예제 #1
0
boxes = calc_box_init(box_dis_x, box_dis_z)

for i in range(len(boxes)):
    halfEdge = boxes[i][0]
    center = boxes[i][1]
    quat = boxes[i][2]
    pyflex.add_box(halfEdge, center, quat)

### read scene info
print("Scene Upper:", pyflex.get_scene_upper())
print("Scene Lower:", pyflex.get_scene_lower())
print("Num particles:", pyflex.get_phases().reshape(-1, 1).shape[0])
print("Phases:", np.unique(pyflex.get_phases()))

n_particles = pyflex.get_n_particles()
n_shapes = pyflex.get_n_shapes()
n_rigids = pyflex.get_n_rigids()
n_rigidPositions = pyflex.get_n_rigidPositions()

print("n_particles", n_particles)
print("n_shapes", n_shapes)
print("n_rigids", n_rigids)
print("n_rigidPositions", n_rigidPositions)

positions = np.zeros((time_step, n_particles, dim_position))
velocities = np.zeros((time_step, n_particles, dim_velocity))
shape_states = np.zeros((time_step, n_shapes, dim_shape_state))

x_box = x_center
v_box = 0
예제 #2
0
def gen_PyFleX(info):

    env, root_num = info['env'], info['root_num']
    thread_idx, data_dir, data_names = info['thread_idx'], info['data_dir'], info['data_names']
    n_rollout, n_instance = info['n_rollout'], info['n_instance']
    time_step, time_step_clip = info['time_step'], info['time_step_clip']
    shape_state_dim, dt = info['shape_state_dim'], info['dt']

    env_idx = info['env_idx']

    np.random.seed(round(time.time() * 1000 + thread_idx) % 2**32) ### NOTE: we might want to fix the seed for reproduction

    # positions, velocities
    if env_idx == 5:    # RiceGrip
        stats = [init_stat(6), init_stat(6)]
    else:
        stats = [init_stat(3), init_stat(3)]

    import pyflex
    pyflex.init()

    for i in range(n_rollout):

        if i % 10 == 0:
            print("%d / %d" % (i, n_rollout))

        rollout_idx = thread_idx * n_rollout + i
        rollout_dir = os.path.join(data_dir, str(rollout_idx))
        os.system('mkdir -p ' + rollout_dir)

        if env == 'FluidFall':
            scene_params = np.zeros(1)
            pyflex.set_scene(env_idx, scene_params, thread_idx)
            n_particles = pyflex.get_n_particles()
            positions = np.zeros((time_step, n_particles, 3), dtype=np.float32)
            velocities = np.zeros((time_step, n_particles, 3), dtype=np.float32)

            for j in range(time_step_clip):
                p_clip = pyflex.get_positions().reshape(-1, 4)[:, :3]
                pyflex.step()

            for j in range(time_step):
                positions[j] = pyflex.get_positions().reshape(-1, 4)[:, :3]

                if j == 0:
                    velocities[j] = (positions[j] - p_clip) / dt
                else:
                    velocities[j] = (positions[j] - positions[j - 1]) / dt

                pyflex.step()

                data = [positions[j], velocities[j]]
                store_data(data_names, data, os.path.join(rollout_dir, str(j) + '.h5'))

        elif env == 'BoxBath':
            # BoxBath

            scene_params = np.zeros(1)
            pyflex.set_scene(env_idx, scene_params, thread_idx)
            n_particles = pyflex.get_n_particles()
            positions = np.zeros((time_step, n_particles, 3), dtype=np.float32)
            velocities = np.zeros((time_step, n_particles, 3), dtype=np.float32)

            for j in range(time_step_clip):
                pyflex.step()

            p = pyflex.get_positions().reshape(-1, 4)[:64, :3]
            clusters = []
            st_time = time.time()
            kmeans = MiniBatchKMeans(n_clusters=root_num[0][0], random_state=0).fit(p)
            # print('Time on kmeans', time.time() - st_time)
            clusters.append([[kmeans.labels_]])
            # centers = kmeans.cluster_centers_

            ref_rigid = p

            for j in range(time_step):
                positions[j] = pyflex.get_positions().reshape(-1, 4)[:, :3]

                # apply rigid projection to ground truth
                XX = ref_rigid
                YY = positions[j, :64]
                # print("MSE init", np.mean(np.square(XX - YY)))

                X = XX.copy().T
                Y = YY.copy().T
                mean_X = np.mean(X, 1, keepdims=True)
                mean_Y = np.mean(Y, 1, keepdims=True)
                X = X - mean_X
                Y = Y - mean_Y
                C = np.dot(X, Y.T)
                U, S, Vt = np.linalg.svd(C)
                D = np.eye(3)
                D[2, 2] = np.linalg.det(np.dot(Vt.T, U.T))
                R = np.dot(Vt.T, np.dot(D, U.T))
                t = mean_Y - np.dot(R, mean_X)

                YY_fitted = (np.dot(R, XX.T) + t).T
                # print("MSE fit", np.mean(np.square(YY_fitted - YY)))

                positions[j, :64] = YY_fitted

                if j > 0:
                    velocities[j] = (positions[j] - positions[j - 1]) / dt

                pyflex.step()

                data = [positions[j], velocities[j], clusters]
                store_data(data_names, data, os.path.join(rollout_dir, str(j) + '.h5'))

        elif env == 'FluidShake':
            # if env is FluidShake
            height = 1.0
            border = 0.025
            dim_x = rand_int(10, 12)
            dim_y = rand_int(15, 20)
            dim_z = 3
            x_center = rand_float(-0.2, 0.2)
            x = x_center - (dim_x-1)/2.*0.055
            y = 0.055/2. + border + 0.01
            z = 0. - (dim_z-1)/2.*0.055
            box_dis_x = dim_x * 0.055 + rand_float(0., 0.3)
            box_dis_z = 0.2

            scene_params = np.array([x, y, z, dim_x, dim_y, dim_z, box_dis_x, box_dis_z])
            pyflex.set_scene(env_idx, scene_params, 0)

            boxes = calc_box_init_FluidShake(box_dis_x, box_dis_z, height, border)

            for i in range(len(boxes)):
                halfEdge = boxes[i][0]
                center = boxes[i][1]
                quat = boxes[i][2]
                pyflex.add_box(halfEdge, center, quat)

            n_particles = pyflex.get_n_particles()
            n_shapes = pyflex.get_n_shapes()

            # print("n_particles", n_particles)
            # print("n_shapes", n_shapes)

            positions = np.zeros((time_step, n_particles + n_shapes, 3), dtype=np.float32)
            velocities = np.zeros((time_step, n_particles + n_shapes, 3), dtype=np.float32)
            shape_quats = np.zeros((time_step, n_shapes, 4), dtype=np.float32)

            x_box = x_center
            v_box = 0.
            for j in range(time_step_clip):
                x_box_last = x_box
                x_box += v_box * dt
                shape_states_ = calc_shape_states_FluidShake(
                    x_box, x_box_last, scene_params[-2:], height, border)
                pyflex.set_shape_states(shape_states_)
                pyflex.step()

            for j in range(time_step):
                x_box_last = x_box
                x_box += v_box * dt
                v_box += rand_float(-0.15, 0.15) - x_box * 0.1
                shape_states_ = calc_shape_states_FluidShake(
                    x_box, x_box_last, scene_params[-2:], height, border)
                pyflex.set_shape_states(shape_states_)

                positions[j, :n_particles] = pyflex.get_positions().reshape(-1, 4)[:, :3]
                shape_states = pyflex.get_shape_states().reshape(-1, shape_state_dim)

                for k in range(n_shapes):
                    positions[j, n_particles + k] = shape_states[k, :3]
                    shape_quats[j, k] = shape_states[k, 6:10]

                if j > 0:
                    velocities[j] = (positions[j] - positions[j - 1]) / dt

                pyflex.step()

                # NOTE: 1) particle + glass wall positions, 2) particle + glass wall velocitys, 3) glass wall rotations, 4) scenen parameters
                data = [positions[j], velocities[j], shape_quats[j], scene_params]
                store_data(data_names, data, os.path.join(rollout_dir, str(j) + '.h5'))

        elif env == 'RiceGrip':
            # if env is RiceGrip
            # repeat the grip for R times
            R = 3
            gripper_config = sample_control_RiceGrip()

            if i % R == 0:
                ### set scene
                # x, y, z: [8.0, 10.0]
                # clusterStiffness: [0.3, 0.7]
                # clusterPlasticThreshold: [0.00001, 0.0005]
                # clusterPlasticCreep: [0.1, 0.3]
                x = rand_float(8.0, 10.0)
                y = rand_float(8.0, 10.0)
                z = rand_float(8.0, 10.0)

                clusterStiffness = rand_float(0.3, 0.7)
                clusterPlasticThreshold = rand_float(0.00001, 0.0005)
                clusterPlasticCreep = rand_float(0.1, 0.3)

                scene_params = np.array([x, y, z, clusterStiffness, clusterPlasticThreshold, clusterPlasticCreep])
                pyflex.set_scene(env_idx, scene_params, thread_idx)
                scene_params[4] *= 1000.

                halfEdge = np.array([0.15, 0.8, 0.15])
                center = np.array([0., 0., 0.])
                quat = np.array([1., 0., 0., 0.])
                pyflex.add_box(halfEdge, center, quat)
                pyflex.add_box(halfEdge, center, quat)

                n_particles = pyflex.get_n_particles()
                n_shapes = pyflex.get_n_shapes()

                positions = np.zeros((time_step, n_particles + n_shapes, 6), dtype=np.float32)
                velocities = np.zeros((time_step, n_particles + n_shapes, 6), dtype=np.float32)
                shape_quats = np.zeros((time_step, n_shapes, 4), dtype=np.float32)

                for j in range(time_step_clip):
                    shape_states = calc_shape_states_RiceGrip(0, dt, shape_state_dim, gripper_config)
                    pyflex.set_shape_states(shape_states)
                    pyflex.step()

                p = pyflex.get_positions().reshape(-1, 4)[:, :3]

                clusters = []
                st_time = time.time()
                kmeans = MiniBatchKMeans(n_clusters=root_num[0][0], random_state=0).fit(p)
                # print('Time on kmeans', time.time() - st_time)
                clusters.append([[kmeans.labels_]])
                # centers = kmeans.cluster_centers_

            for j in range(time_step):
                shape_states = calc_shape_states_RiceGrip(j * dt, dt, shape_state_dim, gripper_config)
                pyflex.set_shape_states(shape_states)

                positions[j, :n_particles, :3] = pyflex.get_rigidGlobalPositions().reshape(-1, 3)
                positions[j, :n_particles, 3:] = pyflex.get_positions().reshape(-1, 4)[:, :3]
                shape_states = pyflex.get_shape_states().reshape(-1, shape_state_dim)

                for k in range(n_shapes):
                    positions[j, n_particles + k, :3] = shape_states[k, :3]
                    positions[j, n_particles + k, 3:] = shape_states[k, :3]
                    shape_quats[j, k] = shape_states[k, 6:10]

                if j > 0:
                    velocities[j] = (positions[j] - positions[j - 1]) / dt

                pyflex.step()

                data = [positions[j], velocities[j], shape_quats[j], clusters, scene_params]
                store_data(data_names, data, os.path.join(rollout_dir, str(j) + '.h5'))

        else:
            raise AssertionError("Unsupported env")

        # change dtype for more accurate stat calculation
        # only normalize positions and velocities
        datas = [positions.astype(np.float64), velocities.astype(np.float64)]

        # NOTE: stats is of length 2, for positions and velocities
        for j in range(len(stats)):
            stat = init_stat(stats[j].shape[0])
            stat[:, 0] = np.mean(datas[j], axis=(0, 1))[:]
            stat[:, 1] = np.std(datas[j], axis=(0, 1))[:]
            stat[:, 2] = datas[j].shape[0] * datas[j].shape[1]
            stats[j] = combine_stat(stats[j], stat)

    pyflex.clean()

    return stats