예제 #1
0
def make_map(mb_dissolve_df=None,
             glac_df_mb=None,
             agg_df=None,
             col=('mb_mwea', 'mean'),
             border_df=None,
             crs=crs,
             extent=None,
             hs=None,
             hs_extent=None,
             clim=None,
             labels='val',
             title=None):

    fig, ax = plt.subplots(figsize=(10, 8))
    ax.set_aspect('equal')
    legend = add_legend(ax, sf=scaling_f)
    if title is not None:
        ax.set_title(title)

    if clim is None:
        #clim = (glac_df_mb[col].min(), glac_df_mb[col].max())
        clim = malib.calcperc_sym(mb_dissolve_df[col], perc=(1, 99))

    cmap = 'RdBu'
    if 'mb_mwea' in col:
        label = 'Mass Balance (m we/yr)'
    elif 'mb_Gta' in col:
        label = 'Mass Balance (Gt/yr)'
    elif 'meltwater' in col:
        label = 'Excess Meltwater Runoff (Gt/yr)'
        #Reverse, as these are negative values
        cmap = 'YlOrRd_r'
        #cmap = 'inferno'
        clim = malib.calcperc(mb_dissolve_df[col], perc=(0, 99))
    elif 't1' in col:
        cmap = 'inferno'
        label = 'Source Date (year)'

    #This is cartopy-enabled axes
    #ax = plt.axes(projection=crs)

    #Currently unsupported for AEA
    #gl = ax.gridlines(draw_labels=True, linewidth=0.5, color='gray', alpha=0.5, linestyle='--')

    if hs is not None:
        print("Plotting image")
        hs_style = {
            'cmap': 'gray',
            'origin': 'upper',
            'extent': cartopy_extent(hs_extent),
            'transform': crs
        }
        ax.imshow(hs, **hs_style)

    if border_df is not None:
        print("Plotting borders")
        border_style = {
            'facecolor': '0.65',
            'edgecolor': 'k',
            'linewidth': 0.7
        }
        border_df.plot(ax=ax, **border_style)

    if agg_df is not None:
        print("Plotting agg boundaries")
        #This was to get colored regions
        #agg_style = {'cmap':'cpt_rainbow', 'edgecolor':'none', 'linewidth':0, 'alpha':0.05}
        agg_style = {
            'cmap': 'summer',
            'edgecolor': 'none',
            'linewidth': 0,
            'alpha': 0.05
        }
        #agg_style = {'facecolor':'0.95','edgecolor':'k', 'linewidth':0.3, 'alpha':0.2}
        agg_df.plot(ax=ax, **agg_style)

    if glac_df_mb is not None:
        print("Plotting glacier polygons")
        glac_style = {'edgecolor': 'k', 'linewidth': 0.1, 'alpha': 0.2}
        #This plots mb color ramp for each glacier polygon
        #glac_ax = glac_df_mb.plot(ax=ax, column=col[0], cmap=cmap, vmin=clim[0], vmax=clim[1], **glac_style)
        #This plots outlines
        glac_ax = glac_df_mb.plot(ax=ax, facecolor='none', **glac_style)

    if agg_df is not None:
        agg_style = {'facecolor': 'none', 'edgecolor': 'w', 'linewidth': 0.5}
        agg_df.plot(ax=ax, **agg_style)

    #https://stackoverflow.com/questions/36008648/colorbar-on-geopandas
    # fake up the array of the scalar mappable so we can plot colorbar. Urgh...
    sc = plt.cm.ScalarMappable(cmap=cmap,
                               norm=plt.Normalize(vmin=clim[0], vmax=clim[1]))
    sc._A = []

    if mb_dissolve_df is not None:
        print("Plotting scatterplot of %s values" % (col, ))
        #Plot single values for region or basin
        x = mb_dissolve_df['centroid_x']
        y = mb_dissolve_df['centroid_y']
        #Scale by total glacier area in each polygon
        s = scaling_f * mb_dissolve_df[('Area_all', 'sum')]
        c = mb_dissolve_df[col]
        sc_style = {
            'cmap': cmap,
            'edgecolor': 'k',
            'linewidth': 0.5,
            'alpha': 0.8
        }
        sc = ax.scatter(x, y, s, c, vmin=clim[0], vmax=clim[1], **sc_style)
        #Add labels
        text_kw = {'family': 'sans-serif', 'fontsize': 8, 'color': 'k'}
        if labels is not None:
            print("Adding annotations")
            for k, v in mb_dissolve_df.iterrows():
                #lbl = '%0.2f +/- %0.2f' % (v[col], v[(col[0]+'_sigma',col[1])])
                if labels == 'name+val':
                    lbl = '%s\n%+0.2f' % (k, v[col])
                else:
                    lbl = '%+0.2f' % v[col]
                #ax.annotate(lbl, xy=(v['centroid_x'],v['centroid_y']), xytext=(1,0), textcoords='offset points', family='sans-serif', fontsize=6, color='darkgreen')
                txt = ax.annotate(lbl,
                                  xy=(v['centroid_x'], v['centroid_y']),
                                  ha='center',
                                  va='center',
                                  **text_kw)
                txt.set_path_effects([
                    path_effects.Stroke(linewidth=0.75, foreground='w'),
                    path_effects.Normal()
                ])

    #This is minx, miny, maxx, maxy
    if extent is None:
        #if glac_df_mb is not None:
        #    extent = glac_df_mb.total_bounds
        #else:
        extent = mb_dissolve_df.total_bounds

    #For cartopy axes
    #ax.set_extent(cartopy_extent(extent), crs=crs)
    #Pad extent so labels fit within map
    #extent = geolib.pad_extent(extent, perc=0.01, uniform=True)
    ax.set_xlim(extent[0], extent[2])
    ax.set_ylim(extent[1], extent[3])

    #Adding colorbar doesn't work with the cartopy axes
    pltlib.add_cbar(ax, sc, label=label)
    pltlib.add_scalebar(ax, res=1)
    pltlib.hide_ticks(ax)

    plt.tight_layout()

    return fig
예제 #2
0
def main(argv=None):
    parser = getparser()
    args = parser.parse_args()

    #Should check that files exist
    ref_dem_fn = args.ref_fn
    src_dem_fn = args.src_fn

    mode = args.mode
    mask_list = args.mask_list
    max_offset = args.max_offset
    max_dz = args.max_dz
    slope_lim = tuple(args.slope_lim)
    tiltcorr = args.tiltcorr
    polyorder = args.polyorder
    res = args.res

    #Maximum number of iterations
    max_iter = args.max_iter

    #These are tolerances (in meters) to stop iteration
    tol = args.tol
    min_dx = tol
    min_dy = tol
    min_dz = tol

    outdir = args.outdir
    if outdir is None:
        outdir = os.path.splitext(src_dem_fn)[0] + '_dem_align'

    if tiltcorr:
        outdir += '_tiltcorr'
        tiltcorr_done = False
        #Relax tolerance for initial round of co-registration
        #tiltcorr_tol = 0.1
        #if tol < tiltcorr_tol:
        #    tol = tiltcorr_tol

    if not os.path.exists(outdir):
        os.makedirs(outdir)

    outprefix = '%s_%s' % (os.path.splitext(os.path.split(src_dem_fn)[-1])[0], \
            os.path.splitext(os.path.split(ref_dem_fn)[-1])[0])
    outprefix = os.path.join(outdir, outprefix)

    print("\nReference: %s" % ref_dem_fn)
    print("Source: %s" % src_dem_fn)
    print("Mode: %s" % mode)
    print("Output: %s\n" % outprefix)

    src_dem_ds = gdal.Open(src_dem_fn)
    ref_dem_ds = gdal.Open(ref_dem_fn)

    #Get local cartesian coordinate system
    #local_srs = geolib.localtmerc_ds(src_dem_ds)
    #Use original source dataset coordinate system
    #Potentially issues with distortion and xyz/tiltcorr offsets for DEM with large extent
    local_srs = geolib.get_ds_srs(src_dem_ds)
    #local_srs = geolib.get_ds_srs(ref_dem_ds)

    #Resample to common grid
    ref_dem_res = float(geolib.get_res(ref_dem_ds, t_srs=local_srs, square=True)[0])
    #Create a copy to be updated in place
    src_dem_ds_align = iolib.mem_drv.CreateCopy('', src_dem_ds, 0)
    src_dem_res = float(geolib.get_res(src_dem_ds, t_srs=local_srs, square=True)[0])
    src_dem_ds = None
    #Resample to user-specified resolution
    ref_dem_ds, src_dem_ds_align = warplib.memwarp_multi([ref_dem_ds, src_dem_ds_align], \
            extent='intersection', res=args.res, t_srs=local_srs, r='cubic')

    res = float(geolib.get_res(src_dem_ds_align, square=True)[0])
    print("\nReference DEM res: %0.2f" % ref_dem_res)
    print("Source DEM res: %0.2f" % src_dem_res)
    print("Resolution for coreg: %s (%0.2f m)\n" % (args.res, res))

    #Iteration number
    n = 1
    #Cumulative offsets
    dx_total = 0
    dy_total = 0
    dz_total = 0

    #Now iteratively update geotransform and vertical shift
    while True:
        print("*** Iteration %i ***" % n)
        dx, dy, dz, static_mask, fig = compute_offset(ref_dem_ds, src_dem_ds_align, src_dem_fn, mode, max_offset, \
                mask_list=mask_list, max_dz=max_dz, slope_lim=slope_lim, plot=True)
        xyz_shift_str_iter = "dx=%+0.2fm, dy=%+0.2fm, dz=%+0.2fm" % (dx, dy, dz)
        print("Incremental offset: %s" % xyz_shift_str_iter)

        dx_total += dx
        dy_total += dy
        dz_total += dz

        xyz_shift_str_cum = "dx=%+0.2fm, dy=%+0.2fm, dz=%+0.2fm" % (dx_total, dy_total, dz_total)
        print("Cumulative offset: %s" % xyz_shift_str_cum)
        #String to append to output filenames
        xyz_shift_str_cum_fn = '_%s_x%+0.2f_y%+0.2f_z%+0.2f' % (mode, dx_total, dy_total, dz_total)

        #Should make an animation of this converging
        if n == 1: 
            #static_mask_orig = static_mask
            if fig is not None:
                dst_fn = outprefix + '_%s_iter%02i_plot.png' % (mode, n)
                print("Writing offset plot: %s" % dst_fn)
                fig.gca().set_title("Incremental: %s\nCumulative: %s" % (xyz_shift_str_iter, xyz_shift_str_cum))
                fig.savefig(dst_fn, dpi=300)

        #Apply the horizontal shift to the original dataset
        src_dem_ds_align = coreglib.apply_xy_shift(src_dem_ds_align, dx, dy, createcopy=False)
        #Should 
        src_dem_ds_align = coreglib.apply_z_shift(src_dem_ds_align, dz, createcopy=False)

        n += 1
        print("\n")
        #If magnitude of shift in all directions is less than tol
        #if n > max_iter or (abs(dx) <= min_dx and abs(dy) <= min_dy and abs(dz) <= min_dz):
        #If magnitude of shift is less than tol
        dm = np.sqrt(dx**2 + dy**2 + dz**2)
        dm_total = np.sqrt(dx_total**2 + dy_total**2 + dz_total**2)

        if dm_total > max_offset:
            sys.exit("Total offset exceeded specified max_offset (%0.2f m). Consider increasing -max_offset argument" % max_offset)

        #Stop iteration
        if n > max_iter or dm < tol:

            if fig is not None:
                dst_fn = outprefix + '_%s_iter%02i_plot.png' % (mode, n)
                print("Writing offset plot: %s" % dst_fn)
                fig.gca().set_title("Incremental:%s\nCumulative:%s" % (xyz_shift_str_iter, xyz_shift_str_cum))
                fig.savefig(dst_fn, dpi=300)

            #Compute final elevation difference
            if True:
                ref_dem_clip_ds_align, src_dem_clip_ds_align = warplib.memwarp_multi([ref_dem_ds, src_dem_ds_align], \
                        res=res, extent='intersection', t_srs=local_srs, r='cubic')
                ref_dem_align = iolib.ds_getma(ref_dem_clip_ds_align, 1)
                src_dem_align = iolib.ds_getma(src_dem_clip_ds_align, 1)
                ref_dem_clip_ds_align = None

                diff_align = src_dem_align - ref_dem_align
                src_dem_align = None
                ref_dem_align = None

                #Get updated, final mask
                static_mask_final = get_mask(src_dem_clip_ds_align, mask_list, src_dem_fn)
                static_mask_final = np.logical_or(np.ma.getmaskarray(diff_align), static_mask_final)
                
                #Final stats, before outlier removal
                diff_align_compressed = diff_align[~static_mask_final]
                diff_align_stats = malib.get_stats_dict(diff_align_compressed, full=True)

                #Prepare filtered version for tiltcorr fit
                diff_align_filt = np.ma.array(diff_align, mask=static_mask_final)
                diff_align_filt = outlier_filter(diff_align_filt, f=3, max_dz=max_dz)
                #diff_align_filt = outlier_filter(diff_align_filt, perc=(12.5, 87.5), max_dz=max_dz)
                slope = get_filtered_slope(src_dem_clip_ds_align)
                diff_align_filt = np.ma.array(diff_align_filt, mask=np.ma.getmaskarray(slope))
                diff_align_filt_stats = malib.get_stats_dict(diff_align_filt, full=True)

            #Fit 2D polynomial to residuals and remove
            #To do: add support for along-track and cross-track artifacts
            if tiltcorr and not tiltcorr_done:
                print("\n************")
                print("Calculating 'tiltcorr' 2D polynomial fit to residuals with order %i" % polyorder)
                print("************\n")
                gt = src_dem_clip_ds_align.GetGeoTransform()

                #Need to apply the mask here, so we're only fitting over static surfaces
                #Note that the origmask=False will compute vals for all x and y indices, which is what we want
                vals, resid, coeff = geolib.ma_fitpoly(diff_align_filt, order=polyorder, gt=gt, perc=(0,100), origmask=False)
                #vals, resid, coeff = geolib.ma_fitplane(diff_align_filt, gt, perc=(12.5, 87.5), origmask=False)

                #Should write out coeff or grid with correction 

                vals_stats = malib.get_stats_dict(vals)

                #Want to have max_tilt check here
                #max_tilt = 4.0 #m
                #Should do percentage
                #vals.ptp() > max_tilt

                #Note: dimensions of ds and vals will be different as vals are computed for clipped intersection
                #Need to recompute planar offset for full src_dem_ds_align extent and apply
                xgrid, ygrid = geolib.get_xy_grids(src_dem_ds_align)
                valgrid = geolib.polyval2d(xgrid, ygrid, coeff) 
                #For results of ma_fitplane
                #valgrid = coeff[0]*xgrid + coeff[1]*ygrid + coeff[2]
                src_dem_ds_align = coreglib.apply_z_shift(src_dem_ds_align, -valgrid, createcopy=False)

                if True:
                    print("Creating plot of polynomial fit to residuals")
                    fig, axa = plt.subplots(1,2, figsize=(8, 4))
                    dz_clim = malib.calcperc_sym(vals, (2, 98))
                    ax = pltlib.iv(diff_align_filt, ax=axa[0], cmap='RdBu', clim=dz_clim, \
                            label='Residual dz (m)', scalebar=False)
                    ax = pltlib.iv(valgrid, ax=axa[1], cmap='RdBu', clim=dz_clim, \
                            label='Polyfit dz (m)', ds=src_dem_ds_align)
                    #if tiltcorr:
                        #xyz_shift_str_cum_fn += "_tiltcorr"
                    tiltcorr_fig_fn = outprefix + '%s_polyfit.png' % xyz_shift_str_cum_fn
                    print("Writing out figure: %s\n" % tiltcorr_fig_fn)
                    fig.savefig(tiltcorr_fig_fn, dpi=300)

                print("Applying tilt correction to difference map")
                diff_align -= vals

                #Should iterate until tilts are below some threshold
                #For now, only do one tiltcorr
                tiltcorr_done=True
                #Now use original tolerance, and number of iterations 
                tol = args.tol
                max_iter = n + args.max_iter
            else:
                break

    if True:
        #Write out aligned difference map for clipped extent with vertial offset removed
        align_diff_fn = outprefix + '%s_align_diff.tif' % xyz_shift_str_cum_fn
        print("Writing out aligned difference map with median vertical offset removed")
        iolib.writeGTiff(diff_align, align_diff_fn, src_dem_clip_ds_align)

    if True:
        #Write out fitered aligned difference map
        align_diff_filt_fn = outprefix + '%s_align_diff_filt.tif' % xyz_shift_str_cum_fn
        print("Writing out filtered aligned difference map with median vertical offset removed")
        iolib.writeGTiff(diff_align_filt, align_diff_filt_fn, src_dem_clip_ds_align)

    #Extract final center coordinates for intersection
    center_coord_ll = geolib.get_center(src_dem_clip_ds_align, t_srs=geolib.wgs_srs)
    center_coord_xy = geolib.get_center(src_dem_clip_ds_align)
    src_dem_clip_ds_align = None

    #Write out final aligned src_dem 
    align_fn = outprefix + '%s_align.tif' % xyz_shift_str_cum_fn
    print("Writing out shifted src_dem with median vertical offset removed: %s" % align_fn)
    #Open original uncorrected dataset at native resolution
    src_dem_ds = gdal.Open(src_dem_fn)
    src_dem_ds_align = iolib.mem_drv.CreateCopy('', src_dem_ds, 0)
    #Apply final horizontal and vertial shift to the original dataset
    #Note: potentially issues if we used a different projection during coregistration!
    src_dem_ds_align = coreglib.apply_xy_shift(src_dem_ds_align, dx_total, dy_total, createcopy=False)
    src_dem_ds_align = coreglib.apply_z_shift(src_dem_ds_align, dz_total, createcopy=False)
    if tiltcorr:
        xgrid, ygrid = geolib.get_xy_grids(src_dem_ds_align)
        valgrid = geolib.polyval2d(xgrid, ygrid, coeff) 
        #For results of ma_fitplane
        #valgrid = coeff[0]*xgrid + coeff[1]*ygrid + coeff[2]
        src_dem_ds_align = coreglib.apply_z_shift(src_dem_ds_align, -valgrid, createcopy=False)
    #Might be cleaner way to write out MEM ds directly to disk
    src_dem_full_align = iolib.ds_getma(src_dem_ds_align)
    iolib.writeGTiff(src_dem_full_align, align_fn, src_dem_ds_align)

    if True:
        #Output final aligned src_dem, masked so only best pixels are preserved
        #Useful if creating a new reference product
        #Can also use apply_mask.py 
        print("Applying filter to shiftec src_dem")
        align_diff_filt_full_ds = warplib.memwarp_multi_fn([align_diff_filt_fn,], res=src_dem_ds_align, extent=src_dem_ds_align, \
                t_srs=src_dem_ds_align)[0]
        align_diff_filt_full = iolib.ds_getma(align_diff_filt_full_ds)
        align_diff_filt_full_ds = None
        align_fn_masked = outprefix + '%s_align_filt.tif' % xyz_shift_str_cum_fn
        iolib.writeGTiff(np.ma.array(src_dem_full_align, mask=np.ma.getmaskarray(align_diff_filt_full)), \
                align_fn_masked, src_dem_ds_align)

    src_dem_full_align = None
    src_dem_ds_align = None

    #Compute original elevation difference
    if True:
        ref_dem_clip_ds, src_dem_clip_ds = warplib.memwarp_multi([ref_dem_ds, src_dem_ds], \
                res=res, extent='intersection', t_srs=local_srs, r='cubic')
        src_dem_ds = None
        ref_dem_ds = None
        ref_dem_orig = iolib.ds_getma(ref_dem_clip_ds)
        src_dem_orig = iolib.ds_getma(src_dem_clip_ds)
        #Needed for plotting
        ref_dem_hs = geolib.gdaldem_mem_ds(ref_dem_clip_ds, processing='hillshade', returnma=True, computeEdges=True)
        src_dem_hs = geolib.gdaldem_mem_ds(src_dem_clip_ds, processing='hillshade', returnma=True, computeEdges=True)
        diff_orig = src_dem_orig - ref_dem_orig
        #Only compute stats over valid surfaces
        static_mask_orig = get_mask(src_dem_clip_ds, mask_list, src_dem_fn)
        #Note: this doesn't include outlier removal or slope mask!
        static_mask_orig = np.logical_or(np.ma.getmaskarray(diff_orig), static_mask_orig)
        #For some reason, ASTER DEM diff have a spike near the 0 bin, could be an issue with masking?
        diff_orig_compressed = diff_orig[~static_mask_orig]
        diff_orig_stats = malib.get_stats_dict(diff_orig_compressed, full=True)

        #Prepare filtered version for comparison 
        diff_orig_filt = np.ma.array(diff_orig, mask=static_mask_orig)
        diff_orig_filt = outlier_filter(diff_orig_filt, f=3, max_dz=max_dz)
        #diff_orig_filt = outlier_filter(diff_orig_filt, perc=(12.5, 87.5), max_dz=max_dz)
        slope = get_filtered_slope(src_dem_clip_ds)
        diff_orig_filt = np.ma.array(diff_orig_filt, mask=np.ma.getmaskarray(slope))
        diff_orig_filt_stats = malib.get_stats_dict(diff_orig_filt, full=True)

        #Write out original difference map
        print("Writing out original difference map for common intersection before alignment")
        orig_diff_fn = outprefix + '_orig_diff.tif'
        iolib.writeGTiff(diff_orig, orig_diff_fn, ref_dem_clip_ds)
        src_dem_clip_ds = None
        ref_dem_clip_ds = None

    if True:
        align_stats_fn = outprefix + '%s_align_stats.json' % xyz_shift_str_cum_fn
        align_stats = {}
        align_stats['src_fn'] = src_dem_fn 
        align_stats['ref_fn'] = ref_dem_fn 
        align_stats['align_fn'] = align_fn 
        align_stats['res'] = {} 
        align_stats['res']['src'] = src_dem_res
        align_stats['res']['ref'] = ref_dem_res
        align_stats['res']['coreg'] = res
        align_stats['center_coord'] = {'lon':center_coord_ll[0], 'lat':center_coord_ll[1], \
                'x':center_coord_xy[0], 'y':center_coord_xy[1]}
        align_stats['shift'] = {'dx':dx_total, 'dy':dy_total, 'dz':dz_total, 'dm':dm_total}
        #This tiltcorr flag gets set to false, need better flag
        if tiltcorr:
            align_stats['tiltcorr'] = {}
            align_stats['tiltcorr']['coeff'] = coeff.tolist()
            align_stats['tiltcorr']['val_stats'] = vals_stats
        align_stats['before'] = diff_orig_stats
        align_stats['before_filt'] = diff_orig_filt_stats
        align_stats['after'] = diff_align_stats
        align_stats['after_filt'] = diff_align_filt_stats
        
        import json
        with open(align_stats_fn, 'w') as f:
            json.dump(align_stats, f)

    #Create output plot
    if True:
        print("Creating final plot")
        kwargs = {'interpolation':'none'}
        #f, axa = plt.subplots(2, 4, figsize=(11, 8.5))
        f, axa = plt.subplots(2, 4, figsize=(16, 8))
        for ax in axa.ravel()[:-1]:
            ax.set_facecolor('k')
            pltlib.hide_ticks(ax)
        dem_clim = malib.calcperc(ref_dem_orig, (2,98))
        axa[0,0].imshow(ref_dem_hs, cmap='gray', **kwargs)
        im = axa[0,0].imshow(ref_dem_orig, cmap='cpt_rainbow', clim=dem_clim, alpha=0.6, **kwargs)
        pltlib.add_cbar(axa[0,0], im, arr=ref_dem_orig, clim=dem_clim, label=None)
        pltlib.add_scalebar(axa[0,0], res=res)
        axa[0,0].set_title('Reference DEM')
        axa[0,1].imshow(src_dem_hs, cmap='gray', **kwargs)
        im = axa[0,1].imshow(src_dem_orig, cmap='cpt_rainbow', clim=dem_clim, alpha=0.6, **kwargs)
        pltlib.add_cbar(axa[0,1], im, arr=src_dem_orig, clim=dem_clim, label=None)
        axa[0,1].set_title('Source DEM')
        #axa[0,2].imshow(~static_mask_orig, clim=(0,1), cmap='gray')
        axa[0,2].imshow(~static_mask, clim=(0,1), cmap='gray', **kwargs)
        axa[0,2].set_title('Surfaces for co-registration')
        dz_clim = malib.calcperc_sym(diff_orig_compressed, (5, 95))
        im = axa[1,0].imshow(diff_orig, cmap='RdBu', clim=dz_clim)
        pltlib.add_cbar(axa[1,0], im, arr=diff_orig, clim=dz_clim, label=None)
        axa[1,0].set_title('Elev. Diff. Before (m)')
        im = axa[1,1].imshow(diff_align, cmap='RdBu', clim=dz_clim)
        pltlib.add_cbar(axa[1,1], im, arr=diff_align, clim=dz_clim, label=None)
        axa[1,1].set_title('Elev. Diff. After (m)')

        #tight_dz_clim = (-1.0, 1.0)
        tight_dz_clim = (-2.0, 2.0)
        #tight_dz_clim = (-10.0, 10.0)
        #tight_dz_clim = malib.calcperc_sym(diff_align_filt, (5, 95))
        im = axa[1,2].imshow(diff_align_filt, cmap='RdBu', clim=tight_dz_clim)
        pltlib.add_cbar(axa[1,2], im, arr=diff_align_filt, clim=tight_dz_clim, label=None)
        axa[1,2].set_title('Elev. Diff. After (m)')

        #Tried to insert Nuth fig here
        #ax_nuth.change_geometry(1,2,1)
        #f.axes.append(ax_nuth)

        bins = np.linspace(dz_clim[0], dz_clim[1], 128)
        axa[1,3].hist(diff_orig_compressed, bins, color='g', label='Before', alpha=0.5)
        axa[1,3].hist(diff_align_compressed, bins, color='b', label='After', alpha=0.5)
        axa[1,3].set_xlim(*dz_clim)
        axa[1,3].axvline(0, color='k', linewidth=0.5, linestyle=':')
        axa[1,3].set_xlabel('Elev. Diff. (m)')
        axa[1,3].set_ylabel('Count (px)')
        axa[1,3].set_title("Source - Reference")
        before_str = 'Before\nmed: %0.2f\nnmad: %0.2f' % (diff_orig_stats['med'], diff_orig_stats['nmad'])
        axa[1,3].text(0.05, 0.95, before_str, va='top', color='g', transform=axa[1,3].transAxes, fontsize=8)
        after_str = 'After\nmed: %0.2f\nnmad: %0.2f' % (diff_align_stats['med'], diff_align_stats['nmad'])
        axa[1,3].text(0.65, 0.95, after_str, va='top', color='b', transform=axa[1,3].transAxes, fontsize=8)

        #This is empty
        axa[0,3].axis('off')

        suptitle = '%s\nx: %+0.2fm, y: %+0.2fm, z: %+0.2fm' % (os.path.split(outprefix)[-1], dx_total, dy_total, dz_total)
        f.suptitle(suptitle)
        f.tight_layout()
        plt.subplots_adjust(top=0.90)

        fig_fn = outprefix + '%s_align.png' % xyz_shift_str_cum_fn
        print("Writing out figure: %s" % fig_fn)
        f.savefig(fig_fn, dpi=300)
예제 #3
0
def main2(args):
    #Should check that files exist
    dem1_fn = args.ref_fn
    dem2_fn = args.src_fn
    mode = args.mode
    apply_mask = not args.nomask
    max_offset_m = args.max_offset
    tiltcorr = args.tiltcorr

    #These are tolerances (in meters) to stop iteration
    tol = args.tol
    min_dx = tol
    min_dy = tol
    min_dz = tol

    #Maximum number of iterations
    max_n = 10

    outdir = args.outdir
    if outdir is None:
        outdir = os.path.splitext(dem2_fn)[0] + '_dem_align'

    if not os.path.exists(outdir):
        os.makedirs(outdir)

    outprefix = '%s_%s' % (os.path.splitext(os.path.split(dem2_fn)[-1])[0], \
            os.path.splitext(os.path.split(dem1_fn)[-1])[0])
    outprefix = os.path.join(outdir, outprefix)

    print("\nReference: %s" % dem1_fn)
    print("Source: %s" % dem2_fn)
    print("Mode: %s" % mode)
    print("Output: %s\n" % outprefix)

    dem2_ds = gdal.Open(dem2_fn, gdal.GA_ReadOnly)
    #Often the "ref" DEM is high-res lidar or similar
    #This is a shortcut to resample to match "source" DEM
    dem1_ds = warplib.memwarp_multi_fn([
        dem1_fn,
    ],
                                       res=dem2_ds,
                                       extent=dem2_ds,
                                       t_srs=dem2_ds)[0]
    #dem1_ds = gdal.Open(dem1_fn, gdal.GA_ReadOnly)

    #Create a copy to be updated in place
    dem2_ds_align = iolib.mem_drv.CreateCopy('', dem2_ds, 0)
    #dem2_ds_align = dem2_ds

    #Iteration number
    n = 1
    #Cumulative offsets
    dx_total = 0
    dy_total = 0
    dz_total = 0

    #Now iteratively update geotransform and vertical shift
    while True:
        print("*** Iteration %i ***" % n)
        dx, dy, dz, static_mask, fig = compute_offset(dem1_ds,
                                                      dem2_ds_align,
                                                      dem2_fn,
                                                      mode,
                                                      max_offset_m,
                                                      apply_mask=apply_mask)
        if n == 1:
            static_mask_orig = static_mask
        xyz_shift_str_iter = "dx=%+0.2fm, dy=%+0.2fm, dz=%+0.2fm" % (dx, dy,
                                                                     dz)
        print("Incremental offset: %s" % xyz_shift_str_iter)

        #Should make an animation of this converging
        if fig is not None:
            dst_fn = outprefix + '_%s_iter%i_plot.png' % (mode, n)
            print("Writing offset plot: %s" % dst_fn)
            fig.gca().set_title(xyz_shift_str_iter)
            fig.savefig(dst_fn, dpi=300, bbox_inches='tight', pad_inches=0.1)

        #Apply the horizontal shift to the original dataset
        dem2_ds_align = coreglib.apply_xy_shift(dem2_ds_align,
                                                dx,
                                                dy,
                                                createcopy=False)
        dem2_ds_align = coreglib.apply_z_shift(dem2_ds_align,
                                               dz,
                                               createcopy=False)

        dx_total += dx
        dy_total += dy
        dz_total += dz
        print("Cumulative offset: dx=%+0.2fm, dy=%+0.2fm, dz=%+0.2fm" %
              (dx_total, dy_total, dz_total))

        #Fit plane to residuals and remove
        #Might be better to do this after converging
        """
        if tiltcorr:
            print("Applying planar tilt correction")
            gt = dem2_ds_align.GetGeoTransform()
            #Need to compute diff_euler here
            #Copy portions of compute_offset, create new function 
            vals, resid, coeff = geolib.ma_fitplane(diff_euler_align, gt, perc=(4, 96))
            dem2_ds_align = coreglib.apply_z_shift(dem2_ds_align, -vals, createcopy=False)
        """

        n += 1
        print("\n")
        #If magnitude of shift in all directions is less than tol
        #if n > max_n or (abs(dx) <= min_dx and abs(dy) <= min_dy and abs(dz) <= min_dz):
        #If magnitude of shift is less than tol
        dm = np.sqrt(dx**2 + dy**2 + dz**2)
        if n > max_n or dm < tol:
            break

    #String to append to output filenames
    xyz_shift_str_cum = '_%s_x%+0.2f_y%+0.2f_z%+0.2f' % (mode, dx_total,
                                                         dy_total, dz_total)
    if tiltcorr:
        xyz_shift_str_cum += "_tiltcorr"

    #Compute original elevation difference
    if True:
        dem1_clip_ds, dem2_clip_ds = warplib.memwarp_multi([dem1_ds, dem2_ds], \
                res='max', extent='intersection', t_srs=dem2_ds)
        dem1_orig = iolib.ds_getma(dem1_clip_ds, 1)
        dem2_orig = iolib.ds_getma(dem2_clip_ds, 1)
        diff_euler_orig = dem2_orig - dem1_orig
        if not apply_mask:
            static_mask_orig = np.ma.getmaskarray(diff_euler_orig)
        diff_euler_orig_compressed = diff_euler_orig[~static_mask_orig]
        diff_euler_orig_stats = np.array(
            malib.print_stats(diff_euler_orig_compressed))

        #Write out original eulerian difference map
        print(
            "Writing out original euler difference map for common intersection before alignment"
        )
        dst_fn = outprefix + '_orig_dz_eul.tif'
        iolib.writeGTiff(diff_euler_orig, dst_fn, dem1_clip_ds)

    #Compute final elevation difference
    if True:
        dem1_clip_ds_align, dem2_clip_ds_align = warplib.memwarp_multi([dem1_ds, dem2_ds_align], \
                res='max', extent='intersection', t_srs=dem2_ds_align)
        dem1_align = iolib.ds_getma(dem1_clip_ds_align, 1)
        dem2_align = iolib.ds_getma(dem2_clip_ds_align, 1)
        diff_euler_align = dem2_align - dem1_align
        if not apply_mask:
            static_mask = np.ma.getmaskarray(diff_euler_align)
        diff_euler_align_compressed = diff_euler_align[~static_mask]
        diff_euler_align_stats = np.array(
            malib.print_stats(diff_euler_align_compressed))

        #Fit plane to residuals and remove
        if tiltcorr:
            print("Applying planar tilt correction")
            gt = dem1_clip_ds_align.GetGeoTransform()
            #Need to apply the mask here, so we're only fitting over static surfaces
            #Note that the origmask=False will compute vals for all x and y indices, which is what we want
            vals, resid, coeff = geolib.ma_fitplane(np.ma.array(diff_euler_align, mask=static_mask), \
                    gt, perc=(4, 96), origmask=False)
            #Remove planar offset from difference map
            diff_euler_align -= vals
            #Remove planar offset from aligned dem2
            #Note: dimensions of ds and vals will be different as vals are computed for clipped intersection
            #Recompute planar offset for dem2_ds_align extent
            xgrid, ygrid = geolib.get_xy_grids(dem2_ds_align)
            vals = coeff[0] * xgrid + coeff[1] * ygrid + coeff[2]
            dem2_ds_align = coreglib.apply_z_shift(dem2_ds_align,
                                                   -vals,
                                                   createcopy=False)
            if not apply_mask:
                static_mask = np.ma.getmaskarray(diff_euler_align)
            diff_euler_align_compressed = diff_euler_align[~static_mask]
            diff_euler_align_stats = np.array(
                malib.print_stats(diff_euler_align_compressed))
            print("Creating fitplane plot")
            fig, ax = plt.subplots(figsize=(6, 6))
            fitplane_clim = malib.calcperc(vals, (2, 98))
            im = ax.imshow(vals, cmap='cpt_rainbow', clim=fitplane_clim)
            res = float(geolib.get_res(dem2_clip_ds, square=True)[0])
            pltlib.add_scalebar(ax, res=res)
            pltlib.hide_ticks(ax)
            pltlib.add_cbar(ax, im, label='Fit plane residuals (m)')
            fig.tight_layout()
            dst_fn1 = outprefix + '%s_align_dz_eul_fitplane.png' % xyz_shift_str_cum
            print("Writing out figure: %s" % dst_fn1)
            fig.savefig(dst_fn1, dpi=300, bbox_inches='tight', pad_inches=0.1)

        #Compute higher-order fits?
        #Could also attempt to model along-track and cross-track artifacts

        #Write out aligned eulerian difference map for clipped extent with vertial offset removed
        dst_fn = outprefix + '%s_align_dz_eul.tif' % xyz_shift_str_cum
        print(
            "Writing out aligned difference map with median vertical offset removed"
        )
        iolib.writeGTiff(diff_euler_align, dst_fn, dem1_clip_ds)

    #Write out aligned dem_2 with vertial offset removed
    if True:
        dst_fn2 = outprefix + '%s_align.tif' % xyz_shift_str_cum
        print(
            "Writing out shifted dem2 with median vertical offset removed: %s"
            % dst_fn2)
        #Might be cleaner way to write out MEM ds directly to disk
        dem2_align = iolib.ds_getma(dem2_ds_align)
        iolib.writeGTiff(dem2_align, dst_fn2, dem2_ds_align)
        dem2_ds_align = None

    #Create output plot
    if True:
        print("Creating final plot")
        dem1_hs = geolib.gdaldem_mem_ma(dem1_orig, dem1_clip_ds, returnma=True)
        dem2_hs = geolib.gdaldem_mem_ma(dem2_orig, dem2_clip_ds, returnma=True)
        f, axa = plt.subplots(2, 3, figsize=(11, 8.5))
        for ax in axa.ravel()[:-1]:
            ax.set_facecolor('k')
            pltlib.hide_ticks(ax)
        dem_clim = malib.calcperc(dem1_orig, (2, 98))
        axa[0, 0].imshow(dem1_hs, cmap='gray')
        axa[0, 0].imshow(dem1_orig,
                         cmap='cpt_rainbow',
                         clim=dem_clim,
                         alpha=0.6)
        res = float(geolib.get_res(dem1_clip_ds, square=True)[0])
        pltlib.add_scalebar(axa[0, 0], res=res)
        axa[0, 0].set_title('Reference DEM')
        axa[0, 1].imshow(dem2_hs, cmap='gray')
        axa[0, 1].imshow(dem2_orig,
                         cmap='cpt_rainbow',
                         clim=dem_clim,
                         alpha=0.6)
        axa[0, 1].set_title('Source DEM')
        axa[0, 2].imshow(~static_mask_orig, clim=(0, 1), cmap='gray')
        axa[0, 2].set_title('Surfaces for co-registration')
        dz_clim = malib.calcperc_sym(diff_euler_orig_compressed, (5, 95))
        im = axa[1, 0].imshow(diff_euler_orig, cmap='RdBu', clim=dz_clim)
        pltlib.add_cbar(axa[1, 0], im, label=None)
        axa[1, 0].set_title('Elev. Diff. Before (m)')
        im = axa[1, 1].imshow(diff_euler_align, cmap='RdBu', clim=dz_clim)
        pltlib.add_cbar(axa[1, 1], im, label=None)
        axa[1, 1].set_title('Elev. Diff. After (m)')

        #Tried to insert Nuth fig here
        #ax_nuth.change_geometry(1,2,1)
        #f.axes.append(ax_nuth)

        bins = np.linspace(dz_clim[0], dz_clim[1], 128)
        axa[1, 2].hist(diff_euler_orig_compressed,
                       bins,
                       color='g',
                       label='Before',
                       alpha=0.5)
        axa[1, 2].hist(diff_euler_align_compressed,
                       bins,
                       color='b',
                       label='After',
                       alpha=0.5)
        axa[1, 2].axvline(0, color='k', linewidth=0.5, linestyle=':')
        axa[1, 2].set_xlabel('Elev. Diff. (m)')
        axa[1, 2].set_ylabel('Count (px)')
        axa[1, 2].set_title("Source - Reference")
        #axa[1,2].legend(loc='upper right')
        #before_str = 'Before\nmean: %0.2f\nstd: %0.2f\nmed: %0.2f\nnmad: %0.2f' % tuple(diff_euler_orig_stats[np.array((3,4,5,6))])
        #after_str = 'After\nmean: %0.2f\nstd: %0.2f\nmed: %0.2f\nnmad: %0.2f' % tuple(diff_euler_align_stats[np.array((3,4,5,6))])
        before_str = 'Before\nmed: %0.2f\nnmad: %0.2f' % tuple(
            diff_euler_orig_stats[np.array((5, 6))])
        axa[1, 2].text(0.05,
                       0.95,
                       before_str,
                       va='top',
                       color='g',
                       transform=axa[1, 2].transAxes)
        after_str = 'After\nmed: %0.2f\nnmad: %0.2f' % tuple(
            diff_euler_align_stats[np.array((5, 6))])
        axa[1, 2].text(0.65,
                       0.95,
                       after_str,
                       va='top',
                       color='b',
                       transform=axa[1, 2].transAxes)

        suptitle = '%s\nx: %+0.2fm, y: %+0.2fm, z: %+0.2fm' % (
            os.path.split(outprefix)[-1], dx_total, dy_total, dz_total)
        f.suptitle(suptitle)
        f.tight_layout()
        plt.subplots_adjust(top=0.90)

        dst_fn = outprefix + '%s_align.png' % xyz_shift_str_cum
        print("Writing out figure: %s" % dst_fn)
        f.savefig(dst_fn, dpi=300, bbox_inches='tight', pad_inches=0.1)

        #Removing residual planar tilt can introduce additional slope/aspect dependent offset
        #Want to run another round of main dem_align after removing planar tilt
        if tiltcorr:
            print("\n Rerunning after applying tilt correction \n")
            #Create copy of original arguments
            import copy
            args2 = copy.copy(args)
            #Use aligned, tilt-corrected DEM as input src_fn for second round
            args2.src_fn = dst_fn2
            #Assume we've already corrected most of the tilt during first round (also prevents endless loop)
            args2.tiltcorr = False
            main2(args2)