def testFmath(self): # see function _p2 in ellipsoidalVincenty.py for i in range(-16, 17): x = pow(1.0, i) p = fpolynomial(x, 16384, 4096, -768, 320, -175) / 16384.0 a = x / 16384.0 * (4096 + x * (-768 + x * (320 - 175 * x))) + 1 self.test('fpolynomialA', p, a) h = fhorner(x, 16384, 4096, -768, 320, -175) / 16384.0 self.test('fhornerA', h, p) p = fpolynomial(x, 0, 256, -128, 74, -47) / 1024.0 b = x / 1024.0 * (256 + x * (-128 + x * (74 - 47 * x))) self.test('fpolynomialB', p, b) h = fhorner(x, 0, 256, -128, 74, -47) / 1024.0 self.test('fhornerB', h, p) # U{Neumaier<http://WikiPedia.org/wiki/Kahan_summation_algorithm>} t = 1, 1e101, 1, -1e101 for _ in range(10): s = float(len(t) / 2) # number of ones self.test('sum', sum(t), s, known=True) self.test('fsum', fsum(t), s) self.test('Fsum', Fsum().fsum(t), s) t += t # <http://code.ActiveState.com/recipes/393090> t = 1.00, 0.00500, 0.00000000000100 s = 1.00500000000100 self.test('sum', sum(t), s, known=True) self.test('fsum', fsum(t), s) self.test('Fsum', Fsum().fsum(t), s) # <http://GitHub.com/python/cpython/blob/master/Modules/mathmodule.c> t = 1e-16, 1, 1e16 s = '1.0000000000000002e+16' # half-even rounded self.test('fsum', fsum(t), s, fmt='%.16e') self.test('Fsum', Fsum().fsum(t), s, fmt='%.16e') # <http://GitHub.com/ActiveState/code/blob/master/recipes/Python/ # 393090_Binary_floating_point_summatiaccurate_full/recipe-393090.py> for _ in range(100): t = [7, 1e100, -7, -1e100, -9e-20, 8e-20] * 10 s = 0 for _ in range(20): v = gauss(0, random())**7 - s s += v t.append(v) shuffle(t) s = fsum(t) self.test('sum', sum(t), s, known=True) self.test('fsum', s, s) n = len(t) // 2 f = Fsum() f.fsum(t[:n]) # test ps self.test('Fsum', f.fsum(t[n:]), s) f = Fsum() f.fsum(t[n:]) # test ps self.test('Fsum', f.fsum(t[:n]), s) p = fpowers(2, 10) # PYCHOK false! self.test('fpowers', len(p), 10) self.test('fpowers', p[0], 2) self.test('fpowers', p[9], 2**10) p = fpowers(2, 10, 4) # PYCHOK false! self.test('fpowers', len(p), 4) self.test('fpowers', p[0], 2**4) self.test('fpowers', p[3], 2**10) p = fpowers(2, 10, 3) # PYCHOK false! self.test('fpowers', len(p), 4) self.test('fpowers', p[0], 2**3) self.test('fpowers', p[3], 2**9) self.test('isfinite(0)', isfinite(0), 'True') self.test('isfinite(1e300)', isfinite(1e300), 'True') self.test('isfinite(-1e300)', isfinite(-1e300), 'True') self.test('isfinite(1e1234)', isfinite(1e1234), 'False') self.test('isfinite(INF)', isfinite(INF), 'False') self.test('isfinite(NAN)', isfinite(NAN), 'False') self.test('isfinite(NEG0)', isfinite(NEG0), 'True') self.test('isneg0(NEG0)', isneg0(NEG0), True) self.test('isneg0(0.0)', isneg0(0.0), False) self.test('isneg0(NAN)', isneg0(NAN), False) for _, E in sorted(Ellipsoids.items()): Ah = E.a / (1 + E.n) * fhorner(E.n**2, 1., 1. / 4, 1. / 64, 1. / 256, 25. / 16384) self.test(E.name, Ah, E.A, fmt='%.8f') Ah = E.a / (1 + E.n) * (fhorner(E.n**2, 16384, 4096, 256, 64, 25) / 16384) self.test(E.name, Ah, E.A, fmt='%.8f') Ah = E.a / (1 + E.n) * fhorner(E.n**2, 1., 1. / 4, 1. / 64, 1. / 256, 25. / 16384, 49. / 65536) self.test(E.name, Ah, E.A, fmt='%.10f') Ah = E.a / (1 + E.n) * ( fhorner(E.n**2, 65536, 16384, 1024, 256, 100, 49) / 65536) self.test(E.name, Ah, E.A, fmt='%.10f') t = 1, 1e101, 1, -1e101 for _ in range(10): a = Fsum(*t) b = a.fcopy() c = a + b self.test('FSum+', c.fsum(), a.fsum() + b.fsum()) c -= a self.test('FSum-', c.fsum(), b.fsum()) c -= b self.test('FSum-', c.fsum(), 0.0) b = a * 2 a += a self.test('FSum*', a.fsum(), b.fsum()) t += t
def testFmath(self): # see function _p2 in ellipsoidalVincenty.py for i in range(-16, 17): x = pow(1.0, i) p = fpolynomial(x, 16384, 4096, -768, 320, -175) / 16384.0 a = x / 16384.0 * (4096 + x * (-768 + x * (320 - 175 * x))) + 1 self.test('fpolynomialA', p, a) h = fhorner(x, 16384, 4096, -768, 320, -175) / 16384.0 self.test('fhornerA', h, p) p = fpolynomial(x, 0, 256, -128, 74, -47) / 1024.0 b = x / 1024.0 * (256 + x * (-128 + x * (74 - 47 * x))) self.test('fpolynomialB', p, b) h = fhorner(x, 0, 256, -128, 74, -47) / 1024.0 self.test('fhornerB', h, p) # U{Neumaier<https://WikiPedia.org/wiki/Kahan_summation_algorithm>} t = 1, 1e101, 1, -1e101 for _ in range(10): s = float(len(t) / 2) # number of ones self.test('sum', sum(t), s, known=True) self.test('fsum', fsum(t), s) self.test('Fsum', Fsum().fsum(t), s) t += t # <https://GitHub.com/ActiveState/code/blob/master/recipes/Python/ # 393090_Binary_floating_point_summatiaccurate_full/recipe-393090.py> t = 1.0, 0.0050, 0.0000000000010 s = 1.0050000000010 self.test('sum', sum(t), s, known=True) self.test('fsum', fsum(t), s) self.test('Fsum', Fsum().fsum(t), s) # <https://GitHub.com/python/cpython/blob/master/Modules/mathmodule.c> t = 1e-16, 1, 1e16 s = '1.0000000000000002e+16' # half-even rounded self.test('fsum', fsum(t), s, prec=-16) self.test('Fsum', Fsum().fsum(t), s, prec=-16) # <https://GitHub.com/ActiveState/code/blob/master/recipes/Python/ # 393090_Binary_floating_point_summatiaccurate_full/recipe-393090.py> for _ in range(100): t = [7, 1e100, -9e-20, -7, -1e100, 8e-20] * 10 s = 0 for _ in range(20): v = gauss(0, random())**7 - s s += v t.append(v) shuffle(t) s = fsum(t) self.test('sum', sum(t), s, known=True) self.test('fsum', s, s) n = len(t) // 2 f = Fsum() f.fsum(t[:n]) # test ps self.test('Fsum', f.fsum(t[n:]), s) f = Fsum() f.fsum(t[n:]) # test ps self.test('Fsum', f.fsum(t[:n]), s) p = f * (f * 1e10) # coverage Fsum.__imul__ f *= f * 1e10 self.test('fmul', p.fsum(), f.fsum(), prec=8) p = fpowers(2, 10) # PYCHOK false! self.test('fpowers', len(p), 10) self.test('fpowers', p[0], 2) self.test('fpowers', p[9], 2**10) p = fpowers(2, 10, 4) # PYCHOK false! self.test('fpowers', len(p), 4) self.test('fpowers', p[0], 2**4) self.test('fpowers', p[3], 2**10) p = fpowers(2, 10, 3) # PYCHOK false! self.test('fpowers', len(p), 4) self.test('fpowers', p[0], 2**3) self.test('fpowers', p[3], 2**9) for _, E in sorted(Ellipsoids.items()): Ah = E.a / (1 + E.n) * fhorner(E.n**2, 1., 1./4, 1./64, 1./256, 25./16384) self.test(E.name, Ah, E.A, prec=10, known=abs(Ah - E.A) < 1e-5) # b_None, f_None on iPhone Ah = E.a / (1 + E.n) * (fhorner(E.n**2, 16384, 4096, 256, 64, 25) / 16384) self.test(E.name, Ah, E.A, prec=10, known=abs(Ah - E.A) < 1e-5) # b_None, f_None on iPhone Ah = E.a / (1 + E.n) * fhorner(E.n**2, 1., 1./4, 1./64, 1./256, 25./16384, 49./65536) self.test(E.name, Ah, E.A, prec=10, known=abs(Ah - E.A) < 1e-9) Ah = E.a / (1 + E.n) * (fhorner(E.n**2, 65536, 16384, 1024, 256, 100, 49) / 65536) self.test(E.name, Ah, E.A, prec=10, known=abs(Ah - E.A) < 1e-9) t = 1, 1e101, 1, -1e101 for _ in range(10): a = Fsum(*t) b = a.fcopy() c = a + b self.test('FSum+', c.fsum(), a.fsum() + b.fsum()) c -= a self.test('FSum-', c.fsum(), b.fsum()) c -= b self.test('FSum-', c.fsum(), 0.0) b = a * 2 a += a self.test('FSum*', a.fsum(), b.fsum()) t += t self.testCopy(a, '_fsum2_', '_n', '_ps') if coverage: # for test coverage c = a - b self.test('FSum0', c.fsum(), 0.0) c -= 0 self.test('FSum0', c.fsum(), 0.0) c -= c self.test('FSum0', c.fsum(), 0.0) c *= Fsum(1.0) self.test('FSum0', c.fsum(), 0.0) a.fsub_(*a._ps) self.test('FSum0', a.fsum(), 0.0) self.test('Fsum#', len(a), 2049) self.test('Fsum#', len(a._ps), 1) self.test('FSum.', a, 'fmath.Fsum()') try: self.test('_2sum', fmath._2sum(1e308, 1e803), OverflowError.__name__) except OverflowError as x: self.test('_2sum', repr(x), repr(x)) h = hypot_(1.0, 0.0050, 0.0000000000010) self.test('hypot_ ', h, '1.00001250', prec=8) e = euclid_(1.0, 0.0050, 0.0000000000010) self.test('euclid_', e, h, prec=8, known=abs(e - h) < h * 0.01) t = hypot2_(1.0, 0.0050, 0.0000000000010) self.test('hypot2_', t, '1.00002500', prec=8) s = hypot3(1.0, 0.0050, 0.0000000000010) # DEPRECATED self.test('hypot3 ', s, h, prec=8) h = hypot_(3000, 2000, 100) # note, all C{int} self.test('hypot_ ', h, '3606.937759', prec=6) e = euclid_(3000, 2000, 100) self.test('euclid_', e, h * 1.07, prec=6, known=abs(e - h) < h * 0.07) t = hypot2_(3000, 2000, 100) # note, all C{int} s = fsum_(3000**2, 2000**2, 100**2) self.test('hypot2_', t, s, prec=1) s = hypot3(3000, 2000, 100) # DEPRECATED self.test('hypot3 ', s, h, prec=6) h = hypot_(40000, 3000, 200, 10.0) s = fsum_(40000**2, 3000**2, 200**2, 100) self.test('hypot_ ', h, sqrt(s), prec=3) t = hypot2_(40000, 3000, 200, 10.0) self.test('hypot2_', t, s, prec=1) e = euclid_(40000, 3000, 200, 10.0) self.test('euclid_', e, h * 1.03, prec=3, known=abs(e - h) < h * 0.03) self.test('cbrt', cbrt(27), '3.00', prec=2) self.test('cbrt', cbrt(-27), '-3.00', prec=2) self.test('cbrt2', cbrt2(27), '9.00', prec=2) self.test('cbrt2', cbrt2(-27), '9.00', prec=2) self.test('sqrt3', sqrt3(9), '27.00', prec=2) # Knuth/Kulisch, TAOCP, vol 2, p 245, sec 4.2.2, item 31, see also .testKarney.py # <https://SeriousComputerist.Atariverse.com/media/pdf/book/ # Art%20of%20Computer%20Programming%20-%20Volume%202%20(Seminumerical%20Algorithms).pdf> x = 408855776 y = 708158977 self.test('ints', 2*y**2 + 9*x**4 - y**4, 1) self.test('ints', 2*y**2 + (3*x**2 - y**2) * (3*x**2 + y**2), 1) t = 2*float(y)**2, 9*float(x)**4, -(float(y)**4) self.test('fsum ', fsum(t), '1.0', prec=-12, known=True) # -3.589050987400773e+19 self.test('fsum_', fsum_(*t), '1.0', prec=-12, known=True) self.test('Fsum ', Fsum().fsum_(*t), '1.0', prec=-12, known=True) self.test('sum ', sum(t), '1.0', prec=-12, known=True)