def test_work_flow_me2(self): model = Dummy_FMUModelME2([], "bouncingBall.fmu", os.path.join(file_path, "files", "FMUs", "XML", "ME2.0"), _connect_dll=False) model.setup_experiment() model.initialize() bouncingBall = ResultHandlerCSV(model) bouncingBall.set_options(model.simulate_options()) bouncingBall.simulation_start() bouncingBall.initialize_complete() bouncingBall.integration_point() bouncingBall.simulation_end() res = ResultCSVTextual('bouncingBall_result.csv') h = res.get_variable_data('h') derh = res.get_variable_data('der(h)') g = res.get_variable_data('g') nose.tools.assert_almost_equal(h.x, 1.000000, 5) nose.tools.assert_almost_equal(derh.x, 0.000000, 5)
class SciEstAlg(AlgorithmBase): """ Estimation algortihm for FMUs. """ def __init__(self, parameters, measurements, input, model, options): """ Estimation algortihm for FMUs . Parameters:: model -- fmi.FMUModel* object representation of the model. options -- The options that should be used in the algorithm. For details on the options, see: * model.simulate_options('SciEstAlgOptions') or look at the docstring with help: * help(pyfmi.fmi_algorithm_drivers.SciEstAlgAlgOptions) Valid values are: - A dict that overrides some or all of the default values provided by SciEstAlgOptions. An empty dict will thus give all options with default values. - SciEstAlgOptions object. """ self.model = model # set start time, final time and input trajectory self.parameters = parameters self.measurements = measurements self.input = input # handle options argument if isinstance(options, dict) and not \ isinstance(options, SciEstAlgOptions): # user has passed dict with options or empty dict = default self.options = SciEstAlgOptions(options) elif isinstance(options, SciEstAlgOptions): # user has passed FMICSAlgOptions instance self.options = options else: raise InvalidAlgorithmOptionException(options) # set options self._set_options() self.result_handler = ResultHandlerCSV(self.model) self.result_handler.set_options(self.options) self.result_handler.initialize_complete() def _set_options(self): """ Helper function that sets options for FMICS algorithm. """ self.options["filter"] = self.parameters if isinstance(self.options["scaling"], str) and self.options["scaling"] == "Default": scale = [] for i,parameter in enumerate(self.parameters): scale.append(self.model.get_variable_nominal(parameter)) self.options["scaling"] = N.array(scale) if self.options["simulate_options"] == "Default": self.options["simulate_options"] = self.model.simulate_options() #Modifiy necessary options: self.options["simulate_options"]['ncp'] = self.measurements[1].shape[0] - 1 #Store at the same points as measurment data self.options["simulate_options"]['filter'] = self.measurements[0] #Only store the measurement variables (efficiency) if "solver" in self.options["simulate_options"]: solver = self.options["simulate_options"]["solver"] self.options["simulate_options"][solver+"_options"]["verbosity"] = 50 #Disable printout (efficiency) self.options["simulate_options"][solver+"_options"]["store_event_points"] = False #Disable extra store points def _set_solver_options(self): """ Helper function that sets options for the solver. """ pass def solve(self): """ Runs the estimation. """ import scipy as sci import scipy.optimize as sciopt from pyfmi.fmi_util import parameter_estimation_f #Define callback global niter niter = 0 def parameter_estimation_callback(y): global niter if niter % 10 == 0: print(" iter parameters ") #print '{:>5d} {:>15e}'.format(niter+1, parameter_estimation_f(y, self.parameters, self.measurements, self.model, self.input, self.options)) print('{:>5d} '.format(niter+1) + str(y)) niter += 1 #End of simulation, stop the clock time_start = timer() p0 = [] for i,parameter in enumerate(self.parameters): p0.append(self.model.get(parameter)/self.options["scaling"][i]) print('\nRunning solver: ' + self.options["method"]) print(' Initial parameters (scaled): ' + str(N.array(p0).flatten())) print(' ') res = sciopt.minimize(parameter_estimation_f, p0, args=(self.parameters, self.measurements, self.model, self.input, self.options), method=self.options["method"], bounds=None, constraints=(), tol=self.options["tolerance"], callback=parameter_estimation_callback) for i in range(len(self.parameters)): res["x"][i] = res["x"][i]*self.options["scaling"][i] self.res = res self.status = res["success"] #End of simulation, stop the clock time_stop = timer() if not res["success"]: print('Estimation failed: ' + res["message"]) else: print('\nEstimation terminated successfully!') print(' Found parameters: ' + str(res["x"])) print('Elapsed estimation time: ' + str(time_stop-time_start) + ' seconds.\n') def get_result(self): """ Write result to file, load result data and create an SciEstResult object. Returns:: The SciEstResult object. """ for i,parameter in enumerate(self.parameters): self.model.set(parameter, self.res["x"][i]) self.result_handler.simulation_start() self.model.time = self.measurements[1][0,0] self.result_handler.integration_point() self.result_handler.simulation_end() self.model.reset() for i,parameter in enumerate(self.parameters): self.model.set(parameter, self.res["x"][i]) return FMIResult(self.model, self.options["result_file_name"], None, self.result_handler.get_result(), self.options, status=self.status) @classmethod def get_default_options(cls): """ Get an instance of the options class for the SciEstAlg algorithm, prefilled with default values. (Class method.) """ return SciEstAlgOptions()
class FMICSAlg(AlgorithmBase): """ Simulation algortihm for FMUs (Co-simulation). """ def __init__(self, start_time, final_time, input, model, options): """ Simulation algortihm for FMUs (Co-simulation). Parameters:: model -- fmi.FMUModelCS1 object representation of the model. options -- The options that should be used in the algorithm. For details on the options, see: * model.simulate_options('FMICSAlgOptions') or look at the docstring with help: * help(pyfmi.fmi_algorithm_drivers.FMICSAlgOptions) Valid values are: - A dict that overrides some or all of the default values provided by FMICSAlgOptions. An empty dict will thus give all options with default values. - FMICSAlgOptions object. """ self.model = model # set start time, final time and input trajectory self.start_time = start_time self.final_time = final_time self.input = input self.status = 0 # handle options argument if isinstance(options, dict) and not \ isinstance(options, FMICSAlgOptions): # user has passed dict with options or empty dict = default self.options = FMICSAlgOptions(options) elif isinstance(options, FMICSAlgOptions): # user has passed FMICSAlgOptions instance self.options = options else: raise InvalidAlgorithmOptionException(options) # set options self._set_options() input_traj = None if self.input: if hasattr(self.input[1], "__call__"): input_traj = (self.input[0], TrajectoryUserFunction(self.input[1])) else: input_traj = (self.input[0], TrajectoryLinearInterpolation( self.input[1][:, 0], self.input[1][:, 1:])) #Sets the inputs, if any self.model.set(input_traj[0], input_traj[1].eval(self.start_time)[0, :]) self.input_traj = input_traj if self.options["result_handling"] == "file": self.result_handler = ResultHandlerFile(self.model) elif self.options["result_handling"] == "memory": self.result_handler = ResultHandlerMemory(self.model) elif self.options["result_handling"] == "csv": self.result_handler = ResultHandlerCSV(self.model, delimiter=",") elif self.options["result_handling"] == "custom": self.result_handler = self.options["result_handler"] if self.result_handler == None: raise Exception( "The result handler needs to be specified when using a custom result handling." ) if not isinstance(self.result_handler, ResultHandler): raise Exception( "The result handler needs to be a subclass of ResultHandler." ) else: raise Exception("Unknown option to result_handling.") self.result_handler.set_options(self.options) # Initialize? if self.options['initialize']: if isinstance(self.model, fmi.FMUModelCS1) or isinstance( self.model, fmi_extended.FMUModelME1Extended): self.model.initialize(start_time, final_time, StopTimeDefined=True) elif isinstance(self.model, fmi.FMUModelCS2): self.model.setup_experiment(start_time=start_time, stop_time_defined=True, stop_time=final_time) self.model.initialize() else: raise Exception("Unknown model.") self.result_handler.initialize_complete() elif self.model.time == None and isinstance(self.model, fmi.FMUModelCS2): raise Exception( "Setup Experiment has not been called, this has to be called prior to the initialization call." ) self.result_handler.simulation_start() def _set_options(self): """ Helper function that sets options for FMICS algorithm. """ # no of communication points self.ncp = self.options['ncp'] self.write_scaled_result = self.options['write_scaled_result'] # result file name if self.options['result_file_name'] == '': self.result_file_name = self.model.get_identifier() + '_result.txt' else: self.result_file_name = self.options['result_file_name'] def _set_solver_options(self): """ Helper function that sets options for the solver. """ pass #No solver options def solve(self): """ Runs the simulation. """ result_handler = self.result_handler h = (self.final_time - self.start_time) / self.ncp grid = N.linspace(self.start_time, self.final_time, self.ncp + 1)[:-1] status = 0 final_time = 0.0 #For result writing result_handler.integration_point() #Start of simulation, start the clock time_start = time.clock() for t in grid: status = self.model.do_step(t, h) self.status = status if status != 0: if status == fmi.FMI_ERROR: result_handler.simulation_end() raise Exception( "The simulation failed. See the log for more information. Return flag %d." % status) elif status == fmi.FMI_DISCARD and isinstance( self.model, fmi.FMUModelCS1): try: last_time = self.model.get_real_status( fmi.FMI1_LAST_SUCCESSFUL_TIME) if last_time > t: #Solver succeeded in taken a step a little further than the last time self.model.time = last_time final_time = last_time result_handler.integration_point() except fmi.FMUException: pass break #result_handler.simulation_end() #raise Exception("The simulation failed. See the log for more information. Return flag %d"%status) final_time = t + h result_handler.integration_point() if self.input_traj != None: self.model.set(self.input_traj[0], self.input_traj[1].eval(t + h)[0, :]) #End of simulation, stop the clock time_stop = time.clock() result_handler.simulation_end() if self.status != 0: print( 'Simulation terminated prematurely. See the log for possibly more information. Return flag %d.' % status) #Log elapsed time print('Simulation interval : ' + str(self.start_time) + ' - ' + str(final_time) + ' seconds.') print('Elapsed simulation time: ' + str(time_stop - time_start) + ' seconds.') def get_result(self): """ Write result to file, load result data and create an FMICSResult object. Returns:: The FMICSResult object. """ # Get the result res = self.result_handler.get_result() # create and return result object return FMIResult(self.model, self.result_file_name, None, res, self.options, status=self.status) @classmethod def get_default_options(cls): """ Get an instance of the options class for the FMICSAlg algorithm, prefilled with default values. (Class method.) """ return FMICSAlgOptions()
class FMICSAlg(AlgorithmBase): """ Simulation algortihm for FMUs (Co-simulation). """ def __init__(self, start_time, final_time, input, model, options): """ Simulation algortihm for FMUs (Co-simulation). Parameters:: model -- fmi.FMUModelCS1 object representation of the model. options -- The options that should be used in the algorithm. For details on the options, see: * model.simulate_options('FMICSAlgOptions') or look at the docstring with help: * help(pyfmi.fmi_algorithm_drivers.FMICSAlgOptions) Valid values are: - A dict that overrides some or all of the default values provided by FMICSAlgOptions. An empty dict will thus give all options with default values. - FMICSAlgOptions object. """ self.model = model # set start time, final time and input trajectory self.start_time = start_time self.final_time = final_time self.input = input self.status = 0 # handle options argument if isinstance(options, dict) and not \ isinstance(options, FMICSAlgOptions): # user has passed dict with options or empty dict = default self.options = FMICSAlgOptions(options) elif isinstance(options, FMICSAlgOptions): # user has passed FMICSAlgOptions instance self.options = options else: raise InvalidAlgorithmOptionException(options) # set options self._set_options() input_traj = None if self.input: if hasattr(self.input[1],"__call__"): input_traj=(self.input[0], TrajectoryUserFunction(self.input[1])) else: input_traj=(self.input[0], TrajectoryLinearInterpolation(self.input[1][:,0], self.input[1][:,1:])) #Sets the inputs, if any self.model.set(input_traj[0], input_traj[1].eval(self.start_time)[0,:]) self.input_traj = input_traj if self.options["result_handling"] == "file": self.result_handler = ResultHandlerFile(self.model) elif self.options["result_handling"] == "memory": self.result_handler = ResultHandlerMemory(self.model) elif self.options["result_handling"] == "csv": self.result_handler = ResultHandlerCSV(self.model, delimiter=",") elif self.options["result_handling"] == "custom": self.result_handler = self.options["result_handler"] if self.result_handler == None: raise Exception("The result handler needs to be specified when using a custom result handling.") if not isinstance(self.result_handler, ResultHandler): raise Exception("The result handler needs to be a subclass of ResultHandler.") else: raise Exception("Unknown option to result_handling.") self.result_handler.set_options(self.options) # Initialize? if self.options['initialize']: if isinstance(self.model, fmi.FMUModelCS1) or isinstance(self.model, fmi_extended.FMUModelME1Extended): self.model.initialize(start_time, final_time, StopTimeDefined=True) elif isinstance(self.model, fmi.FMUModelCS2): self.model.setup_experiment(start_time=start_time, stop_time_defined=True, stop_time=final_time) self.model.initialize() else: raise Exception("Unknown model.") self.result_handler.initialize_complete() elif self.model.time == None and isinstance(self.model, fmi.FMUModelCS2): raise Exception("Setup Experiment has not been called, this has to be called prior to the initialization call.") self.result_handler.simulation_start() def _set_options(self): """ Helper function that sets options for FMICS algorithm. """ # no of communication points self.ncp = self.options['ncp'] self.write_scaled_result = self.options['write_scaled_result'] # result file name if self.options['result_file_name'] == '': self.result_file_name = self.model.get_identifier()+'_result.txt' else: self.result_file_name = self.options['result_file_name'] def _set_solver_options(self): """ Helper function that sets options for the solver. """ pass #No solver options def solve(self): """ Runs the simulation. """ result_handler = self.result_handler h = (self.final_time-self.start_time)/self.ncp grid = N.linspace(self.start_time,self.final_time,self.ncp+1)[:-1] status = 0 final_time = 0.0 #For result writing result_handler.integration_point() #Start of simulation, start the clock time_start = time.clock() for t in grid: status = self.model.do_step(t,h) self.status = status if status != 0: if status == fmi.FMI_ERROR: result_handler.simulation_end() raise Exception("The simulation failed. See the log for more information. Return flag %d."%status) elif status == fmi.FMI_DISCARD and isinstance(self.model, fmi.FMUModelCS1): try: last_time = self.model.get_real_status(fmi.FMI1_LAST_SUCCESSFUL_TIME) if last_time > t: #Solver succeeded in taken a step a little further than the last time self.model.time = last_time final_time = last_time result_handler.integration_point() except fmi.FMUException: pass break #result_handler.simulation_end() #raise Exception("The simulation failed. See the log for more information. Return flag %d"%status) final_time = t+h result_handler.integration_point() if self.input_traj != None: self.model.set(self.input_traj[0], self.input_traj[1].eval(t+h)[0,:]) #End of simulation, stop the clock time_stop = time.clock() result_handler.simulation_end() if self.status != 0: print('Simulation terminated prematurely. See the log for possibly more information. Return flag %d.'%status) #Log elapsed time print('Simulation interval : ' + str(self.start_time) + ' - ' + str(final_time) + ' seconds.') print('Elapsed simulation time: ' + str(time_stop-time_start) + ' seconds.') def get_result(self): """ Write result to file, load result data and create an FMICSResult object. Returns:: The FMICSResult object. """ # Get the result res = self.result_handler.get_result() # create and return result object return FMIResult(self.model, self.result_file_name, None, res, self.options, status=self.status) @classmethod def get_default_options(cls): """ Get an instance of the options class for the FMICSAlg algorithm, prefilled with default values. (Class method.) """ return FMICSAlgOptions()