예제 #1
0
def fid(spin_system):
    sys_hamiltonian = pg.Hcs(spin_system) + pg.HJ(spin_system)
    read = pg.Fm(spin_system, "1H")
    ACQ = pg.acquire1D(pg.gen_op(read), sys_hamiltonian, 0.000001)

    sigma = pg.sigma_eq(spin_system)
    sigma0 = pg.Ixpuls(spin_system, sigma, "1H", 90.0)

    return pg.TTable1D(ACQ.table(sigma0))
def fid(sys, b0=123.23):
    sys.OmegaAdjust(b0)
    H = pg.Hcs(sys) + pg.HJ(sys)
    D = pg.Fm(sys)
    ACQ = pg.acquire1D(pg.gen_op(D), H, 0.1)
    sigma = pg.sigma_eq(sys)
    sigma0 = pg.Ixpuls(sys, sigma, 90.0)
    mx = pg.TTable1D(ACQ.table(sigma0))
    return mx
예제 #3
0
def apply_crushed_180_rf(sys,
                         sigma,
                         dephase_ang=[0.0, 90.0, 180.0, 270.0],
                         type='crusher'):
    sigma_mult = []
    for i in dephase_ang:
        sigma_mult.append(pg.gen_op(sigma))

    for i, angle in enumerate(dephase_ang):
        riz = pg.gen_op(pg.Rz(sys, angle))
        sigma_mult[i] = pg.evolve(sigma_mult[i], riz)
        sigma_mult[i] = pg.Iypuls(sys, sigma_mult[i], '1H', 180.0)

        if type == 'bipolar':
            riz = pg.gen_op(pg.Rz(sys, -1 * angle))
        sigma_mult[i] = pg.evolve(sigma_mult[i], riz)
        sigma_mult[i] *= 0.25
        if i == 0:
            sigma_res = pg.gen_op(sigma_mult[i])
        else:
            sigma_res += sigma_mult[i]

    return sigma_res
예제 #4
0
def apply_crushed_rf(sys, sigma, pulse_op, type='crusher'):
    """
    The sigma input is a single density matrix object.  This object
    is copied into 4 matrices that are rotated about Z axis by the symmetric
    angles in dephase_ang. The pulse_op RF pulse operator is applied to all
    4 density matrices. These are further rotated about the Z axis by the
    symmetric angles in dephase_ang, if type='crusher', or by the negative
    angles in dephase_ang if type='bipolar'. The four matrices are summed
    into one density matrix and divided by 4. A single density matrix is returned.

    after the RF pulse, any spins that did not experience at least a 90 deg RF
    pulse then there will be some signal loss due to lack of refocusing of
    the four matrices.

    """
    dephase_ang = [0.0, 90.0, 180.0, 270.0]

    sigma_mult = []
    for i in dephase_ang:
        sigma_mult.append(pg.gen_op(sigma))

    for i, angle in enumerate(dephase_ang):
        riz = pg.gen_op(pg.Rz(sys, angle))
        sigma_mult[i] = pg.evolve(sigma_mult[i], riz)

        sigma_mult[i] = pulse_op.evolve(sigma_mult[i])

        if type == 'bipolar':
            riz = pg.gen_op(pg.Rz(sys, -1 * angle))
        sigma_mult[i] = pg.evolve(sigma_mult[i], riz)
        sigma_mult[i] *= 0.25
        if i == 0:
            sigma_res = pg.gen_op(sigma_mult[i])
        else:
            sigma_res += sigma_mult[i]

    return sigma_res
예제 #5
0
def press(spin_system, te1=34, te2=34):
    #----------------------------------------------------------------------
    # This is an example PyGAMMA pulse sequence for use in Vespa-Simulation
    #
    # A timing diagram for this pulse sequence can be found in the Appendix
    # of the Simulation User Manual.
    #----------------------------------------------------------------------

    # the isotope string used to sort/select the metabolites of interest is passed
    # in the sim_desc object so the user can tailor other object within their
    # code to be nuclei specific, such as the observe operator or pulses

    obs_iso = '1H'

    # extract the dynamically changing variable from loop 1 and 2 for 'te1' and
    # 'te2', divide by 1000.0 because the GUI states that values are entered in
    # [ms], but PyGAMMA wants [sec]

    te1 = te1 / 1000.0
    te2 = te2 / 1000.0

    # set up steady state and observation variables
    H = pg.Hcs(spin_system) + pg.HJ(spin_system)
    D = pg.Fm(spin_system, obs_iso)
    ac = pg.acquire1D(pg.gen_op(D), H, 0.000001)
    ACQ = ac
    sigma0 = pg.sigma_eq(spin_system)

    # excite, propagate, refocus and acquire the data
    sigma1 = pg.Iypuls(spin_system, sigma0, obs_iso, 90.0)
    Udelay = pg.prop(H, te1 * 0.5)
    sigma0 = pg.evolve(sigma1, Udelay)
    sigma1 = pg.Iypuls(spin_system, sigma0, obs_iso, 180.0)
    Udelay = pg.prop(H, (te1 + te2) * 0.5)
    sigma0 = pg.evolve(sigma1, Udelay)
    sigma1 = pg.Iypuls(spin_system, sigma0, obs_iso, 180.0)
    Udelay = pg.prop(H, te2 * 0.5)
    sigma0 = pg.evolve(sigma1, Udelay)

    # instantiate and save transition table of simulation results
    # note. this step copies the TTable1D result from the ACQ into
    #       a TTable1D object in the sim_desc object. Thus, when
    #       we return from this function and the ACQ variable gets
    #       garbage collected, our copy of the results in not affected
    return pg.TTable1D(ACQ.table(sigma0))
예제 #6
0
#need to use pg.complex() so it can find correct function to call.
for j in range(pulse.size()):
    ptime.put(pg.complex(pulsestep, 0), j)

pwf = pg.PulWaveform(pulse, ptime, "TestPulse")

pulc = pg.PulComposite(pwf, sys, "1H")

H = pg.Hcs(sys) + pg.HJ(sys)
D = pg.Fm(sys)

Udelay1 = pg.prop(H, t1)
Udelay2 = pg.prop(H, t2)

# Neet to effectively typecast D as a gen_op.
ac = pg.acquire1D(pg.gen_op(D), H, 0.001)

ACQ = ac

sigma0 = pg.sigma_eq(sys)

sigma1 = pg.Iypuls(sys, sigma0, 90.0)  #Apply a 90y pulse

sigma0 = pg.evolve(sigma1, Udelay1)  #Evolve through T1

Ureal180 = pulc.GetUsum(-1)  #Get the propagator for steps of 180

sigma1 = Ureal180.evolve(sigma0)  #Evolve through pulse

sigma0 = pg.evolve(sigma1, Udelay2)  #Evolve through T2
예제 #7
0
def steam(spin_system, te=20, tm=10):
    # ------------------------------------------------------------------------
    # This is an example PyGAMMA pulse sequence for use in Vespa-Simulation
    #
    # A timing diagram for this pulse sequence can be found in the Appendix
    # of the Simulation User Manual.
    # ------------------------------------------------------------------------

    # the isotope string used to sort/select the metabolites of interest is passed
    # in the sim_desc object so the user can tailor other object within their
    # code to be nuclei specific, such as the observe operator or pulses
    obs_iso = '1H'

    # extract the dynamically changing variable from loops 1 and 2 for 'te'
    # and 'tm', divide by 1000.0 because the GUI states that values are
    # entered in [ms], but PyGAMMA wants [sec]

    te = te / 1000.0
    tm = tm / 1000.0

    # set up steady state and observation variables
    H = pg.Hcs(spin_system) + pg.HJ(spin_system)
    D = pg.Fm(spin_system, obs_iso)
    ac = pg.acquire1D(pg.gen_op(D), H, 0.000001)
    ACQ = ac

    # excite, propagate, refocus and acquire the data
    #
    # for the case of STEAM, we need to simulate crusher gradients around the
    # second and third 90 pulses. We do this by creating 4 copies of the
    # operator matrix at that point, rotate respectively  by 0, 90, 180 and 270
    # degrees to each other, apply the 90 pulses and TM period, and then
    # add the four back into one normalized matrix.

    dephase_ang = [0.0, 90.0, 180.0, 270.0]
    Udelay1 = pg.prop(H, te * 0.5)
    Udelay2 = pg.prop(H, tm)

    sigma0 = pg.sigma_eq(spin_system)
    # first 90 pulse, excite spins
    sigma0 = pg.Iypuls(spin_system, sigma0, obs_iso, 90.0)
    # nutate TE/2
    sigma0 = pg.evolve(sigma0, Udelay1)

    # Now we need to create the effect of crushers around the 2nd and 3rd
    # 90 pulses. This is done by creating 4 copies of spin state and repeating
    # the rest of the sequence for four different rotations around z-axis
    sigma_mult = []
    for i in dephase_ang:
        sigma_mult.append(pg.gen_op(sigma0))

    for i, angle in enumerate(dephase_ang):
        # calculate and apply rotation around z-axis
        riz = pg.gen_op(pg.Rz(spin_system, angle))
        sigma_mult[i] = pg.evolve(sigma_mult[i], riz)

        # second 90 pulse
        sigma_mult[i] = pg.Ixpuls(spin_system, sigma_mult[i], obs_iso, 90.0)
        # this function removes all coherences still in transverse plane
        # this removes all stimulated echos from first and second 90 pulse
        pg.zero_mqc(spin_system, sigma_mult[i], 0, -1)
        # third 90 pulse
        sigma_mult[i] = pg.Ixpuls(spin_system, sigma_mult[i], obs_iso, 90.0)
        # undo rotation around z-axis
        sigma_mult[i] = pg.evolve(sigma_mult[i], riz)
        # scale results based on the number of phase angles
        sigma_mult[i] *= 1.0 / float(len(dephase_ang))

        # sum up each rotated/unrotated results
        if i == 0:
            sigma_res = pg.gen_op(sigma_mult[i])
        else:
            sigma_res += sigma_mult[i]

    # last TE/2 nutation
    sigma0 = pg.evolve(sigma_res, Udelay1)

    # instantiate and save transition table of simulation results
    # note. this step copies the TTable1D result from the ACQ into
    #       a TTable1D object in the sim_desc object. Thus, when
    #       we return from this function and the ACQ variable gets
    #       garbage collected, our copy of the results in not affected
    return pg.TTable1D(ACQ.table(sigma0))
예제 #8
0
def megapress(spin_system, te=68, omega=OMEGA, high_ppm=-7.5, low_ppm=1):
    # ----------------------------------------------------------------
    # This is an example megapress PyGAMMA pulse sequence
    # for use in Vespa-Simulation
    #
    # It expects that the editing and localization pulses
    # have been designed or read in from file via Vespa-RFPulse
    #
    # ----------------------------------------------------------------
    # order of pulse objects from VeSPA
    # so lets load the pulses, and import them as pulse object
    #       - these were exported directly from vespa as pickled objects
    pulse_names = [
        'siemens_hsinc_400_8750', 'siemens_mao_400_4', 'siemens_rf_gauss_44hz'
    ]
    rf_pulses = []

    for ps_name in pulse_names:
        with open('./Simulators/PyGamma/pulses/' + ps_name + '.vps',
                  'rb') as ps_filename:
            rf_pulses.append(pickle.load(ps_filename))

    # spectrometer frequency in MHz
    specfreq = omega

    # initial evolution time after 90,before 1st 180
    tinitial = float(6.6) / 1000.0  # 6600 for svs_edit

    # echo time
    te = float(te) / 1000.0

    # Pulse centers in ppm for editing pulses
    PulseCenterPPM_local = float(3)  # 3.0
    PulseCenterPPM_edit_on = float(1.9)  # 1.9
    PulseCenterPPM_edit_off = float(7.4)  # 7.5

    bw_pulse_bottom = float(
        2000)  # 2600.0 - Bandwidth of the pulse at the bottom

    min_peak_hz = (
        -low_ppm) * specfreq  # 224 Hz at 3T the lowest spin ~1.8 ppm
    max_peak_hz = (
        -high_ppm
    ) * specfreq  # 570 Hz at 3T the highest frequency spin (~4.6 ppm*spefreq)
    freqoff1 = min_peak_hz  # this is the start of the sweep
    freqoff2 = -(bw_pulse_bottom / 2.0) + min_peak_hz
    freqoff3 = freqoff2
    freqfinal = (bw_pulse_bottom / 2.0) + max_peak_hz

    # number of spatial points (for both x,y)
    numxy_points = int(5)

    # Number of Points in the z,x,y directions for spatial simulation
    Points1 = 5
    Points2 = numxy_points
    Points3 = numxy_points
    Step = (Points2 * specfreq) / (
        freqfinal - freqoff2
    )  # may make is (freqfinal-freqoff2)/Points2 and remove specfreq from eqn.

    #  Read Pulse Files, Initialize Waveforms --------------------------

    # PulWaveform expects Hz amplitude and angle in degrees, while
    # Simulation gives us mT amplitude and angle in radians.
    # We need to use the appropriate gyromagnetic ratio to do the
    # conversion. This depends on our observe_isotope, since the pulse
    # is not isotope specific, but the spins we expect it to affect,
    # is.
    # (e.g. we use 42576.0 for 1H to covert mT and RAD2DEG for phase)
    obs_iso = '1H'
    gyratio = 42576.0

    # ------  Pulse Setup Section ---------- #
    #
    # - set up RF Pulse containers and read pulse values into them.
    # - format values to units that GAMMA expects
    # - copy into row_vector objects
    # - apply phase roll for off-resonance pulse locations
    # - set up gamma waveform object
    # - set up composite pulse object
    # - get propagator for all steps of the shaped pulse

    # Pulse offsets in  HZ (should be negative or 0)
    B1_offset_local = (0 - PulseCenterPPM_local) * specfreq
    B1_offset_edit_on = (0 - PulseCenterPPM_edit_on) * specfreq
    B1_offset_edit_off = (0 - PulseCenterPPM_edit_off) * specfreq

    # # ------ Excite Pulse
    # vol1, excite_length = pulse2op(rf_pulses[0],
    #                                gyratio,
    #                                "Excite_90",
    #                                spin_system,
    #                                obs_iso,
    #                                offset=B1_offset_local)
    # print(excite_length)

    # # ------ Refocus Pulse
    vol2, refocus_length = pulse2op(rf_pulses[1],
                                    gyratio,
                                    "Refocus_180",
                                    spin_system,
                                    obs_iso,
                                    offset=B1_offset_local)
    vol4 = vol2

    # print(refocus_length)

    # ------ Editing Pulses
    edit1_on, edit1_length = pulse2op(rf_pulses[2],
                                      gyratio,
                                      "siemens_gauss44hz_on",
                                      spin_system,
                                      obs_iso,
                                      offset=B1_offset_edit_on)

    edit1_off, edit1_length = pulse2op(rf_pulses[2],
                                       gyratio,
                                       "siemens_gauss44hz_off",
                                       spin_system,
                                       obs_iso,
                                       offset=B1_offset_edit_off)

    # edit2_off, edit2_on, edit2_length = edit1_off, edit1_on, edit1_length

    edit2_on, edit2_length = pulse2op(rf_pulses[2],
                                      gyratio,
                                      "siemens_gauss44hz_on",
                                      spin_system,
                                      obs_iso,
                                      offset=B1_offset_edit_on)

    edit2_off, edit2_length = pulse2op(rf_pulses[2],
                                       gyratio,
                                       "siemens_gauss44hz_off",
                                       spin_system,
                                       obs_iso,
                                       offset=B1_offset_edit_off)

    # ------ Sequence Timings and GAMMA Initialization ---------- #

    excite_length = 0.0026  # if using Ideal 90y for excite
    # refocus_length = 0.003  # if using ideal 180y refocusing pulses

    # initial evolution time after 90 and before first localization 180
    t1 = tinitial - excite_length / 2 - refocus_length / 2
    te2 = (te - tinitial * 2.0) / 2.0
    t2 = tinitial + te2 - edit1_length - 0.002 - refocus_length
    t3 = 0.002
    t4 = 0.002
    t5 = te2 - refocus_length / 2 - 0.002 - edit2_length

    print('Megapress pulse seuqence timing:')
    print('     te: ' + str(te))
    print('     Tall: ' +
          str(t1 + t2 + t3 + t4 + t5 + edit1_length + edit2_length +
              (refocus_length * 2) + (excite_length / 2.0)))
    print('     t1: ' + str(t1))
    print('     t2: ' + str(t2))
    print('     t3: ' + str(t3))
    print('     t4: ' + str(t4))
    print('     t5: ' + str(t5))

    # set up steady state and observation variables
    H = pg.Hcs(spin_system) + pg.HJ(spin_system)
    D = pg.Fm(spin_system, obs_iso)
    # Set up acquisition
    ac = pg.acquire1D(pg.gen_op(D), H, 0.000001)
    ACQ = ac

    # Calculate delays here (before spatial loop)
    Udelay1 = pg.prop(H, t1)  # First evolution time
    Udelay2 = pg.prop(H, t2)  # Second evolution time
    Udelay3 = pg.prop(H, t3)  # Third evolution time
    Udelay4 = pg.prop(H, t4)  # Fourth evolution time
    Udelay5 = pg.prop(H, t5)  # Fifth evolution time

    # -- Do common first steps outside of spatial loop

    # Equilibrium density matrix
    sigma0 = pg.sigma_eq(spin_system)
    sigma_total = pg.gen_op(sigma0)  # create a copy

    mx_tables = []
    for edit_flag in [False, True]:
        loopcounter = 0
        local_scale = 1.0 / float(Points1 * Points2 * Points3)
        for nss1 in range(Points1):  # slice

            # Apply an ideal 90y pulse
            sigma1 = pg.Ixpuls(spin_system, sigma0, obs_iso, 90.0)

            # Apply a shaped 90 pulse
            # sigma1 = vol1.evolve(sigma0)

            # Evolve for t1
            sigma0 = pg.evolve(sigma1, Udelay1)

            for nss2 in range(Points2):
                for nss3 in range(Points3):
                    # First 180 volume selection pulse - with gradient crushers
                    offsethz2 = freqoff2 + nss2 * specfreq / Step
                    spin_system.offsetShifts(offsethz2)  # note: arg. in Hz
                    # sigma1 = apply_crushed_180_rf(spin_system, sigma0, dephase_ang=[0.0, 90.0], type='crusher')
                    sigma1 = apply_crushed_rf(spin_system,
                                              sigma0,
                                              vol2,
                                              type='crusher')
                    spin_system.offsetShifts(-offsethz2)

                    # Evolve for t2
                    sigma2 = pg.evolve(sigma1, Udelay2)

                    # First BASING bipolar gradient+editing pulse
                    if edit_flag == 0:
                        sigma1 = apply_crushed_rf(spin_system,
                                                  sigma2,
                                                  edit1_off,
                                                  type='bipolar')
                    else:
                        sigma1 = apply_crushed_rf(spin_system,
                                                  sigma2,
                                                  edit1_on,
                                                  type='bipolar')

                    pg.zero_mqc(spin_system, sigma1, 2, 1)  # Keep ZQC and SQC

                    # Evolve for t3
                    sigma2 = pg.evolve(sigma1, Udelay3)

                    # Second 180 volume selection - with gradient crushers
                    offsethz3 = freqoff3 + nss3 * specfreq / Step
                    spin_system.offsetShifts(offsethz3)  # note: arg. in Hz
                    # sigma1 = apply_crushed_180_rf(spin_system, sigma2, type='crusher')
                    sigma1 = apply_crushed_rf(spin_system,
                                              sigma2,
                                              vol4,
                                              type='crusher')
                    spin_system.offsetShifts(-offsethz3)  # note: arg. in Hz

                    # Evolve for t4
                    sigma2 = pg.evolve(sigma1, Udelay4)

                    # Second BASING bipolar gradient+editing pulse
                    if edit_flag == 0:
                        sigma1 = apply_crushed_rf(spin_system,
                                                  sigma2,
                                                  edit2_off,
                                                  type='bipolar')
                    else:
                        sigma1 = apply_crushed_rf(spin_system,
                                                  sigma2,
                                                  edit2_on,
                                                  type='bipolar')

                    pg.zero_mqc(spin_system, sigma1, 2, 1)  # Keep ZQC and SQC

                    # Evolve for t5
                    sigma2 = pg.evolve(sigma1, Udelay5)
                    sigma2 *= local_scale

                    print("System loop index is: " + str(loopcounter) +
                          "  offsethz2 = " + str(offsethz2) +
                          "  offsethz3 = " + str(offsethz3))
                    loopcounter += 1

                    if nss1 + nss2 + nss3 == 0:
                        sigma_total = sigma2
                    else:
                        sigma_total += sigma2
        mx_tables.append(pg.TTable1D(ACQ.table(sigma_total)))
    return mx_tables
예제 #9
0
#need to use pg.complex() so it can find correct function to call.
for j in range(pulse.size()):
    ptime.put(pg.complex(pulsestep, 0), j)

pwf = pg.PulWaveform(pulse, ptime, "TestPulse")

pulc = pg.PulComposite(pwf, sys, "1H")

H = pg.Hcs(sys) + pg.HJ(sys);
D = pg.Fm(sys);

Udelay1 = pg.prop(H, t1);
Udelay2 = pg.prop(H, t2);

# Neet to effectively typecast D as a gen_op.
ac = pg.acquire1D(pg.gen_op(D), H, 0.001)

ACQ = ac;

sigma0 = pg.sigma_eq(sys)

sigma1 = pg.Iypuls(sys, sigma0, 90.0)   #Apply a 90y pulse

sigma0 = pg.evolve(sigma1, Udelay1)     #Evolve through T1

Ureal180  = pulc.GetUsum(-1)            #Get the propagator for steps of 180

sigma1 = Ureal180.evolve(sigma0)        #Evolve through pulse

sigma0 = pg.evolve(sigma1, Udelay2)     #Evolve through T2
예제 #10
0
    def simulate(self):
        self.postToConsole.emit('   | Simulating ... ' + self.insysfile)
        print('    | Simulating ...' + self.insysfile)

        metab_name = self.insysfile.replace('.sys', '')

        if self.sim_experiment.b0 == 123.3:
            self.insysfile = 'pints/metabolites/3T_' + self.insysfile
        elif self.sim_experiment.b0 == 297.2:
            self.insysfile = 'pints/metabolites/7T_' + self.insysfile
        elif self.sim_experiment.b0 == 400.2:
            self.insysfile = 'pints/metabolites/9.4T_' + self.insysfile

        if self.sim_experiment.name == "semi-LASER (Bruker)":
            spin_system = pg.spin_system()
            spin_system.read(self.insysfile)
            for i in range(spin_system.spins()):
                spin_system.PPM(
                    i,
                    spin_system.PPM(i) - self.sim_experiment.RF_OFFSET)

            TE = self.sim_experiment.TE * 1E-3
            TE1 = self.sim_experiment.TE1 * 1E-3
            TE2 = self.sim_experiment.TE2 * 1E-3

            # build 90 degree pulse
            inpulse90file = self.sim_experiment.inpulse90file
            A_90 = self.sim_experiment.A_90
            PULSE_90_LENGTH = self.sim_experiment.PULSE_90_LENGTH
            gyratio = self.sim_experiment.getGyratio()

            pulse90 = Pulse(inpulse90file, PULSE_90_LENGTH, 'bruker')

            n_old = np.linspace(0, PULSE_90_LENGTH, sp.size(pulse90.waveform))
            n_new = np.linspace(0, PULSE_90_LENGTH,
                                sp.size(pulse90.waveform) + 1)

            waveform_real = sp.interpolate.InterpolatedUnivariateSpline(
                n_old,
                np.real(pulse90.waveform) * A_90)(n_new)
            waveform_imag = sp.interpolate.InterpolatedUnivariateSpline(
                n_old,
                np.imag(pulse90.waveform) * A_90)(n_new)
            pulse90.waveform = waveform_real + 1j * (waveform_imag)

            ampl_arr = np.abs(pulse90.waveform)
            phas_arr = np.unwrap(np.angle(pulse90.waveform)) * 180.0 / math.pi

            pulse = pg.row_vector(len(pulse90.waveform))
            ptime = pg.row_vector(len(pulse90.waveform))
            for j, val in enumerate(zip(ampl_arr, phas_arr)):
                pulse.put(pg.complex(val[0], val[1]), j)
                ptime.put(pg.complex(pulse90.pulsestep, 0), j)

            pulse_dur_90 = pulse.size() * pulse90.pulsestep
            pwf_90 = pg.PulWaveform(pulse, ptime, "90excite")
            pulc_90 = pg.PulComposite(pwf_90, spin_system,
                                      self.sim_experiment.obs_iso)

            Ureal90 = pulc_90.GetUsum(-1)

            # build 180 degree pulse
            inpulse180file = self.sim_experiment.inpulse180file
            A_180 = self.sim_experiment.A_180
            PULSE_180_LENGTH = self.sim_experiment.PULSE_180_LENGTH
            gyratio = self.sim_experiment.getGyratio()

            pulse180 = Pulse(inpulse180file, PULSE_180_LENGTH, 'bruker')

            n_old = np.linspace(0, PULSE_180_LENGTH,
                                sp.size(pulse180.waveform))
            n_new = np.linspace(0, PULSE_180_LENGTH,
                                sp.size(pulse180.waveform) + 1)

            waveform_real = sp.interpolate.InterpolatedUnivariateSpline(
                n_old,
                np.real(pulse180.waveform) * A_180)(n_new)
            waveform_imag = sp.interpolate.InterpolatedUnivariateSpline(
                n_old,
                np.imag(pulse180.waveform) * A_180)(n_new)
            pulse180.waveform = waveform_real + 1j * (waveform_imag)

            ampl_arr = np.abs(pulse180.waveform)
            phas_arr = np.unwrap(np.angle(pulse180.waveform)) * 180.0 / math.pi
            freq_arr = np.gradient(phas_arr)

            pulse = pg.row_vector(len(pulse180.waveform))
            ptime = pg.row_vector(len(pulse180.waveform))
            for j, val in enumerate(zip(ampl_arr, phas_arr)):
                pulse.put(pg.complex(val[0], val[1]), j)
                ptime.put(pg.complex(n_new[1], 0), j)

            pulse_dur_180 = pulse.size() * pulse180.pulsestep
            pwf_180 = pg.PulWaveform(pulse, ptime, "180afp")
            pulc_180 = pg.PulComposite(pwf_180, spin_system,
                                       self.sim_experiment.obs_iso)

            Ureal180 = pulc_180.GetUsum(-1)

            H = pg.Hcs(spin_system) + pg.HJ(spin_system)
            D = pg.Fm(spin_system, self.sim_experiment.obs_iso)
            ac = pg.acquire1D(pg.gen_op(D), H, self.sim_experiment.dwell_time)
            ACQ = ac

            delay1 = TE1 / 2.0 - pulse_dur_90 / 2.0 - pulse_dur_180 / 2.0
            delay2 = TE1 / 2.0 + TE2 / 2.0 - pulse_dur_180
            delay3 = TE2 - pulse_dur_180
            delay4 = delay2
            delay5 = TE1 / 2.0 - pulse_dur_180 + self.sim_experiment.DigShift

            Udelay1 = pg.prop(H, delay1)
            Udelay2 = pg.prop(H, delay2)
            Udelay3 = pg.prop(H, delay3)
            Udelay4 = pg.prop(H, delay4)
            Udelay5 = pg.prop(H, delay5)

            sigma0 = pg.sigma_eq(spin_system)  # init
            sigma1 = Ureal90.evolve(sigma0)  # apply 90-degree pulse
            sigma0 = pg.evolve(sigma1, Udelay1)
            sigma1 = Ureal180.evolve(sigma0)  # apply AFP1
            sigma0 = pg.evolve(sigma1, Udelay2)
            sigma1 = Ureal180.evolve(sigma0)  # apply AFP2
            sigma0 = pg.evolve(sigma1, Udelay3)
            sigma1 = Ureal180.evolve(sigma0)  # apply AFP3
            sigma0 = pg.evolve(sigma1, Udelay4)
            sigma1 = Ureal180.evolve(sigma0)  # apply AFP4
            sigma0 = pg.evolve(sigma1, Udelay5)

        elif self.sim_experiment.name == "semi-LASER":
            spin_system = pg.spin_system()
            spin_system.read(self.insysfile)
            for i in range(spin_system.spins()):
                spin_system.PPM(
                    i,
                    spin_system.PPM(i) - self.sim_experiment.RF_OFFSET)

            TE = self.sim_experiment.TE
            TE1 = float((TE * 0.31) / 1000.0)
            TE3 = float((TE * 0.31) / 1000.0)
            TE2 = float(TE / 1000.0 - TE1 - TE3)
            TE_fill = TE / 1000.0 - TE1 - TE2 - TE3

            # build 90 degree pulse
            inpulse90file = self.sim_experiment.inpulse90file
            A_90 = self.sim_experiment.A_90
            PULSE_90_LENGTH = self.sim_experiment.PULSE_90_LENGTH
            gyratio = self.sim_experiment.getGyratio()

            pulse90 = Pulse(inpulse90file, PULSE_90_LENGTH)

            n_old = np.linspace(0, PULSE_90_LENGTH, sp.size(pulse90.waveform))
            n_new = np.linspace(0, PULSE_90_LENGTH,
                                sp.size(pulse90.waveform) + 1)

            waveform_real = sp.interpolate.InterpolatedUnivariateSpline(
                n_old,
                np.real(pulse90.waveform) * A_90)(n_new)
            waveform_imag = sp.interpolate.InterpolatedUnivariateSpline(
                n_old,
                np.imag(pulse90.waveform) * A_90)(n_new)
            pulse90.waveform = waveform_real + 1j * (waveform_imag)

            ampl_arr = np.abs(pulse90.waveform) * gyratio
            phas_arr = np.unwrap(np.angle(pulse90.waveform)) * 180.0 / math.pi

            pulse = pg.row_vector(len(pulse90.waveform))
            ptime = pg.row_vector(len(pulse90.waveform))
            for j, val in enumerate(zip(ampl_arr, phas_arr)):
                pulse.put(pg.complex(val[0], val[1]), j)
                ptime.put(pg.complex(pulse90.pulsestep, 0), j)

            pulse_dur_90 = pulse.size() * pulse90.pulsestep
            peak_to_end_90 = pulse_dur_90 - (
                209 + self.sim_experiment.fudge_factor) * pulse90.pulsestep
            pwf_90 = pg.PulWaveform(pulse, ptime, "90excite")
            pulc_90 = pg.PulComposite(pwf_90, spin_system,
                                      self.sim_experiment.obs_iso)

            Ureal90 = pulc_90.GetUsum(-1)

            # build 180 degree pulse
            inpulse180file = self.sim_experiment.inpulse180file
            A_180 = self.sim_experiment.A_180
            PULSE_180_LENGTH = self.sim_experiment.PULSE_180_LENGTH
            gyratio = self.sim_experiment.getGyratio()

            pulse180 = Pulse(inpulse180file, PULSE_180_LENGTH)

            n_old = np.linspace(0, PULSE_180_LENGTH,
                                sp.size(pulse180.waveform))
            n_new = np.linspace(0, PULSE_180_LENGTH,
                                sp.size(pulse180.waveform) + 1)

            waveform_real = sp.interpolate.InterpolatedUnivariateSpline(
                n_old,
                np.real(pulse180.waveform) * A_180)(n_new)
            waveform_imag = sp.interpolate.InterpolatedUnivariateSpline(
                n_old,
                np.imag(pulse180.waveform) * A_180)(n_new)
            pulse180.waveform = waveform_real + 1j * (waveform_imag)

            ampl_arr = np.abs(pulse180.waveform) * gyratio
            phas_arr = np.unwrap(np.angle(pulse180.waveform)) * 180.0 / math.pi
            freq_arr = np.gradient(phas_arr)

            pulse = pg.row_vector(len(pulse180.waveform))
            ptime = pg.row_vector(len(pulse180.waveform))
            for j, val in enumerate(zip(ampl_arr, phas_arr)):
                pulse.put(pg.complex(val[0], val[1]), j)
                ptime.put(pg.complex(n_new[1], 0), j)

            pulse_dur_180 = pulse.size() * pulse180.pulsestep
            pwf_180 = pg.PulWaveform(pulse, ptime, "180afp")
            pulc_180 = pg.PulComposite(pwf_180, spin_system,
                                       self.sim_experiment.obs_iso)

            Ureal180 = pulc_180.GetUsum(-1)

            H = pg.Hcs(spin_system) + pg.HJ(spin_system)
            D = pg.Fm(spin_system, self.sim_experiment.obs_iso)
            ac = pg.acquire1D(pg.gen_op(D), H, self.sim_experiment.dwell_time)
            ACQ = ac

            delay1 = TE1 / 2.0 + TE_fill / 8.0 - pulse_dur_180 / 2.0 - peak_to_end_90
            delay2 = TE1 / 2.0 + TE_fill / 8.0 + TE2 / 4.0 + TE_fill / 8.0 - pulse_dur_180
            delay3 = TE2 / 4.0 + TE_fill / 8.0 + TE2 / 4.0 + TE_fill / 8.0 - pulse_dur_180
            delay4 = TE2 / 4.0 + TE_fill / 8.0 + TE3 / 2.0 + TE_fill / 8.0 - pulse_dur_180
            delay5 = TE3 / 2.0 + TE_fill / 8.0 - pulse_dur_180 / 2.0

            Udelay1 = pg.prop(H, delay1)
            Udelay2 = pg.prop(H, delay2)
            Udelay3 = pg.prop(H, delay3)
            Udelay4 = pg.prop(H, delay4)
            Udelay5 = pg.prop(H, delay5)

            sigma0 = pg.sigma_eq(spin_system)  # init
            sigma1 = Ureal90.evolve(sigma0)  # apply 90-degree pulse
            sigma0 = pg.evolve(sigma1, Udelay1)
            sigma1 = Ureal180.evolve(sigma0)  # apply AFP1
            sigma0 = pg.evolve(sigma1, Udelay2)
            sigma1 = Ureal180.evolve(sigma0)  # apply AFP2
            sigma0 = pg.evolve(sigma1, Udelay3)
            sigma1 = Ureal180.evolve(sigma0)  # apply AFP3
            sigma0 = pg.evolve(sigma1, Udelay4)
            sigma1 = Ureal180.evolve(sigma0)  # apply AFP4
            sigma0 = pg.evolve(sigma1, Udelay5)

        elif self.sim_experiment.name == "LASER":
            spin_system = pg.spin_system()
            spin_system.read(self.insysfile)
            for i in range(spin_system.spins()):
                spin_system.PPM(
                    i,
                    spin_system.PPM(i) - self.sim_experiment.RF_OFFSET)

            # build 90 degree AHP pulse
            inpulse90file = self.sim_experiment.inpulse90file
            A_90 = self.sim_experiment.A_90
            PULSE_90_LENGTH = self.sim_experiment.PULSE_90_LENGTH
            gyratio = self.sim_experiment.getGyratio()

            pulse90 = Pulse(inpulse90file, PULSE_90_LENGTH, 'varian')

            n_new = np.linspace(0, PULSE_90_LENGTH, 256)

            waveform_real = np.real(pulse90.waveform) * A_90
            waveform_imag = np.imag(pulse90.waveform) * A_90
            pulse90.waveform = waveform_real + 1j * (waveform_imag)

            ampl_arr = np.abs(pulse90.waveform) * gyratio
            phas_arr = np.unwrap(np.angle(pulse90.waveform)) * 180.0 / math.pi

            pulse = pg.row_vector(len(pulse90.waveform))
            ptime = pg.row_vector(len(pulse90.waveform))
            for j, val in enumerate(zip(ampl_arr, phas_arr)):
                pulse.put(pg.complex(val[0], val[1]), j)
                ptime.put(pg.complex(pulse90.pulsestep, 0), j)

            pulse_dur_90 = pulse.size() * pulse90.pulsestep
            pwf_90 = pg.PulWaveform(pulse, ptime, "90excite")
            pulc_90 = pg.PulComposite(pwf_90, spin_system,
                                      self.sim_experiment.obs_iso)

            Ureal90 = pulc_90.GetUsum(-1)

            # build 180 degree pulse
            inpulse180file = self.sim_experiment.inpulse180file
            A_180 = self.sim_experiment.A_180
            PULSE_180_LENGTH = self.sim_experiment.PULSE_180_LENGTH
            gyratio = self.sim_experiment.getGyratio()

            pulse180 = Pulse(inpulse180file, PULSE_180_LENGTH, 'varian')

            n_new = np.linspace(0, PULSE_180_LENGTH, 512)

            waveform_real = np.real(pulse180.waveform) * A_180
            waveform_imag = np.imag(pulse180.waveform) * A_180
            pulse180.waveform = waveform_real + 1j * (waveform_imag)

            ampl_arr = np.abs(pulse180.waveform) * gyratio
            phas_arr = np.unwrap(np.angle(pulse180.waveform)) * 180.0 / math.pi
            freq_arr = np.gradient(phas_arr)

            pulse = pg.row_vector(len(pulse180.waveform))
            ptime = pg.row_vector(len(pulse180.waveform))
            for j, val in enumerate(zip(ampl_arr, phas_arr)):
                pulse.put(pg.complex(val[0], val[1]), j)
                ptime.put(pg.complex(n_new[1], 0), j)

            pulse_dur_180 = pulse.size() * pulse180.pulsestep
            pwf_180 = pg.PulWaveform(pulse, ptime, "180afp")
            pulc_180 = pg.PulComposite(pwf_180, spin_system,
                                       self.sim_experiment.obs_iso)

            Ureal180 = pulc_180.GetUsum(-1)

            # calculate pulse timings
            ROF1 = 100E-6  #sec
            ROF2 = 10E-6  #sec
            TCRUSH1 = 0.0008  #sec
            TCRUSH2 = 0.0008  #sec

            ss_grad_rfDelayFront = 0  #TCRUSH1 - ROF1
            ss_grad_rfDelayBack = 0  #TCRUSH2 - ROF2
            ro_grad_atDelayFront = 0
            ro_grad_atDelayBack = 0

            TE = self.sim_experiment.TE / 1000.
            ipd = (TE - pulse_dur_90 \
                - 6*(ss_grad_rfDelayFront + pulse_dur_180 + ss_grad_rfDelayBack) \
                - ro_grad_atDelayFront) / 12

            delay1 = ipd + ss_grad_rfDelayFront
            delay2 = ss_grad_rfDelayBack + 2 * ipd + ss_grad_rfDelayFront
            delay3 = ss_grad_rfDelayBack + 2 * ipd + ss_grad_rfDelayFront
            delay4 = ss_grad_rfDelayBack + 2 * ipd + ss_grad_rfDelayFront
            delay5 = ss_grad_rfDelayBack + 2 * ipd + ss_grad_rfDelayFront
            delay6 = ss_grad_rfDelayBack + 2 * ipd + ss_grad_rfDelayFront
            delay7 = ss_grad_rfDelayBack + ipd + ro_grad_atDelayFront

            # print A_90, A_180, pulse_dur_90, pulse_dur_180
            # print TE, ipd, pulse_dur_90+6*pulse_dur_180, delay1+delay2+delay3+delay4+delay5+delay6+delay7, pulse_dur_90+6*pulse_dur_180+delay1+delay2+delay3+delay4+delay5+delay6+delay7
            # print ''

            # initialize acquisition
            H = pg.Hcs(spin_system) + pg.HJ(spin_system)
            D = pg.Fm(spin_system, self.sim_experiment.obs_iso)
            ac = pg.acquire1D(pg.gen_op(D), H, self.sim_experiment.dwell_time)
            ACQ = ac

            Udelay1 = pg.prop(H, delay1)
            Udelay2 = pg.prop(H, delay2)
            Udelay3 = pg.prop(H, delay3)
            Udelay4 = pg.prop(H, delay4)
            Udelay5 = pg.prop(H, delay5)
            Udelay6 = pg.prop(H, delay6)
            Udelay7 = pg.prop(H, delay7)

            sigma0 = pg.sigma_eq(spin_system)  # init
            sigma1 = Ureal90.evolve(sigma0)  # apply 90-degree pulse
            sigma0 = pg.evolve(sigma1, Udelay1)
            sigma1 = Ureal180.evolve(sigma0)  # apply AFP1
            sigma0 = pg.evolve(sigma1, Udelay2)
            sigma1 = Ureal180.evolve(sigma0)  # apply AFP2
            sigma0 = pg.evolve(sigma1, Udelay3)
            sigma1 = Ureal180.evolve(sigma0)  # apply AFP3
            sigma0 = pg.evolve(sigma1, Udelay4)
            sigma1 = Ureal180.evolve(sigma0)  # apply AFP4
            sigma0 = pg.evolve(sigma1, Udelay5)
            sigma1 = Ureal180.evolve(sigma0)  # apply AFP5
            sigma0 = pg.evolve(sigma1, Udelay6)
            sigma1 = Ureal180.evolve(sigma0)  # apply AFP6
            sigma0 = pg.evolve(sigma1, Udelay7)

        # acquire
        mx = pg.TTable1D(ACQ.table(sigma0))

        # binning to remove degenerate peaks

        # BINNING
        # Note: Metabolite Peak Normalization and Blending

        # The transition tables calculated by the GAMMA density matrix simulations frequently contain a
        # large number of transitions caused by degenerate splittings and other processes. At the
        # conclusion of each simulation run a routine is called to extract lines from the transition table.
        # These lines are then normalized using a closed form calculation based on the number of spins.
        # To reduce the number of lines required for display, multiple lines are blended by binning them
        # together based on their PPM locations and phases. The following parameters are used to
        # customize these procedures:

        # Peak Search Range -- Low/High (PPM): the range in PPM that is searched for lines from the
        # metabolite simulation.

        # Peak Blending Tolerance (PPM and Degrees): the width of the bins (+/- in PPM and +/- in
        # PhaseDegrees) that are used to blend the lines in the simulation. Lines that are included in the
        # same bin are summed using complex addition based on Amplitude and Phase.

        b0 = self.sim_experiment.b0
        obs_iso = self.sim_experiment.obs_iso
        tolppm = self.sim_experiment.tolppm
        tolpha = self.sim_experiment.tolpha
        ppmlo = self.sim_experiment.ppmlo
        ppmhi = self.sim_experiment.ppmhi
        rf_off = self.sim_experiment.RF_OFFSET

        field = b0
        nspins = spin_system.spins()

        nlines = mx.size()

        tmp = pg.Isotope(obs_iso)
        obs_qn = tmp.qn()

        qnscale = 1.0
        for i in range(nspins):
            qnscale *= 2 * spin_system.qn(i) + 1
        qnscale = qnscale / (2.0 * (2.0 * obs_qn + 1))

        freqs = []
        outf = []
        outa = []
        outp = []
        nbin = 0
        found = False

        PI = 3.14159265358979323846
        RAD2DEG = 180.0 / PI

        indx = mx.Sort(0, -1, 0)

        for i in range(nlines):
            freqs.append(-1 * mx.Fr(indx[i]) / (2.0 * PI * field))

        for i in range(nlines):
            freq = freqs[i]
            if (freq > ppmlo) and (freq < ppmhi):
                val = mx.I(indx[i])
                tmpa = np.sqrt(val.real()**2 + val.imag()**2) / qnscale
                tmpp = -RAD2DEG * np.angle(val.real() + 1j * val.imag())

            if nbin == 0:
                outf.append(freq)
                outa.append(tmpa)
                outp.append(tmpp)
                nbin += 1
            else:
                for k in range(nbin):
                    if (freq >= outf[k] - tolppm) and (freq <=
                                                       outf[k] + tolppm):
                        if (tmpp >= outp[k] - tolpha) and (tmpp <=
                                                           outp[k] + tolpha):
                            ampsum = outa[k] + tmpa
                            outf[k] = (outa[k] * outf[k] +
                                       tmpa * freq) / ampsum
                            outp[k] = (outa[k] * outp[k] +
                                       tmpa * tmpp) / ampsum
                            outa[k] += tmpa
                            found = True
                if not found:
                    outf.append(freq)
                    outa.append(tmpa)
                    outp.append(tmpp)
                    nbin += 1
                found = False

        for i, item in enumerate(outf):
            outf[i] = item + rf_off
            outp[i] = outp[i] - 90.0

        metab = Metabolite()
        metab.name = metab_name
        metab.var = 0.0

        for i in range(sp.size(outf)):
            if outf[i] <= 5:
                metab.ppm.append(outf[i])
                metab.area.append(outa[i])
                metab.phase.append(-1.0 * outp[i])

        insysfile = self.insysfile.replace('pints/metabolites/3T_', '')
        insysfile = self.insysfile.replace('pints/metabolites/7T_', '')
        insysfile = self.insysfile.replace('pints/metabolites/9.4T_', '')

        if insysfile == 'alanine.sys':  #
            metab.A_m = 0.078
            metab.T2 = (87E-3)
        elif insysfile == 'aspartate.sys':
            metab.A_m = 0.117
            metab.T2 = (87E-3)
        elif insysfile == 'choline_1-CH2_2-CH2.sys':  #
            metab.A_m = 0.165
            metab.T2 = (87E-3)
        elif insysfile == 'choline_N(CH3)3_a.sys' or insysfile == 'choline_N(CH3)3_b.sys':  #
            metab.A_m = 0.165
            metab.T2 = (121E-3)
        elif insysfile == 'creatine_N(CH3).sys':
            metab.A_m = 0.296
            metab.T2 = (90E-3)
        elif insysfile == 'creatine_X.sys':
            metab.A_m = 0.296
            metab.T2 = (81E-3)
        elif insysfile == 'd-glucose-alpha.sys':  #
            metab.A_m = 0.049
            metab.T2 = (87E-3)
        elif insysfile == 'd-glucose-beta.sys':  #
            metab.A_m = 0.049
            metab.T2 = (87E-3)
        elif insysfile == 'eth.sys':  #
            metab.A_m = 0.320
            metab.T2 = (87E-3)
        elif insysfile == 'gaba.sys':  #
            metab.A_m = 0.155
            metab.T2 = (82E-3)
        elif insysfile == 'glutamate.sys':
            metab.A_m = 0.898
            metab.T2 = (88E-3)
        elif insysfile == 'glutamine.sys':
            metab.A_m = 0.427
            metab.T2 = (87E-3)
        elif insysfile == 'glutathione_cysteine.sys':
            metab.A_m = 0.194
            metab.T2 = (87E-3)
        elif insysfile == 'glutathione_glutamate.sys':
            metab.A_m = 0.194
            metab.T2 = (87E-3)
        elif insysfile == 'glutathione_glycine.sys':
            metab.A_m = 0.194
            metab.T2 = (87E-3)
        elif insysfile == 'glycine.sys':
            metab.A_m = 0.068
            metab.T2 = (87E-3)
        elif insysfile == 'gpc_7-CH2_8-CH2.sys':  #
            metab.A_m = 0.097
            metab.T2 = (87E-3)
        elif insysfile == 'gpc_glycerol.sys':  #
            metab.A_m = 0.097
            metab.T2 = (87E-3)
        elif insysfile == 'gpc_N(CH3)3_a.sys':  #
            metab.A_m = 0.097
            metab.T2 = (121E-3)
        elif insysfile == 'gpc_N(CH3)3_b.sys':  #
            metab.A_m = 0.097
            metab.T2 = (121E-3)
        elif insysfile == 'lactate.sys':  #
            metab.A_m = 0.039
            metab.T2 = (87E-3)
        elif insysfile == 'myoinositol.sys':
            metab.A_m = 0.578
            metab.T2 = (87E-3)
        elif insysfile == 'naa_acetyl.sys':
            metab.A_m = 1.000
            metab.T2 = (130E-3)
        elif insysfile == 'naa_aspartate.sys':
            metab.A_m = 1.000
            metab.T2 = (69E-3)
        elif insysfile == 'naag_acetyl.sys':
            metab.A_m = 0.160
            metab.T2 = (130E-3)
        elif insysfile == 'naag_aspartyl.sys':
            metab.A_m = 0.160
            metab.T2 = (87E-3)
        elif insysfile == 'naag_glutamate.sys':
            metab.A_m = 0.160
            metab.T2 = (87E-3)
        elif insysfile == 'pcho_N(CH3)3_a.sys':  #
            metab.A_m = 0.058
            metab.T2 = (121E-3)
        elif insysfile == 'pcho_N(CH3)3_b.sys':  #
            metab.A_m = 0.058
            metab.T2 = (121E-3)
        elif insysfile == 'pcho_X.sys':  #
            metab.A_m = 0.058
            metab.T2 = (87E-3)
        elif insysfile == 'pcr_N(CH3).sys':
            metab.A_m = 0.422
            metab.T2 = (90E-3)
        elif insysfile == 'pcr_X.sys':
            metab.A_m = 0.422
            metab.T2 = (81E-3)
        elif insysfile == 'peth.sys':
            metab.A_m = 0.126
            metab.T2 = (87E-3)
        elif insysfile == 'scyllo-inositol.sys':
            metab.A_m = 0.044
            metab.T2 = (87E-3)
        elif insysfile == 'taurine.sys':
            metab.A_m = 0.117
            metab.T2 = (85E-3)
        elif insysfile == 'water.sys':
            metab.A_m = 1.000
            metab.T2 = (43.60E-3)

        # Send save data signal
        self.outputResults.emit(metab)
        self.postToConsole.emit('        | Simulation completed for ... ' +
                                self.insysfile)
        self.finished.emit(self.thread_num)
예제 #11
0
              'dw': dt2,
              'complex': True,
              'obs': 400.0,
              'car': 0,
              'size': t2pts,
              'label': '1H',
              'encoding': 'direct',
              'time': False,
              'freq': True
            }
        }

fid = pg.row_vector(t2pts)      #block_1D tmp(t2pts); // 1D-data block storage

H = pg.Hcs(sys)+ pg.HJw(sys)             # // Hamiltonian, weak coupling
detect = pg.gen_op(pg.Fp(sys))     # // F+ for detection operator

sigma0 = pg.sigma_eq(sys)                      # // equilibrium density matrix
sigma1 = pg.Iypuls(sys, sigma0, 90)  
pg.FID(sigma1,detect,H,dt2,t2pts,fid)

pg.exponential_multiply(fid,-5)
spec = fid.FFT()

npspec = spec.toNParray()

uc0 = ng.fileiobase.unit_conversion(udic[0]['size'],
                                     udic[0]['complex'], 
                                     udic[0]['sw'], 
                                     udic[0]['obs'], 
                                     udic[0]['car'])
예제 #12
0
    t1pts = 1024  # points on t1 axis
    t2pts = 1024  # points on t2 axis

    # Read in spin system for cosy experiment

    sys = spin_system()  # define the system, read in
    sys.read("cosy1.sys")  # from disk

    # set up some neccessary variables

    tmp = row_vector(t2pts)  #block_1D tmp(t2pts); // 1D-data block storage
    data = np.zeros((t1pts, t2pts), dtype=np.complex128
                    )  #block_2D data(t1pts,t2pts); // 2D-data matrix storage

    H = Hcs(sys) + HJw(sys)  # // Hamiltonian, weak coupling
    detect = gen_op(Fm(sys))  # // F- for detection operator

    # APPLY PULSE SEQUENCE

    sigma0 = sigma_eq(sys)  #  equilibrium density matrix
    sigma1 = Iypuls(sys, sigma0, 90)  #  apply first 90 y-pulse

    for t1 in range(t1pts):
        sigma = evolve(sigma1, H, t1 * dt1)  # evolution during t1
        sigma = Iypuls(sys, sigma, 90)  # apply second 90 y-pulse
        FID(sigma, detect, H, dt2, t2pts, tmp)  # acquisition

        data[t1] = tmp.toNParray()  # save FID

    # Apply QSIN processing in both dimensions, 2D-FFT and display in absolute mode
예제 #13
0
header = (s1, s2)

sys = pg.sys_dynamic()

sys.read(infile)

specfreq = sys.Omega()

mx = pg.TTable1D()

H = pg.Ho(sys)

detect = pg.Fm(sys)

sigma0 = pg.sigma_eq(sys)

sigmap = pg.Iypuls(sys, sigma0, 90.)

L = pg.Hsuper(H)
L *= pg.complex(0,1)

L += pg.Kex(sys, H.get_basis());

ACQ1 = pg.acquire1D(pg.gen_op(detect), L)

mx = ACQ1.table(sigmap);

#mx.dbwrite_old(outfile, "test_lines", -10, 10, specfreq, .1, 0, header)
mx.dbwrite(outfile, runname, specfreq, sys.spins(), 0, header)

예제 #14
0
    ptime.put(pg.complex(pulsestep, 0), j)      # pulse steps


pwf = pg.PulWaveform(pulse, ptime, "TestPulse")

pulc = pg.PulComposite(pwf, sys, "1H")

H = pg.Hcs(sys) + pg.HJ(sys)

D = pg.Fm(sys)

Udelay1 = pg.prop(H, tinit)
Udelay2 = pg.prop(H, TE2)
Udelay3 = pg.prop(H, TE2)

ac = pg.acquire1D(pg.gen_op(D), H, 0.001)       # Set up acquisition
ACQ = ac

sigma0 = pg.sigma_eq(sys)                       #Equilibrium density matrix
sigma1 = pg.Iypuls(sys, sigma0, 90.0)           #Apply a 90y pulse
sigma0 = pg.evolve(sigma1, Udelay1)             #Evolve through TINIT

Ureal180  = pulc.GetUsum(-1)                    #Get the propagator for steps of 180

sigma1 = Ureal180.evolve(sigma0)                #Evolve through pulse
sigma0 = pg.evolve(sigma1, Udelay2)             #Evolve through TE/2
sigma1 = Ureal180.evolve(sigma0)                #Evolve through pulse
sigma0 = pg.evolve(sigma1, Udelay3)             #Evolve through TE/2

mx = ACQ.table(sigma0)                          # Transitions table (no lb)