------------------------------------

    def update_info(self):
        """
        Update the text info box for the window
        """
        cur = self.win_dict['cur_win_name']
        if 'info' in self.win_dict[cur]:
            self.txtInfoBox.setText(self.win_dict[cur]['info'])
        else:
            self.txtInfoBox.clear()

        self._set_table_item(0, 0, "NENBW", font=self.bfont)  # , sel=True)
        self._set_table_item(0, 1, "{0:.5g}".format(self.nenbw_disp))
        self._set_table_item(0, 2, self.nenbw_unit)
        self._set_table_item(0, 3, "Scale", font=self.bfont)  # , sel=True)
        self._set_table_item(0, 4, "{0:.5g}".format(self.cgain_disp))
        self._set_table_item(0, 5, self.cgain_unit)

        self._set_table_item(1, 0, "1st Zero", font=self.bfont)  # , sel=True)
        self._set_table_item(1, 1, "{0:.5g}".format(self.first_zero_f))
        self._set_table_item(1, 2, "f_S")

        self._set_table_item(1, 3, "Sidelobes", font=self.bfont)  # , sel=True)
        self._set_table_item(1, 4, "{0:.5g}".format(self.sidelobe_level_disp))
        self._set_table_item(1, 5, self.cgain_unit)

        self.tbl_win_props.resizeColumnsToContents()
        self.tbl_win_props.resizeRowsToContents()

# -----------------------------------------------------------------------------

    def redraw(self):
        """
        Redraw the canvas when e.g. the canvas size has changed
        """
        self.mplwidget.redraw()