예제 #1
0
파일: grib.py 프로젝트: neishm/pygeode
def open(filename, value_override = {}, dimtypes = {}, namemap = {}, varlist = [], cfmeta = True, **kwargs):
# {{{
  from pygeode.dataset import Dataset
  from pygeode.formats import finalize_open

  file = GribFile(filename)
  vars = [GribVar(file,i) for i in range(lib.get_nvars(file.index))]
  # append level type to vars with the same name
  names = [v.name for v in vars]
  for i, v in enumerate(vars):
    if names.count(v.name) > 1: v.name = v.name + '_' + level_types[v.level_type][1]
  d = Dataset(vars)

  return finalize_open(d, dimtypes, namemap, varlist, cfmeta)
예제 #2
0
파일: grib.py 프로젝트: admg26/pygeode
def open(filename, value_override = {}, dimtypes = {}, namemap = {}, varlist = [], cfmeta = True, **kwargs):
# {{{
  from pygeode.dataset import Dataset
  from pygeode.formats import finalize_open

  file = GribFile(filename)
  vars = [GribVar(file,i) for i in range(lib.get_nvars(file.index))]
  # append level type to vars with the same name
  names = [v.name for v in vars]
  for i, v in enumerate(vars):
    if names.count(v.name) > 1: v.name = v.name + '_' + level_types[v.level_type][1]
  d = Dataset(vars)

  return finalize_open(d, dimtypes, namemap, varlist, cfmeta)
예제 #3
0
def open(filename, value_override = {}, dimtypes = {}, namemap = {},  varlist = [], cfmeta = True):
# {{{
  ''' open (filename, [value_override = {}, dimtypes = {}, namemap = {}, varlist = [] ])

  Returns a Dataset or dictionary of Datasets of PyGeode variables contained in the specified files. The axes of the 
  variables are created from the dimensions of the NetCDF file. NetCDF variables in the file that do
  not correspond to dimensions are imported as PyGeode variables.

  filename - NetCDF file to open
  value_override - an optional dictionary with replacement values for one or more variables.
           The only known use for this dictionary is to avoid loading in values from a severely
           scattered variable (such as a 'time' axis or other slowest-varying dimension).
  dimtypes - a dictionary mapping dimension names to axis classes. The keys should be axis names
              as defined in the NetCDF file; values should be one of:
              1) an axis instance, 
              2) an axis class, or 
              3) a tuple of an axis class and a dictionary with keyword arguments to pass 
                to that axis' constructor              
              If no dictionary is included, an attempt is made to automatically identify the axis 
              types.
  namemap - an optional dictionary to map NetCDF variable names (keys) to PyGeode variable names
            (values); also works for axes/dimensions
  varlist - a list containing the variables that should be loaded into the data set (if the list is
            empty, all NetCDF variables will be loaded)
  Note: -The identifiers used in varlist and dimtypes are the original names used in the NetCDF file, 
        not the names given in namemap.
        -The optional arguments are not currently supported for netcdf4 files containing groups.'''

  import netCDF4 as nc
  from pygeode.dataset import asdataset
  from pygeode.formats import finalize_open
  from pygeode.axis import Axis

  # Read the file
  try:
    f = nc.Dataset(filename,"r")
    if f.groups:
      dataset =  {str(key): make_dataset(value) for key, value in f.groups.items()}
      dataset =  {str(key): dims2axes(value) for key, value in dataset.items()}
      
      return {str(key): finalize_open(value) for key, value in dataset.items()}
          
    else: 
      dataset = make_dataset(f)
      # Add the object stuff from dimtypes to value_override, so we don't trigger a
      # load operation on those dims.
      # (We could use any values here, since they'll be overridden again later,
      #  but we might as well use something relevant).
      value_override = dict(value_override)  # don't use  the default (static) empty dict
      for k,v in list(dimtypes.items()):
        if isinstance(v,Axis):
          value_override[k] = v.values
    
      #### Filters to apply to the data ####
    
      # Override values from the source?
      if len(value_override) > 0:
        dataset = override_values(dataset, value_override)
    
      # Set up the proper axes (get coordinate values / metadata from a 1D variable
      # with the same name as the dimension)
      dataset = dims2axes(dataset)
      return finalize_open(dataset, dimtypes, namemap, varlist, cfmeta)
  except IOError:  # Problem accessing the file?
    raise
예제 #4
0
def open(filename,
         value_override={},
         dimtypes={},
         namemap={},
         varlist=[],
         cfmeta=True):
    from numpy import empty
    from ctypes import c_long, byref
    from pygeode.axis import DummyAxis
    from pygeode.dataset import asdataset
    from pygeode.formats import finalize_open

    f = HDF4_File(filename)

    num_datasets = c_long()
    num_global_attrs = c_long()
    ret = lib.SDfileinfo(f.sd_id, byref(num_datasets), byref(num_global_attrs))
    assert ret == 0
    num_datasets = num_datasets.value
    num_global_attrs = num_global_attrs.value
    global_atts = get_attributes(f.sd_id, num_global_attrs)

    # Get the HDF vars
    SD_arr = [None] * num_datasets
    for i in range(num_datasets):
        SD_arr[i] = HDF4_SD(f, i)

    # If there are 2 vars of the name XXXX and XXXX:EOSGRID, then
    # ignore the first one and use the latter one.
    # (Based some some GMAO files from the IPY dataset)
    SD_arr = [
        sd for sd in SD_arr if sd.name.endswith(':EOSGRID') or not any(
            sd2.name == sd.name + ':EOSGRID' for sd2 in SD_arr)
    ]

    # Find any 'axes'
    # (look for unique 1D vars which contain a particular dimension id)
    sd_1d = [sd for sd in SD_arr if sd.rank == 1]
    # Determine which dimensions map to a unique 1D array
    dimids = [sd.dimids[0] for sd in sd_1d]
    dimsds = [
        s for s in sd_1d if dimids.count(s.dimids[0]) == 1 or s.iscoord == 1
    ]

    # Load axis values
    for s in dimsds:
        s.values = empty(s.shape, numpy_type[s.type])
        load_values(s.sds_id, [0], s.shape, s.values)

    #for s in dimsds: print s; print s.values

    # Create axis objects
    from pygeode.axis import NamedAxis
    axes = [None] * len(dimsds)
    for i, s in enumerate(dimsds):
        # Append attributes for the axis
        atts = get_attributes(s.sds_id, s.natts)
        #    if len(atts) > 0: axes[i].atts = atts
        axes[i] = NamedAxis(s.values, s.name, atts=atts)

    # Reference axes by dimension ids
    axis_lookup = {}
    for i, a in enumerate(axes):
        axis_lookup[dimids[i]] = a

    # Add dummy axes for dimensions without coordinate info.
    for s in SD_arr:
        for d in s.dimids:
            if d not in axis_lookup:
                dimname, dimsize, dimtype, dim_natts = get_dim_info(d)
                axis_lookup[d] = DummyAxis(dimsize, dimname)

    # Create var objects
    vars = [None] * len(SD_arr)
    for i, s in enumerate(SD_arr):
        axes = [axis_lookup[d] for d in s.dimids]
        vars[i] = HDF4_Var(s, axes)
    vars = [v for v in vars if v.sd not in dimsds]

    # Return a dataset
    d = asdataset(vars)
    d.atts = global_atts

    return finalize_open(d, dimtypes, namemap, varlist, cfmeta)
예제 #5
0
def open(filename,
         value_override={},
         dimtypes={},
         namemap={},
         varlist=[],
         cfmeta=True):
    # {{{
    ''' open (filename, [value_override = {}, dimtypes = {}, namemap = {}, varlist = [] ])

  Returns a Dataset of PyGeode variables contained in the specified files. The axes of the 
  variables are created from the dimensions of the NetCDF file. NetCDF variables in the file that do
  not correspond to dimensions are imported as PyGeode variables.

  filename - NetCDF file to open
  value_override - an optional dictionary with replacement values for one or more variables.
           The only known use for this dictionary is to avoid loading in values from a severely
           scattered variable (such as a 'time' axis or other slowest-varying dimension).
  dimtypes - a dictionary mapping dimension names to axis classes. The keys should be axis names
              as defined in the NetCDF file; values should be one of:
              1) an axis instance, 
              2) an axis class, or 
              3) a tuple of an axis class and a dictionary with keyword arguments to pass 
                to that axis' constructor              
              If no dictionary is included, an attempt is made to automatically identify the axis 
              types.
  namemap - an optional dictionary to map NetCDF variable names (keys) to PyGeode variable names
            (values); also works for axes/dimensions
  varlist - a list containing the variables that should be loaded into the data set (if the list is
            empty, all NetCDF variables will be loaded)
  Note: The identifiers used in varlist and dimtypes are the original names used in the NetCDF file, 
        not the names given in namemap.'''

    from os.path import exists
    from ctypes import c_int, byref
    from pygeode.dataset import asdataset
    from pygeode.formats import finalize_open
    from pygeode.axis import Axis
    if not filename.startswith('http://'):
        assert exists(
            filename), 'File open failed. "%s" does not exist.' % filename

    # Read variable dimensions and metadata from the file
    f = NCFile(filename)
    f.open()
    try:
        fileid = f.fileid

        # Get number of variables
        nvars = c_int()
        ret = lib.nc_inq_nvars(fileid, byref(nvars))
        assert ret == 0, lib.nc_strerror(ret)

        nvars = nvars.value

        # Construct all the variables, put in a list
        vars = [NCVar(f, i) for i in range(nvars)]

        # Construct a dataset from these Vars
        dataset = asdataset(vars)
        dataset.atts = get_attributes(fileid, -1)

    finally:
        f.close()

    # Add the object stuff from dimtypes to value_override, so we don't trigger a
    # load operation on those dims.
    # (We could use any values here, since they'll be overridden again later,
    #  but we might as well use something relevant).
    value_override = dict(
        value_override)  # don't use  the default (static) empty dict
    for k, v in list(dimtypes.items()):
        if isinstance(v, Axis):
            value_override[k] = v.values

    #### Filters to apply to the data ####

    # Override values from the source?
    if len(value_override) > 0:
        dataset = override_values(dataset, value_override)

    # Set up the proper axes (get coordinate values / metadata from a 1D variable
    # with the same name as the dimension)
    dataset = dims2axes(dataset)

    return finalize_open(dataset, dimtypes, namemap, varlist, cfmeta)
예제 #6
0
파일: netcdf.py 프로젝트: neishm/pygeode
def open(filename, value_override = {}, dimtypes = {}, namemap = {},  varlist = [], cfmeta = True):
# {{{
  ''' open (filename, [value_override = {}, dimtypes = {}, namemap = {}, varlist = [] ])

  Returns a Dataset of PyGeode variables contained in the specified files. The axes of the 
  variables are created from the dimensions of the NetCDF file. NetCDF variables in the file that do
  not correspond to dimensions are imported as PyGeode variables.

  filename - NetCDF file to open
  value_override - an optional dictionary with replacement values for one or more variables.
           The only known use for this dictionary is to avoid loading in values from a severely
           scattered variable (such as a 'time' axis or other slowest-varying dimension).
  dimtypes - a dictionary mapping dimension names to axis classes. The keys should be axis names
              as defined in the NetCDF file; values should be one of:
              1) an axis instance, 
              2) an axis class, or 
              3) a tuple of an axis class and a dictionary with keyword arguments to pass 
                to that axis' constructor              
              If no dictionary is included, an attempt is made to automatically identify the axis 
              types.
  namemap - an optional dictionary to map NetCDF variable names (keys) to PyGeode variable names
            (values); also works for axes/dimensions
  varlist - a list containing the variables that should be loaded into the data set (if the list is
            empty, all NetCDF variables will be loaded)
  Note: The identifiers used in varlist and dimtypes are the original names used in the NetCDF file, 
        not the names given in namemap.'''

  from os.path import exists
  from ctypes import c_int, byref
  from pygeode.dataset import asdataset
  from pygeode.formats import finalize_open
  from pygeode.axis import Axis
  if not filename.startswith('http://'):
    assert exists(filename), 'File open failed. "%s" does not exist.' % filename


  # Read variable dimensions and metadata from the file
  f = NCFile(filename)
  f.open()
  try:
    fileid = f.fileid

    # Get number of variables
    nvars = c_int()
    ret = lib.nc_inq_nvars(fileid, byref(nvars))
    assert ret == 0, lib.nc_strerror(ret)

    nvars = nvars.value

    # Construct all the variables, put in a list
    vars = [NCVar(f,i) for i in range(nvars)]

    # Construct a dataset from these Vars
    dataset = asdataset(vars)
    dataset.atts = get_attributes (fileid, -1)

  finally:
    f.close()

  # Add the object stuff from dimtypes to value_override, so we don't trigger a
  # load operation on those dims.
  # (We could use any values here, since they'll be overridden again later,
  #  but we might as well use something relevant).
  value_override = dict(value_override)  # don't use  the default (static) empty dict
  for k,v in list(dimtypes.items()):
    if isinstance(v,Axis):
      value_override[k] = v.values

  #### Filters to apply to the data ####

  # Override values from the source?
  if len(value_override) > 0:
    dataset = override_values(dataset, value_override)

  # Set up the proper axes (get coordinate values / metadata from a 1D variable
  # with the same name as the dimension)
  dataset = dims2axes(dataset)

  return finalize_open(dataset, dimtypes, namemap, varlist, cfmeta)
예제 #7
0
파일: hdf4.py 프로젝트: neishm/pygeode
def open (filename, value_override = {}, dimtypes = {}, namemap = {},  varlist = [], cfmeta = True):
  from numpy import empty
  from ctypes import c_long, byref
  from pygeode.axis import DummyAxis
  from pygeode.dataset import asdataset
  from pygeode.formats import finalize_open

  f = HDF4_File (filename)

  num_datasets = c_long()
  num_global_attrs = c_long()
  ret = lib.SDfileinfo (f.sd_id, byref(num_datasets), byref(num_global_attrs))
  assert ret == 0
  num_datasets = num_datasets.value
  num_global_attrs = num_global_attrs.value
  global_atts = get_attributes(f.sd_id, num_global_attrs)

  # Get the HDF vars
  SD_arr = [None] * num_datasets
  for i in range(num_datasets):
    SD_arr[i] = HDF4_SD(f, i)

  # If there are 2 vars of the name XXXX and XXXX:EOSGRID, then
  # ignore the first one and use the latter one.
  # (Based some some GMAO files from the IPY dataset)
  SD_arr = [sd for sd in SD_arr
            if sd.name.endswith(':EOSGRID')
            or not any(sd2.name == sd.name+':EOSGRID' for sd2 in SD_arr)
           ]

  # Find any 'axes'
  # (look for unique 1D vars which contain a particular dimension id)
  sd_1d = [sd for sd in SD_arr if sd.rank == 1]
  # Determine which dimensions map to a unique 1D array
  dimids = [sd.dimids[0] for sd  in sd_1d]
  dimsds = [s for s in sd_1d if dimids.count(s.dimids[0]) == 1 or s.iscoord == 1]

  # Load axis values
  for s in dimsds:
    s.values = empty(s.shape, numpy_type[s.type])
    load_values (s.sds_id, [0], s.shape, s.values)

  #for s in dimsds: print s; print s.values

  # Create axis objects
  from pygeode.axis import NamedAxis
  axes = [None] * len(dimsds)
  for i,s in enumerate(dimsds):
    # Append attributes for the axis
    atts = get_attributes (s.sds_id, s.natts)
#    if len(atts) > 0: axes[i].atts = atts
    axes[i] = NamedAxis (s.values, s.name, atts=atts)

  # Reference axes by dimension ids
  axis_lookup = {}
  for i,a in enumerate(axes): axis_lookup[dimids[i]] = a

  # Add dummy axes for dimensions without coordinate info.
  for s in SD_arr:
    for d in s.dimids:
      if d not in axis_lookup:
        dimname, dimsize, dimtype, dim_natts = get_dim_info(d)
        axis_lookup[d] = DummyAxis(dimsize,dimname)

  # Create var objects
  vars = [None]*len(SD_arr)
  for i,s in enumerate(SD_arr):
    axes = [axis_lookup[d] for d in s.dimids]
    vars[i] = HDF4_Var(s, axes)
  vars = [v for v in vars if v.sd not in dimsds]

  # Return a dataset
  d = asdataset(vars)
  d.atts = global_atts

  return finalize_open(d, dimtypes, namemap, varlist, cfmeta)
예제 #8
0
파일: netcdf4.py 프로젝트: neishm/pygeode
def open(filename, value_override = {}, dimtypes = {}, namemap = {},  varlist = [], cfmeta = True):
# {{{
  ''' open (filename, [value_override = {}, dimtypes = {}, namemap = {}, varlist = [] ])

  Returns a Dataset or dictionary of Datasets of PyGeode variables contained in the specified files. The axes of the 
  variables are created from the dimensions of the NetCDF file. NetCDF variables in the file that do
  not correspond to dimensions are imported as PyGeode variables.

  filename - NetCDF file to open
  value_override - an optional dictionary with replacement values for one or more variables.
           The only known use for this dictionary is to avoid loading in values from a severely
           scattered variable (such as a 'time' axis or other slowest-varying dimension).
  dimtypes - a dictionary mapping dimension names to axis classes. The keys should be axis names
              as defined in the NetCDF file; values should be one of:
              1) an axis instance, 
              2) an axis class, or 
              3) a tuple of an axis class and a dictionary with keyword arguments to pass 
                to that axis' constructor              
              If no dictionary is included, an attempt is made to automatically identify the axis 
              types.
  namemap - an optional dictionary to map NetCDF variable names (keys) to PyGeode variable names
            (values); also works for axes/dimensions
  varlist - a list containing the variables that should be loaded into the data set (if the list is
            empty, all NetCDF variables will be loaded)
  Note: -The identifiers used in varlist and dimtypes are the original names used in the NetCDF file, 
        not the names given in namemap.
        -The optional arguments are not currently supported for netcdf4 files containing groups.'''

  import netCDF4 as nc
  from pygeode.dataset import asdataset
  from pygeode.formats import finalize_open
  from pygeode.axis import Axis

  # Read the file
  try:
    f = nc.Dataset(filename,"r")
    if f.groups:
      dataset =  {str(key): make_dataset(value) for key, value in f.groups.items()}
      dataset =  {str(key): dims2axes(value) for key, value in dataset.items()}
      
      return {str(key): finalize_open(value) for key, value in dataset.items()}
          
    else: 
      dataset = make_dataset(f)
      # Add the object stuff from dimtypes to value_override, so we don't trigger a
      # load operation on those dims.
      # (We could use any values here, since they'll be overridden again later,
      #  but we might as well use something relevant).
      value_override = dict(value_override)  # don't use  the default (static) empty dict
      for k,v in list(dimtypes.items()):
        if isinstance(v,Axis):
          value_override[k] = v.values
    
      #### Filters to apply to the data ####
    
      # Override values from the source?
      if len(value_override) > 0:
        dataset = override_values(dataset, value_override)
    
      # Set up the proper axes (get coordinate values / metadata from a 1D variable
      # with the same name as the dimension)
      dataset = dims2axes(dataset)
      return finalize_open(dataset, dimtypes, namemap, varlist, cfmeta)
  except IOError:  # Problem accessing the file?
    raise