예제 #1
0
def call(f, *args, **kwds):
    reset()
    kwd_intfs, kwd_params = extract_arg_kwds(kwds, f)
    args_comb = combine_arg_kwds(args, kwd_intfs, f)

    paramspec = inspect.getfullargspec(f.func)
    args, annotations = resolve_args(args_comb, paramspec.args,
                                     paramspec.annotations, paramspec.varargs)

    dtypes = [infer_dtype(args[arg], annotations[arg]) for arg in args]

    seqs = [drv(t=t, seq=[v]) for t, v in zip(dtypes, args_comb)]

    outputs = f(*seqs, **kwd_params)

    if isinstance(outputs, tuple):
        res = [[] for _ in outputs]

        for o, r in zip(outputs, res):
            collect(o | mon, result=r)
    else:
        res = [[]]
        collect(outputs | mon, result=res[0])

    sim(check_activity=False)

    if isinstance(outputs, tuple):
        return res
    else:
        return res[0]
예제 #2
0
def run_matrix(impl, mat1, mat2, cols_per_row, col_only: bool = False):
    reg['trace/level'] = 0
    reg['gear/memoize'] = False
    # Add one more dimension to the matrix to support input type for design
    mat1 = mat1.reshape(1, mat1.shape[0], mat1.shape[1])
    mat2 = mat2.reshape(mat2.shape[0], 1, mat2.shape[1])

    # configuration driving
    cfg = create_valid_cfg(cols_per_row, mat1)
    cfg_drv = drv(t=TCfg, seq=[cfg])

    row_t = Queue[Array[Int[16], cfg['num_cols']]]
    mat1_drv = drv(t=Queue[row_t], seq=[mat1])
    res_list = []

    if col_only:
        # remove the extra dimension that was previously added since colum mult accepts
        mat2 = np.squeeze(mat2)
        # for columtn multiplication second operand needs to be only one row
        mat2_drv = drv(t=row_t, seq=[mat2])
        res = column_multiplication(cfg_drv, mat1_drv, mat2_drv)
        # column multiplication returns result in a queue so flatening makes it a regular list
        collect(res | flatten, result=res_list)
        if impl == 'hw':
            cosim('/column_multiplication',
                  'verilator',
                  outdir='/tmp/column_multiplication',
                  rebuild=True,
                  timeout=100)
    else:
        mat2_drv = drv(t=Queue[row_t], seq=[mat2])
        res = matrix_multiplication(cfg_drv,
                                    mat1_drv,
                                    mat2_drv,
                                    cols_per_row=cols_per_row)
        collect(res, result=res_list)
        if impl == 'hw':
            cosim('/matrix_multiplication',
                  'verilator',
                  outdir='/tmp/matrix_multiplication',
                  rebuild=True,
                  timeout=100)
    try:
        sim()
        # convert PG results into regular 'int'

        if col_only:
            pg_res = [int(el) for el in res_list]
        else:
            pg_res = [int(el) for row_chunk in res_list for el in row_chunk]

        # calculate reference NumPy resutls
        np_res = np.dot(np.squeeze(mat1), np.transpose(mat2.squeeze()))
        # reshape PG results into the same format as
        pg_res = np.array(pg_res).reshape(np_res.shape)
        sim_assert(
            np.equal(pg_res, np_res).all(), "Error in compatring results")
        log.info("\033[92m //==== PASS ====// \033[90m")

    except:
        # printing stack trace
        traceback.print_exc()
        log.info("\033[91m //==== FAILED ====// \033[90m")
예제 #3
0
def test_start_stop_step_combined(sim_cls):
    res = []
    qrange((0, 8, 1), sim_cls=sim_cls) | collect(result=res)
    sim(timeout=16)

    assert res == [(i, i == 7) for i in range(8)] * 2
예제 #4
0
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg


@gear
def darken(din: Uint[8], *, gain) -> Uint[8]:
    return din * Ufixp[0, 8](gain)


orig_img = (mpimg.imread('../creature.png') * 255).astype(np.uint8)

res = []
drv(t=Uint[8], seq=orig_img.flatten()) \
    | darken(gain=0.8) \
    | int \
    | collect(result=res)

reg['trace/level'] = 0
sim()

res_img = np.array(res, np.uint8)
res_img.shape = orig_img.shape

ax1 = plt.subplot(1, 2, 1)
ax1.imshow(orig_img)
ax2 = plt.subplot(1, 2, 2)
ax2.imshow(res_img)

plt.show()
def matrix_ops_single():
    ########################## DESIGN CONTROLS ##########################
    num_cols = 8
    num_rows = 6  # HINT suppoerted all dimesitions > 1
    cols_per_row = 2  # HINT suported values that are divisible with num_colls
    ########################### TEST CONTROLS ###########################
    sv_gen = 1
    ###########################################################################
    # set either random or custom seed
    seed = random.randrange(0, 2**32, 1)
    # seed = 1379896999

    # """Unify all seeds"""
    log.info(f"Random SEED: {seed}")
    set_seed(seed)

    ## input randomization
    mat1 = np.random.randint(128, size=(num_rows, num_cols))
    mat2 = np.random.randint(128, size=(num_rows, num_cols))
    mat1 = np.ones((num_rows, num_cols))
    mat2 = np.ones((num_rows, num_cols))

    # input the constatn value optionally
    # mat1 = np.empty((num_rows, num_cols))
    # mat2 = np.empty((num_rows, num_cols))
    # # fill the matrix with the same value
    # mat1.fill(32767)
    # mat2.fill(-32768)

    print("Inputs: ")
    print(type(mat1))
    print(mat1)
    print(type(mat2))
    print(mat2)

    reg['trace/level'] = 0
    reg['gear/memoize'] = False

    reg['debug/trace'] = ['*']
    reg['debug/webviewer'] = True
    res_list = []

    cfg = {
        "cols_per_row": cols_per_row,
        "num_rows": num_rows,
        "num_cols": num_cols,
        'cols_per_multiplier': num_rows // cols_per_row
    }
    cfg_seq = [cfg]
    cfg_drv = drv(t=TCfg, seq=cfg_seq)

    # Add one more dimenstion to the matrix to support input type for design
    mat1 = mat1.reshape(1, mat1.shape[0], mat1.shape[1])
    mat2 = mat2.reshape(mat2.shape[0], 1, mat2.shape[1])
    mat1_seq = [mat1]
    mat2_seq = [mat2]

    row_t = Queue[Array[Int[16], cfg['num_cols']]]
    mat1_drv = drv(t=Queue[row_t], seq=mat1_seq)
    mat2_drv = drv(t=Queue[row_t], seq=mat2_seq)
    res = matrix_multiplication(cfg_drv,
                                mat1_drv,
                                mat2_drv,
                                cols_per_row=cols_per_row)
    collect(res, result=res_list)

    if sv_gen:
        cosim('/matrix_multiplication',
              'verilator',
              outdir='build/matrix_multiplication/rtl',
              rebuild=True,
              timeout=100)
    sim('build/matrix_multiplication')

    ## Print raw results results
    log.info(f'len_res_list: \n{len(res_list)}')
    try:
        pg_res = [int(el) for row_chunk in res_list for el in row_chunk]
        # calc refference data - matrix2 needs to be transposed before doing multiplocation
        np_res = np.dot(np.squeeze(mat1), np.transpose(mat2.squeeze()))
        pg_res = np.array(pg_res).reshape(np_res.shape)

        log.info(f'result: \n{res}')
        log.info(f'pg_res: \n{pg_res}, shape: {pg_res.shape}')
        log.info(f'np_res: \n{np_res}, shape: {np_res.shape}')
        sim_assert(
            np.equal(pg_res, np_res).all(), "Error in compatring results")
        log.info("\033[92m //==== PASS ====// \033[90m")
    except:
        # printing stack trace
        traceback.print_exc()
        log.info("\033[91m //==== FAILED ====// \033[90m")