def __init__(self, start_time, final_time, input, model, options): """ Simulation algortihm for FMUs (Co-simulation). Parameters:: model -- fmi.FMUModelCS1 object representation of the model. options -- The options that should be used in the algorithm. For details on the options, see: * model.simulate_options('FMICSAlgOptions') or look at the docstring with help: * help(pyfmi.fmi_algorithm_drivers.FMICSAlgOptions) Valid values are: - A dict that overrides some or all of the default values provided by FMICSAlgOptions. An empty dict will thus give all options with default values. - FMICSAlgOptions object. """ self.model = model # set start time, final time and input trajectory self.start_time = start_time self.final_time = final_time self.input = input self.status = 0 # handle options argument if isinstance(options, dict) and not \ isinstance(options, FMICSAlgOptions): # user has passed dict with options or empty dict = default self.options = FMICSAlgOptions(options) elif isinstance(options, FMICSAlgOptions): # user has passed FMICSAlgOptions instance self.options = options else: raise InvalidAlgorithmOptionException(options) # set options self._set_options() input_traj = None if self.input: if hasattr(self.input[1], "__call__"): input_traj = (self.input[0], TrajectoryUserFunction(self.input[1])) else: input_traj = (self.input[0], TrajectoryLinearInterpolation( self.input[1][:, 0], self.input[1][:, 1:])) #Sets the inputs, if any self.model.set(input_traj[0], input_traj[1].eval(self.start_time)[0, :]) self.input_traj = input_traj if self.options["result_handling"] == "file": self.result_handler = ResultHandlerFile(self.model) elif self.options["result_handling"] == "memory": self.result_handler = ResultHandlerMemory(self.model) elif self.options["result_handling"] == "custom": self.result_handler = self.options["result_handler"] if self.result_handler == None: raise Exception( "The result handler needs to be specified when using a custom result handling." ) if not isinstance(self.result_handler, ResultHandler): raise Exception( "The result handler needs to be a subclass of ResultHandler." ) else: raise Exception("Unknown option to result_handling.") self.result_handler.set_options(self.options) # Initialize? if self.options['initialize']: if isinstance(self.model, fmi.FMUModelCS1) or isinstance( self.model, fmi_extended.FMUModelME1Extended): self.model.initialize(start_time, final_time, StopTimeDefined=True) elif isinstance(self.model, fmi.FMUModelCS2): self.model.setup_experiment(start_time=start_time, stop_time_defined=True, stop_time=final_time) self.model.initialize() else: raise Exception("Unknown model.") self.result_handler.initialize_complete() elif self.model.time == None and isinstance(self.model, fmi.FMUModelCS2): raise Exception( "Setup Experiment has not been called, this has to be called prior to the initialization call." ) self.result_handler.simulation_start()
class FMICSAlg(AlgorithmBase): """ Simulation algortihm for FMUs (Co-simulation). """ def __init__(self, start_time, final_time, input, model, options): """ Simulation algortihm for FMUs (Co-simulation). Parameters:: model -- fmi.FMUModelCS1 object representation of the model. options -- The options that should be used in the algorithm. For details on the options, see: * model.simulate_options('FMICSAlgOptions') or look at the docstring with help: * help(pyfmi.fmi_algorithm_drivers.FMICSAlgOptions) Valid values are: - A dict that overrides some or all of the default values provided by FMICSAlgOptions. An empty dict will thus give all options with default values. - FMICSAlgOptions object. """ self.model = model # set start time, final time and input trajectory self.start_time = start_time self.final_time = final_time self.input = input self.status = 0 # handle options argument if isinstance(options, dict) and not \ isinstance(options, FMICSAlgOptions): # user has passed dict with options or empty dict = default self.options = FMICSAlgOptions(options) elif isinstance(options, FMICSAlgOptions): # user has passed FMICSAlgOptions instance self.options = options else: raise InvalidAlgorithmOptionException(options) # set options self._set_options() input_traj = None if self.input: if hasattr(self.input[1], "__call__"): input_traj = (self.input[0], TrajectoryUserFunction(self.input[1])) else: input_traj = (self.input[0], TrajectoryLinearInterpolation( self.input[1][:, 0], self.input[1][:, 1:])) #Sets the inputs, if any self.model.set(input_traj[0], input_traj[1].eval(self.start_time)[0, :]) self.input_traj = input_traj if self.options["result_handling"] == "file": self.result_handler = ResultHandlerFile(self.model) elif self.options["result_handling"] == "memory": self.result_handler = ResultHandlerMemory(self.model) elif self.options["result_handling"] == "custom": self.result_handler = self.options["result_handler"] if self.result_handler == None: raise Exception( "The result handler needs to be specified when using a custom result handling." ) if not isinstance(self.result_handler, ResultHandler): raise Exception( "The result handler needs to be a subclass of ResultHandler." ) else: raise Exception("Unknown option to result_handling.") self.result_handler.set_options(self.options) # Initialize? if self.options['initialize']: if isinstance(self.model, fmi.FMUModelCS1) or isinstance( self.model, fmi_extended.FMUModelME1Extended): self.model.initialize(start_time, final_time, StopTimeDefined=True) elif isinstance(self.model, fmi.FMUModelCS2): self.model.setup_experiment(start_time=start_time, stop_time_defined=True, stop_time=final_time) self.model.initialize() else: raise Exception("Unknown model.") self.result_handler.initialize_complete() elif self.model.time == None and isinstance(self.model, fmi.FMUModelCS2): raise Exception( "Setup Experiment has not been called, this has to be called prior to the initialization call." ) self.result_handler.simulation_start() def _set_options(self): """ Helper function that sets options for FMICS algorithm. """ # no of communication points self.ncp = self.options['ncp'] self.write_scaled_result = self.options['write_scaled_result'] # result file name if self.options['result_file_name'] == '': self.result_file_name = self.model.get_identifier() + '_result.txt' else: self.result_file_name = self.options['result_file_name'] def _set_solver_options(self): """ Helper function that sets options for the solver. """ pass #No solver options def solve(self): """ Runs the simulation. """ result_handler = self.result_handler h = (self.final_time - self.start_time) / self.ncp grid = N.linspace(self.start_time, self.final_time, self.ncp + 1)[:-1] status = 0 final_time = 0.0 #For result writing result_handler.integration_point() #Start of simulation, start the clock time_start = time.clock() for t in grid: status = self.model.do_step(t, h) self.status = status if status != 0: if status == fmi.FMI_ERROR: result_handler.simulation_end() raise Exception( "The simulation failed. See the log for more information. Return flag %d." % status) elif status == fmi.FMI_DISCARD and isinstance( self.model, fmi.FMUModelCS1): try: last_time = self.model.get_real_status( fmi.FMI1_LAST_SUCCESSFUL_TIME) if last_time > t: #Solver succeeded in taken a step a little further than the last time self.model.time = last_time final_time = last_time result_handler.integration_point() except fmi.FMUException: pass break #result_handler.simulation_end() #raise Exception("The simulation failed. See the log for more information. Return flag %d"%status) final_time = t + h result_handler.integration_point() if self.input_traj != None: self.model.set(self.input_traj[0], self.input_traj[1].eval(t + h)[0, :]) #End of simulation, stop the clock time_stop = time.clock() result_handler.simulation_end() if self.status != 0: print( 'Simulation terminated prematurely. See the log for possibly more information. Return flag %d.' % status) #Log elapsed time print('Simulation interval : ' + str(self.start_time) + ' - ' + str(final_time) + ' seconds.') print('Elapsed simulation time: ' + str(time_stop - time_start) + ' seconds.') def get_result(self): """ Write result to file, load result data and create an FMICSResult object. Returns:: The FMICSResult object. """ # Get the result res = self.result_handler.get_result() # create and return result object return FMIResult(self.model, self.result_file_name, None, res, self.options, status=self.status) @classmethod def get_default_options(cls): """ Get an instance of the options class for the FMICSAlg algorithm, prefilled with default values. (Class method.) """ return FMICSAlgOptions()
def __init__(self, start_time, final_time, input, model, options): """ Create a simulation algorithm using Assimulo. Parameters:: model -- fmi.FMUModel object representation of the model. options -- The options that should be used in the algorithm. For details on the options, see: * model.simulate_options('AssimuloFMIAlgOptions') or look at the docstring with help: * help(pyfmi.fmi_algorithm_drivers.AssimuloFMIAlgOptions) Valid values are: - A dict that overrides some or all of the default values provided by AssimuloFMIAlgOptions. An empty dict will thus give all options with default values. - AssimuloFMIAlgOptions object. """ self.model = model if not assimulo_present: raise Exception( 'Could not find Assimulo package. Check pyfmi.check_packages()' ) # set start time, final time and input trajectory self.start_time = start_time self.final_time = final_time self.input = input # handle options argument if isinstance(options, dict) and not \ isinstance(options, AssimuloFMIAlgOptions): # user has passed dict with options or empty dict = default self.options = AssimuloFMIAlgOptions(options) elif isinstance(options, AssimuloFMIAlgOptions): # user has passed AssimuloFMIAlgOptions instance self.options = options else: raise InvalidAlgorithmOptionException(options) # set options self._set_options() input_traj = None if self.input: if hasattr(self.input[1], "__call__"): input_traj = (self.input[0], TrajectoryUserFunction(self.input[1])) else: input_traj = (self.input[0], TrajectoryLinearInterpolation( self.input[1][:, 0], self.input[1][:, 1:])) #Sets the inputs, if any self.model.set(input_traj[0], input_traj[1].eval(self.start_time)[0, :]) if self.options["result_handling"] == "file": self.result_handler = ResultHandlerFile(self.model) elif self.options["result_handling"] == "memory": self.result_handler = ResultHandlerMemory(self.model) elif self.options["result_handling"] == "custom": self.result_handler = self.options["result_handler"] if self.result_handler == None: raise Exception( "The result handler needs to be specified when using a custom result handling." ) if not isinstance(self.result_handler, ResultHandler): raise Exception( "The result handler needs to be a subclass of ResultHandler." ) elif self.options[ "result_handling"] == "none": #No result handling (for performance) self.result_handler = ResultHandlerDummy(self.model) else: raise Exception("Unknown option to result_handling.") self.result_handler.set_options(self.options) # Initialize? if self.options['initialize']: try: rtol = self.solver_options['rtol'] except KeyError: rtol, atol = self.model.get_tolerances() if isinstance(self.model, fmi.FMUModelME1): self.model.time = start_time #Set start time before initialization self.model.initialize(relativeTolerance=rtol) elif isinstance(self.model, fmi.FMUModelME2): self.model.setup_experiment(tolerance=rtol, start_time=self.start_time, stop_time=self.final_time) self.model.initialize() self.model.event_update() self.model.enter_continuous_time_mode() else: raise Exception("Unknown model.") self.result_handler.initialize_complete() elif self.model.time == None and isinstance(self.model, fmi.FMUModelME2): raise Exception( "Setup Experiment has not been called, this has to be called prior to the initialization call." ) #See if there is an time event at start time if isinstance(self.model, fmi.FMUModelME1): event_info = self.model.get_event_info() if event_info.upcomingTimeEvent and event_info.nextEventTime == model.time: self.model.event_update() self.result_handler.simulation_start() # Sensitivities? if self.options["sensitivities"]: if self.model.get_generation_tool() != "JModelica.org": raise Exception( "Sensitivity calculations only possible with JModelica.org generated FMUs" ) if self.options["solver"] != "CVode": raise Exception( "Sensitivity simulations currently only supported using the solver CVode." ) #Checks to see if all the sensitivities are inside the model #else there will be an exception self.model.get(self.options["sensitivities"]) if not self.input and isinstance(self.model, fmi.FMUModelME2): if self.options["sensitivities"]: self.probl = FMIODESENS2( self.model, result_file_name=self.result_file_name, start_time=self.start_time, parameters=self.options["sensitivities"], logging=self.options["logging"], result_handler=self.result_handler) else: self.probl = FMIODE2(self.model, result_file_name=self.result_file_name, start_time=self.start_time, logging=self.options["logging"], result_handler=self.result_handler) elif isinstance(self.model, fmi.FMUModelME2): if self.options["sensitivities"]: self.probl = FMIODESENS2( self.model, input_traj, result_file_name=self.result_file_name, start_time=self.start_time, parameters=self.options["sensitivities"], logging=self.options["logging"], result_handler=self.result_handler) else: self.probl = FMIODE2(self.model, input_traj, result_file_name=self.result_file_name, start_time=self.start_time, logging=self.options["logging"], result_handler=self.result_handler) elif not self.input: if self.options["sensitivities"]: self.probl = FMIODESENS( self.model, result_file_name=self.result_file_name, with_jacobian=self.with_jacobian, start_time=self.start_time, parameters=self.options["sensitivities"], logging=self.options["logging"], result_handler=self.result_handler) else: self.probl = FMIODE(self.model, result_file_name=self.result_file_name, with_jacobian=self.with_jacobian, start_time=self.start_time, logging=self.options["logging"], result_handler=self.result_handler) else: if self.options["sensitivities"]: self.probl = FMIODESENS( self.model, input_traj, result_file_name=self.result_file_name, with_jacobian=self.with_jacobian, start_time=self.start_time, parameters=self.options["sensitivities"], logging=self.options["logging"], result_handler=self.result_handler) else: self.probl = FMIODE(self.model, input_traj, result_file_name=self.result_file_name, with_jacobian=self.with_jacobian, start_time=self.start_time, logging=self.options["logging"], result_handler=self.result_handler) # instantiate solver and set options self.simulator = self.solver(self.probl) self._set_solver_options()
class AssimuloFMIAlg(AlgorithmBase): """ Simulation algortihm for FMUs using the Assimulo package. """ def __init__(self, start_time, final_time, input, model, options): """ Create a simulation algorithm using Assimulo. Parameters:: model -- fmi.FMUModel object representation of the model. options -- The options that should be used in the algorithm. For details on the options, see: * model.simulate_options('AssimuloFMIAlgOptions') or look at the docstring with help: * help(pyfmi.fmi_algorithm_drivers.AssimuloFMIAlgOptions) Valid values are: - A dict that overrides some or all of the default values provided by AssimuloFMIAlgOptions. An empty dict will thus give all options with default values. - AssimuloFMIAlgOptions object. """ self.model = model if not assimulo_present: raise Exception( 'Could not find Assimulo package. Check pyfmi.check_packages()' ) # set start time, final time and input trajectory self.start_time = start_time self.final_time = final_time self.input = input self.model.time = start_time #Also set start time into the model # handle options argument if isinstance(options, dict) and not \ isinstance(options, AssimuloFMIAlgOptions): # user has passed dict with options or empty dict = default self.options = AssimuloFMIAlgOptions(options) elif isinstance(options, AssimuloFMIAlgOptions): # user has passed AssimuloFMIAlgOptions instance self.options = options else: raise InvalidAlgorithmOptionException(options) # set options self._set_options() input_traj = None if self.input: if hasattr(self.input[1], "__call__"): input_traj = (self.input[0], TrajectoryUserFunction(self.input[1])) else: input_traj = (self.input[0], TrajectoryLinearInterpolation( self.input[1][:, 0], self.input[1][:, 1:])) #Sets the inputs, if any self.model.set(input_traj[0], input_traj[1].eval(self.start_time)[0, :]) if self.options["result_handling"] == "file": self.result_handler = ResultHandlerFile(self.model) elif self.options["result_handling"] == "memory": self.result_handler = ResultHandlerMemory(self.model) elif self.options["result_handling"] == "custom": self.result_handler = self.options["result_handler"] if self.result_handler == None: raise Exception( "The result handler needs to be specified when using a custom result handling." ) if not isinstance(self.result_handler, ResultHandler): raise Exception( "The result handler needs to be a subclass of ResultHandler." ) else: raise Exception("Unknown option to result_handling.") self.result_handler.set_options(self.options) # Initialize? if self.options['initialize']: try: self.model.initialize( relativeTolerance=self.solver_options['rtol']) except KeyError: rtol, atol = self.model.get_tolerances() self.model.initialize(relativeTolerance=rtol) self.result_handler.initialize_complete() self.result_handler.simulation_start() # Sensitivities? if self.options["sensitivities"]: if self.model.get_generation_tool() != "JModelica.org": raise Exception( "Sensitivity calculations only possible with JModelica.org generated FMUs" ) if self.options["solver"] != "CVode": raise Exception( "Sensitivity simulations currently only supported using the solver CVode." ) #Checks to see if all the sensitivities are inside the model #else there will be an exception self.model.get(self.options["sensitivities"]) if not self.input and isinstance(self.model, fmi.FMUModelME2): if self.options["sensitivities"]: self.probl = FMIODESENS2( self.model, result_file_name=self.result_file_name, start_time=self.start_time, parameters=self.options["sensitivities"], logging=self.options["logging"], result_handler=self.result_handler) else: self.probl = FMIODE2(self.model, result_file_name=self.result_file_name, start_time=self.start_time, logging=self.options["logging"], result_handler=self.result_handler) elif isinstance(self.model, fmi.FMUModelME2): if self.options["sensitivities"]: self.probl = FMIODESENS2( self.model, input_traj, result_file_name=self.result_file_name, start_time=self.start_time, parameters=self.options["sensitivities"], logging=self.options["logging"], result_handler=self.result_handler) else: self.probl = FMIODE2(self.model, input_traj, result_file_name=self.result_file_name, start_time=self.start_time, logging=self.options["logging"], result_handler=self.result_handler) elif not self.input: if self.options["sensitivities"]: self.probl = FMIODESENS( self.model, result_file_name=self.result_file_name, with_jacobian=self.with_jacobian, start_time=self.start_time, parameters=self.options["sensitivities"], logging=self.options["logging"], result_handler=self.result_handler) else: self.probl = FMIODE(self.model, result_file_name=self.result_file_name, with_jacobian=self.with_jacobian, start_time=self.start_time, logging=self.options["logging"], result_handler=self.result_handler) else: if self.options["sensitivities"]: self.probl = FMIODESENS( self.model, input_traj, result_file_name=self.result_file_name, with_jacobian=self.with_jacobian, start_time=self.start_time, parameters=self.options["sensitivities"], logging=self.options["logging"], result_handler=self.result_handler) else: self.probl = FMIODE(self.model, input_traj, result_file_name=self.result_file_name, with_jacobian=self.with_jacobian, start_time=self.start_time, logging=self.options["logging"], result_handler=self.result_handler) # instantiate solver and set options self.simulator = self.solver(self.probl) self._set_solver_options() def _set_options(self): """ Helper function that sets options for AssimuloFMI algorithm. """ # no of communication points self.ncp = self.options['ncp'] self.write_scaled_result = self.options['write_scaled_result'] self.with_jacobian = self.options['with_jacobian'] # result file name if self.options['result_file_name'] == '': self.result_file_name = self.model.get_identifier() + '_result.txt' else: self.result_file_name = self.options['result_file_name'] # solver solver = self.options['solver'] if hasattr(solvers, solver): self.solver = getattr(solvers, solver) else: raise InvalidAlgorithmOptionException("The solver: " + solver + " is unknown.") # solver options try: self.solver_options = self.options[solver + '_options'] except KeyError: #Default solver options not found self.solver_options = {} #Empty dict try: self.solver.atol self.solver_options["atol"] = "Default" except AttributeError: pass try: self.solver.rtol self.solver_options["rtol"] = "Default" except AttributeError: pass #Check relative tolerance #If the tolerances are not set specifically, they are set #according to the 'DefaultExperiment' from the XML file. try: if self.solver_options["rtol"] == "Default": rtol, atol = self.model.get_tolerances() self.solver_options['rtol'] = rtol except KeyError: pass #Check absolute tolerance try: if self.solver_options["atol"] == "Default": rtol, atol = self.model.get_tolerances() fnbr, gnbr = self.model.get_ode_sizes() if fnbr == 0: self.solver_options['atol'] = 0.01 * rtol else: self.solver_options['atol'] = atol except KeyError: pass def _set_solver_options(self): """ Helper function that sets options for the solver. """ solver_options = self.solver_options.copy() #Set solver option continuous_output self.simulator.report_continuously = True #loop solver_args and set properties of solver for k, v in solver_options.iteritems(): try: getattr(self.simulator, k) except AttributeError: try: getattr(self.probl, k) except AttributeError: raise InvalidSolverArgumentException(k) setattr(self.probl, k, v) continue setattr(self.simulator, k, v) def solve(self): """ Runs the simulation. """ self.simulator.simulate(self.final_time, self.ncp) def get_result(self): """ Write result to file, load result data and create an AssimuloSimResult object. Returns:: The AssimuloSimResult object. """ # load result file res = self.result_handler.get_result() # create and return result object return FMIResult(self.model, self.result_file_name, self.simulator, res, self.options) @classmethod def get_default_options(cls): """ Get an instance of the options class for the AssimuloFMIAlg algorithm, prefilled with default values. (Class method.) """ return AssimuloFMIAlgOptions()
def __init__(self, start_time, final_time, input, model, options): """ Simulation algortihm for FMUs (Co-simulation). Parameters:: model -- fmi.FMUModelCS1 object representation of the model. options -- The options that should be used in the algorithm. For details on the options, see: * model.simulate_options('FMICSAlgOptions') or look at the docstring with help: * help(pyfmi.fmi_algorithm_drivers.FMICSAlgOptions) Valid values are: - A dict that overrides some or all of the default values provided by FMICSAlgOptions. An empty dict will thus give all options with default values. - FMICSAlgOptions object. """ self.model = model self.timings = {} self.time_start_total = timer() # set start time, final time and input trajectory self.start_time = start_time self.final_time = final_time self.input = input self.status = 0 # handle options argument if isinstance(options, dict) and not \ isinstance(options, FMICSAlgOptions): # user has passed dict with options or empty dict = default self.options = FMICSAlgOptions(options) elif isinstance(options, FMICSAlgOptions): # user has passed FMICSAlgOptions instance self.options = options else: raise InvalidAlgorithmOptionException(options) # set options self._set_options() input_traj = None if self.input: if hasattr(self.input[1],"__call__"): input_traj=(self.input[0], TrajectoryUserFunction(self.input[1])) else: input_traj=(self.input[0], TrajectoryLinearInterpolation(self.input[1][:,0], self.input[1][:,1:])) #Sets the inputs, if any self.model.set(input_traj[0], input_traj[1].eval(self.start_time)[0,:]) self.input_traj = input_traj #time_start = timer() if self.options["result_handling"] == "file": self.result_handler = ResultHandlerFile(self.model) elif self.options["result_handling"] == "binary": self.result_handler = ResultHandlerBinaryFile(self.model) elif self.options["result_handling"] == "memory": self.result_handler = ResultHandlerMemory(self.model) elif self.options["result_handling"] == "csv": self.result_handler = ResultHandlerCSV(self.model, delimiter=",") elif self.options["result_handling"] == "custom": self.result_handler = self.options["result_handler"] if self.result_handler is None: raise fmi.FMUException("The result handler needs to be specified when using a custom result handling.") if not isinstance(self.result_handler, ResultHandler): raise fmi.FMUException("The result handler needs to be a subclass of ResultHandler.") elif self.options["result_handling"] == "none": #No result handling (for performance) self.result_handler = ResultHandlerDummy(self.model) else: raise fmi.FMUException("Unknown option to result_handling.") self.result_handler.set_options(self.options) time_end = timer() #self.timings["creating_result_object"] = time_end - time_start time_start = time_end time_res_init = 0.0 # Initialize? if self.options['initialize']: if isinstance(self.model, fmi.FMUModelCS1) or isinstance(self.model, fmi_extended.FMUModelME1Extended): self.model.initialize(start_time, final_time, stop_time_defined=self.options["stop_time_defined"]) elif isinstance(self.model, fmi.FMUModelCS2): self.model.setup_experiment(start_time=start_time, stop_time_defined=self.options["stop_time_defined"], stop_time=final_time) self.model.initialize() else: raise fmi.FMUException("Unknown model.") time_res_init = timer() self.result_handler.initialize_complete() time_res_init = timer() - time_res_init elif self.model.time is None and isinstance(self.model, fmi.FMUModelCS2): raise fmi.FMUException("Setup Experiment has not been called, this has to be called prior to the initialization call.") elif self.model.time is None: raise fmi.FMUException("The model need to be initialized prior to calling the simulate method if the option 'initialize' is set to False") if abs(start_time - model.time) > 1e-14: logging.warning('The simulation start time (%f) and the current time in the model (%f) is different. Is the simulation start time correctly set?'%(start_time, model.time)) time_end = timer() self.timings["initializing_fmu"] = time_end - time_start - time_res_init time_start = time_end self.result_handler.simulation_start() self.timings["initializing_result"] = timer() - time_start - time_res_init
def __init__(self, start_time, final_time, input, model, options): """ Create a simulation algorithm using Assimulo. Parameters:: model -- fmi.FMUModel object representation of the model. options -- The options that should be used in the algorithm. For details on the options, see: * model.simulate_options('AssimuloFMIAlgOptions') or look at the docstring with help: * help(pyfmi.fmi_algorithm_drivers.AssimuloFMIAlgOptions) Valid values are: - A dict that overrides some or all of the default values provided by AssimuloFMIAlgOptions. An empty dict will thus give all options with default values. - AssimuloFMIAlgOptions object. """ self.model = model self.timings = {} self.time_start_total = timer() try: import assimulo except: raise fmi.FMUException( 'Could not find Assimulo package. Check pyfmi.check_packages()') # import Assimulo dependent classes from pyfmi.simulation.assimulo_interface import FMIODE, FMIODESENS, FMIODE2, FMIODESENS2 # set start time, final time and input trajectory self.start_time = start_time self.final_time = final_time self.input = input # handle options argument if isinstance(options, dict) and not \ isinstance(options, AssimuloFMIAlgOptions): # user has passed dict with options or empty dict = default self.options = AssimuloFMIAlgOptions(options) elif isinstance(options, AssimuloFMIAlgOptions): # user has passed AssimuloFMIAlgOptions instance self.options = options else: raise InvalidAlgorithmOptionException(options) # set options self._set_options() #time_start = timer() input_traj = None if self.input: if hasattr(self.input[1],"__call__"): input_traj=(self.input[0], TrajectoryUserFunction(self.input[1])) else: input_traj=(self.input[0], TrajectoryLinearInterpolation(self.input[1][:,0], self.input[1][:,1:])) #Sets the inputs, if any input_names = [input_traj[0]] if isinstance(input_traj[0],str) else input_traj[0] input_values = input_traj[1].eval(self.start_time)[0,:] if len(input_names) != len(input_values): raise fmi.FMUException("The number of input variables is not equal to the number of input values, please verify the input object.") self.model.set(input_names, input_values) if self.options["result_handling"] == "file": self.result_handler = ResultHandlerFile(self.model) elif self.options["result_handling"] == "binary": if self.options["sensitivities"]: logging.warning('The binary result file do not currently support storing of sensitivity results. Switching to textual result format.') self.result_handler = ResultHandlerFile(self.model) else: self.result_handler = ResultHandlerBinaryFile(self.model) elif self.options["result_handling"] == "memory": self.result_handler = ResultHandlerMemory(self.model) elif self.options["result_handling"] == "csv": self.result_handler = ResultHandlerCSV(self.model, delimiter=",") elif self.options["result_handling"] == "custom": self.result_handler = self.options["result_handler"] if self.result_handler is None: raise fmi.FMUException("The result handler needs to be specified when using a custom result handling.") if not isinstance(self.result_handler, ResultHandler): raise fmi.FMUException("The result handler needs to be a subclass of ResultHandler.") elif self.options["result_handling"] == "none": #No result handling (for performance) self.result_handler = ResultHandlerDummy(self.model) else: raise fmi.FMUException("Unknown option to result_handling.") self.result_handler.set_options(self.options) time_end = timer() #self.timings["creating_result_object"] = time_end - time_start time_start = time_end time_res_init = 0.0 # Initialize? if self.options['initialize']: try: rtol = self.solver_options['rtol'] except KeyError: rtol, atol = self.model.get_tolerances() if isinstance(self.model, fmi.FMUModelME1): self.model.time = start_time #Set start time before initialization self.model.initialize(tolerance=rtol) elif isinstance(self.model, fmi.FMUModelME2) or isinstance(self.model, fmi_coupled.CoupledFMUModelME2): self.model.setup_experiment(tolerance=rtol, start_time=self.start_time, stop_time=self.final_time) self.model.initialize() self.model.event_update() self.model.enter_continuous_time_mode() else: raise fmi.FMUException("Unknown model.") time_res_init = timer() self.result_handler.initialize_complete() time_res_init = timer() - time_res_init elif self.model.time is None and isinstance(self.model, fmi.FMUModelME2): raise fmi.FMUException("Setup Experiment has not been called, this has to be called prior to the initialization call.") elif self.model.time is None: raise fmi.FMUException("The model need to be initialized prior to calling the simulate method if the option 'initialize' is set to False") #See if there is an time event at start time if isinstance(self.model, fmi.FMUModelME1): event_info = self.model.get_event_info() if event_info.upcomingTimeEvent and event_info.nextEventTime == model.time: self.model.event_update() if abs(start_time - model.time) > 1e-14: logging.warning('The simulation start time (%f) and the current time in the model (%f) is different. Is the simulation start time correctly set?'%(start_time, model.time)) time_end = timer() self.timings["initializing_fmu"] = time_end - time_start - time_res_init time_start = time_end self.result_handler.simulation_start() self.timings["initializing_result"] = timer() - time_start + time_res_init # Sensitivities? if self.options["sensitivities"]: if self.model.get_generation_tool() != "JModelica.org" and \ self.model.get_generation_tool() != "Optimica Compiler Toolkit": if isinstance(self.model, fmi.FMUModelME2): for var in self.options["sensitivities"]: causality = self.model.get_variable_causality(var) if causality != fmi.FMI2_INPUT: raise fmi.FMUException("The sensitivity parameter is not specified as an input which is required.") else: raise fmi.FMUException("Sensitivity calculations only possible with JModelica.org generated FMUs") if self.options["solver"] != "CVode": raise fmi.FMUException("Sensitivity simulations currently only supported using the solver CVode.") #Checks to see if all the sensitivities are inside the model #else there will be an exception self.model.get(self.options["sensitivities"]) if not self.input and (isinstance(self.model, fmi.FMUModelME2) or isinstance(self.model, fmi_coupled.CoupledFMUModelME2)): if self.options["sensitivities"]: self.probl = FMIODESENS2(self.model, result_file_name=self.result_file_name, with_jacobian=self.with_jacobian, start_time=self.start_time, parameters=self.options["sensitivities"],logging=self.options["logging"], result_handler=self.result_handler) else: self.probl = FMIODE2(self.model, result_file_name=self.result_file_name, with_jacobian=self.with_jacobian, start_time=self.start_time,logging=self.options["logging"], result_handler=self.result_handler,extra_equations=self.options["extra_equations"]) elif isinstance(self.model, fmi.FMUModelME2) or isinstance(self.model, fmi_coupled.CoupledFMUModelME2): if self.options["sensitivities"]: self.probl = FMIODESENS2( self.model, input_traj, result_file_name=self.result_file_name, with_jacobian=self.with_jacobian, start_time=self.start_time,parameters=self.options["sensitivities"],logging=self.options["logging"], result_handler=self.result_handler) else: self.probl = FMIODE2( self.model, input_traj, result_file_name=self.result_file_name, with_jacobian=self.with_jacobian, start_time=self.start_time,logging=self.options["logging"], result_handler=self.result_handler, extra_equations=self.options["extra_equations"]) elif not self.input: if self.options["sensitivities"]: self.probl = FMIODESENS(self.model, result_file_name=self.result_file_name,with_jacobian=self.with_jacobian,start_time=self.start_time,parameters=self.options["sensitivities"],logging=self.options["logging"], result_handler=self.result_handler) else: self.probl = FMIODE(self.model, result_file_name=self.result_file_name,with_jacobian=self.with_jacobian,start_time=self.start_time,logging=self.options["logging"], result_handler=self.result_handler) else: if self.options["sensitivities"]: self.probl = FMIODESENS( self.model, input_traj, result_file_name=self.result_file_name,with_jacobian=self.with_jacobian,start_time=self.start_time,parameters=self.options["sensitivities"],logging=self.options["logging"], result_handler=self.result_handler) else: self.probl = FMIODE( self.model, input_traj, result_file_name=self.result_file_name,with_jacobian=self.with_jacobian,start_time=self.start_time,logging=self.options["logging"], result_handler=self.result_handler) # instantiate solver and set options self.simulator = self.solver(self.probl) self._set_solver_options()