def make_map(mb_dissolve_df=None, glac_df_mb=None, agg_df=None, col=('mb_mwea', 'mean'), border_df=None, crs=crs, extent=None, hs=None, hs_extent=None, clim=None, labels='val', title=None): fig, ax = plt.subplots(figsize=(10, 8)) ax.set_aspect('equal') legend = add_legend(ax, sf=scaling_f) if title is not None: ax.set_title(title) if clim is None: #clim = (glac_df_mb[col].min(), glac_df_mb[col].max()) clim = malib.calcperc_sym(mb_dissolve_df[col], perc=(1, 99)) cmap = 'RdBu' if 'mb_mwea' in col: label = 'Mass Balance (m we/yr)' elif 'mb_Gta' in col: label = 'Mass Balance (Gt/yr)' elif 'meltwater' in col: label = 'Excess Meltwater Runoff (Gt/yr)' #Reverse, as these are negative values cmap = 'YlOrRd_r' #cmap = 'inferno' clim = malib.calcperc(mb_dissolve_df[col], perc=(0, 99)) elif 't1' in col: cmap = 'inferno' label = 'Source Date (year)' #This is cartopy-enabled axes #ax = plt.axes(projection=crs) #Currently unsupported for AEA #gl = ax.gridlines(draw_labels=True, linewidth=0.5, color='gray', alpha=0.5, linestyle='--') if hs is not None: print("Plotting image") hs_style = { 'cmap': 'gray', 'origin': 'upper', 'extent': cartopy_extent(hs_extent), 'transform': crs } ax.imshow(hs, **hs_style) if border_df is not None: print("Plotting borders") border_style = { 'facecolor': '0.65', 'edgecolor': 'k', 'linewidth': 0.7 } border_df.plot(ax=ax, **border_style) if agg_df is not None: print("Plotting agg boundaries") #This was to get colored regions #agg_style = {'cmap':'cpt_rainbow', 'edgecolor':'none', 'linewidth':0, 'alpha':0.05} agg_style = { 'cmap': 'summer', 'edgecolor': 'none', 'linewidth': 0, 'alpha': 0.05 } #agg_style = {'facecolor':'0.95','edgecolor':'k', 'linewidth':0.3, 'alpha':0.2} agg_df.plot(ax=ax, **agg_style) if glac_df_mb is not None: print("Plotting glacier polygons") glac_style = {'edgecolor': 'k', 'linewidth': 0.1, 'alpha': 0.2} #This plots mb color ramp for each glacier polygon #glac_ax = glac_df_mb.plot(ax=ax, column=col[0], cmap=cmap, vmin=clim[0], vmax=clim[1], **glac_style) #This plots outlines glac_ax = glac_df_mb.plot(ax=ax, facecolor='none', **glac_style) if agg_df is not None: agg_style = {'facecolor': 'none', 'edgecolor': 'w', 'linewidth': 0.5} agg_df.plot(ax=ax, **agg_style) #https://stackoverflow.com/questions/36008648/colorbar-on-geopandas # fake up the array of the scalar mappable so we can plot colorbar. Urgh... sc = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=clim[0], vmax=clim[1])) sc._A = [] if mb_dissolve_df is not None: print("Plotting scatterplot of %s values" % (col, )) #Plot single values for region or basin x = mb_dissolve_df['centroid_x'] y = mb_dissolve_df['centroid_y'] #Scale by total glacier area in each polygon s = scaling_f * mb_dissolve_df[('Area_all', 'sum')] c = mb_dissolve_df[col] sc_style = { 'cmap': cmap, 'edgecolor': 'k', 'linewidth': 0.5, 'alpha': 0.8 } sc = ax.scatter(x, y, s, c, vmin=clim[0], vmax=clim[1], **sc_style) #Add labels text_kw = {'family': 'sans-serif', 'fontsize': 8, 'color': 'k'} if labels is not None: print("Adding annotations") for k, v in mb_dissolve_df.iterrows(): #lbl = '%0.2f +/- %0.2f' % (v[col], v[(col[0]+'_sigma',col[1])]) if labels == 'name+val': lbl = '%s\n%+0.2f' % (k, v[col]) else: lbl = '%+0.2f' % v[col] #ax.annotate(lbl, xy=(v['centroid_x'],v['centroid_y']), xytext=(1,0), textcoords='offset points', family='sans-serif', fontsize=6, color='darkgreen') txt = ax.annotate(lbl, xy=(v['centroid_x'], v['centroid_y']), ha='center', va='center', **text_kw) txt.set_path_effects([ path_effects.Stroke(linewidth=0.75, foreground='w'), path_effects.Normal() ]) #This is minx, miny, maxx, maxy if extent is None: #if glac_df_mb is not None: # extent = glac_df_mb.total_bounds #else: extent = mb_dissolve_df.total_bounds #For cartopy axes #ax.set_extent(cartopy_extent(extent), crs=crs) #Pad extent so labels fit within map #extent = geolib.pad_extent(extent, perc=0.01, uniform=True) ax.set_xlim(extent[0], extent[2]) ax.set_ylim(extent[1], extent[3]) #Adding colorbar doesn't work with the cartopy axes pltlib.add_cbar(ax, sc, label=label) pltlib.add_scalebar(ax, res=1) pltlib.hide_ticks(ax) plt.tight_layout() return fig
def main(argv=None): parser = getparser() args = parser.parse_args() #Should check that files exist ref_dem_fn = args.ref_fn src_dem_fn = args.src_fn mode = args.mode mask_list = args.mask_list max_offset = args.max_offset max_dz = args.max_dz slope_lim = tuple(args.slope_lim) tiltcorr = args.tiltcorr polyorder = args.polyorder res = args.res #Maximum number of iterations max_iter = args.max_iter #These are tolerances (in meters) to stop iteration tol = args.tol min_dx = tol min_dy = tol min_dz = tol outdir = args.outdir if outdir is None: outdir = os.path.splitext(src_dem_fn)[0] + '_dem_align' if tiltcorr: outdir += '_tiltcorr' tiltcorr_done = False #Relax tolerance for initial round of co-registration #tiltcorr_tol = 0.1 #if tol < tiltcorr_tol: # tol = tiltcorr_tol if not os.path.exists(outdir): os.makedirs(outdir) outprefix = '%s_%s' % (os.path.splitext(os.path.split(src_dem_fn)[-1])[0], \ os.path.splitext(os.path.split(ref_dem_fn)[-1])[0]) outprefix = os.path.join(outdir, outprefix) print("\nReference: %s" % ref_dem_fn) print("Source: %s" % src_dem_fn) print("Mode: %s" % mode) print("Output: %s\n" % outprefix) src_dem_ds = gdal.Open(src_dem_fn) ref_dem_ds = gdal.Open(ref_dem_fn) #Get local cartesian coordinate system #local_srs = geolib.localtmerc_ds(src_dem_ds) #Use original source dataset coordinate system #Potentially issues with distortion and xyz/tiltcorr offsets for DEM with large extent local_srs = geolib.get_ds_srs(src_dem_ds) #local_srs = geolib.get_ds_srs(ref_dem_ds) #Resample to common grid ref_dem_res = float(geolib.get_res(ref_dem_ds, t_srs=local_srs, square=True)[0]) #Create a copy to be updated in place src_dem_ds_align = iolib.mem_drv.CreateCopy('', src_dem_ds, 0) src_dem_res = float(geolib.get_res(src_dem_ds, t_srs=local_srs, square=True)[0]) src_dem_ds = None #Resample to user-specified resolution ref_dem_ds, src_dem_ds_align = warplib.memwarp_multi([ref_dem_ds, src_dem_ds_align], \ extent='intersection', res=args.res, t_srs=local_srs, r='cubic') res = float(geolib.get_res(src_dem_ds_align, square=True)[0]) print("\nReference DEM res: %0.2f" % ref_dem_res) print("Source DEM res: %0.2f" % src_dem_res) print("Resolution for coreg: %s (%0.2f m)\n" % (args.res, res)) #Iteration number n = 1 #Cumulative offsets dx_total = 0 dy_total = 0 dz_total = 0 #Now iteratively update geotransform and vertical shift while True: print("*** Iteration %i ***" % n) dx, dy, dz, static_mask, fig = compute_offset(ref_dem_ds, src_dem_ds_align, src_dem_fn, mode, max_offset, \ mask_list=mask_list, max_dz=max_dz, slope_lim=slope_lim, plot=True) xyz_shift_str_iter = "dx=%+0.2fm, dy=%+0.2fm, dz=%+0.2fm" % (dx, dy, dz) print("Incremental offset: %s" % xyz_shift_str_iter) dx_total += dx dy_total += dy dz_total += dz xyz_shift_str_cum = "dx=%+0.2fm, dy=%+0.2fm, dz=%+0.2fm" % (dx_total, dy_total, dz_total) print("Cumulative offset: %s" % xyz_shift_str_cum) #String to append to output filenames xyz_shift_str_cum_fn = '_%s_x%+0.2f_y%+0.2f_z%+0.2f' % (mode, dx_total, dy_total, dz_total) #Should make an animation of this converging if n == 1: #static_mask_orig = static_mask if fig is not None: dst_fn = outprefix + '_%s_iter%02i_plot.png' % (mode, n) print("Writing offset plot: %s" % dst_fn) fig.gca().set_title("Incremental: %s\nCumulative: %s" % (xyz_shift_str_iter, xyz_shift_str_cum)) fig.savefig(dst_fn, dpi=300) #Apply the horizontal shift to the original dataset src_dem_ds_align = coreglib.apply_xy_shift(src_dem_ds_align, dx, dy, createcopy=False) #Should src_dem_ds_align = coreglib.apply_z_shift(src_dem_ds_align, dz, createcopy=False) n += 1 print("\n") #If magnitude of shift in all directions is less than tol #if n > max_iter or (abs(dx) <= min_dx and abs(dy) <= min_dy and abs(dz) <= min_dz): #If magnitude of shift is less than tol dm = np.sqrt(dx**2 + dy**2 + dz**2) dm_total = np.sqrt(dx_total**2 + dy_total**2 + dz_total**2) if dm_total > max_offset: sys.exit("Total offset exceeded specified max_offset (%0.2f m). Consider increasing -max_offset argument" % max_offset) #Stop iteration if n > max_iter or dm < tol: if fig is not None: dst_fn = outprefix + '_%s_iter%02i_plot.png' % (mode, n) print("Writing offset plot: %s" % dst_fn) fig.gca().set_title("Incremental:%s\nCumulative:%s" % (xyz_shift_str_iter, xyz_shift_str_cum)) fig.savefig(dst_fn, dpi=300) #Compute final elevation difference if True: ref_dem_clip_ds_align, src_dem_clip_ds_align = warplib.memwarp_multi([ref_dem_ds, src_dem_ds_align], \ res=res, extent='intersection', t_srs=local_srs, r='cubic') ref_dem_align = iolib.ds_getma(ref_dem_clip_ds_align, 1) src_dem_align = iolib.ds_getma(src_dem_clip_ds_align, 1) ref_dem_clip_ds_align = None diff_align = src_dem_align - ref_dem_align src_dem_align = None ref_dem_align = None #Get updated, final mask static_mask_final = get_mask(src_dem_clip_ds_align, mask_list, src_dem_fn) static_mask_final = np.logical_or(np.ma.getmaskarray(diff_align), static_mask_final) #Final stats, before outlier removal diff_align_compressed = diff_align[~static_mask_final] diff_align_stats = malib.get_stats_dict(diff_align_compressed, full=True) #Prepare filtered version for tiltcorr fit diff_align_filt = np.ma.array(diff_align, mask=static_mask_final) diff_align_filt = outlier_filter(diff_align_filt, f=3, max_dz=max_dz) #diff_align_filt = outlier_filter(diff_align_filt, perc=(12.5, 87.5), max_dz=max_dz) slope = get_filtered_slope(src_dem_clip_ds_align) diff_align_filt = np.ma.array(diff_align_filt, mask=np.ma.getmaskarray(slope)) diff_align_filt_stats = malib.get_stats_dict(diff_align_filt, full=True) #Fit 2D polynomial to residuals and remove #To do: add support for along-track and cross-track artifacts if tiltcorr and not tiltcorr_done: print("\n************") print("Calculating 'tiltcorr' 2D polynomial fit to residuals with order %i" % polyorder) print("************\n") gt = src_dem_clip_ds_align.GetGeoTransform() #Need to apply the mask here, so we're only fitting over static surfaces #Note that the origmask=False will compute vals for all x and y indices, which is what we want vals, resid, coeff = geolib.ma_fitpoly(diff_align_filt, order=polyorder, gt=gt, perc=(0,100), origmask=False) #vals, resid, coeff = geolib.ma_fitplane(diff_align_filt, gt, perc=(12.5, 87.5), origmask=False) #Should write out coeff or grid with correction vals_stats = malib.get_stats_dict(vals) #Want to have max_tilt check here #max_tilt = 4.0 #m #Should do percentage #vals.ptp() > max_tilt #Note: dimensions of ds and vals will be different as vals are computed for clipped intersection #Need to recompute planar offset for full src_dem_ds_align extent and apply xgrid, ygrid = geolib.get_xy_grids(src_dem_ds_align) valgrid = geolib.polyval2d(xgrid, ygrid, coeff) #For results of ma_fitplane #valgrid = coeff[0]*xgrid + coeff[1]*ygrid + coeff[2] src_dem_ds_align = coreglib.apply_z_shift(src_dem_ds_align, -valgrid, createcopy=False) if True: print("Creating plot of polynomial fit to residuals") fig, axa = plt.subplots(1,2, figsize=(8, 4)) dz_clim = malib.calcperc_sym(vals, (2, 98)) ax = pltlib.iv(diff_align_filt, ax=axa[0], cmap='RdBu', clim=dz_clim, \ label='Residual dz (m)', scalebar=False) ax = pltlib.iv(valgrid, ax=axa[1], cmap='RdBu', clim=dz_clim, \ label='Polyfit dz (m)', ds=src_dem_ds_align) #if tiltcorr: #xyz_shift_str_cum_fn += "_tiltcorr" tiltcorr_fig_fn = outprefix + '%s_polyfit.png' % xyz_shift_str_cum_fn print("Writing out figure: %s\n" % tiltcorr_fig_fn) fig.savefig(tiltcorr_fig_fn, dpi=300) print("Applying tilt correction to difference map") diff_align -= vals #Should iterate until tilts are below some threshold #For now, only do one tiltcorr tiltcorr_done=True #Now use original tolerance, and number of iterations tol = args.tol max_iter = n + args.max_iter else: break if True: #Write out aligned difference map for clipped extent with vertial offset removed align_diff_fn = outprefix + '%s_align_diff.tif' % xyz_shift_str_cum_fn print("Writing out aligned difference map with median vertical offset removed") iolib.writeGTiff(diff_align, align_diff_fn, src_dem_clip_ds_align) if True: #Write out fitered aligned difference map align_diff_filt_fn = outprefix + '%s_align_diff_filt.tif' % xyz_shift_str_cum_fn print("Writing out filtered aligned difference map with median vertical offset removed") iolib.writeGTiff(diff_align_filt, align_diff_filt_fn, src_dem_clip_ds_align) #Extract final center coordinates for intersection center_coord_ll = geolib.get_center(src_dem_clip_ds_align, t_srs=geolib.wgs_srs) center_coord_xy = geolib.get_center(src_dem_clip_ds_align) src_dem_clip_ds_align = None #Write out final aligned src_dem align_fn = outprefix + '%s_align.tif' % xyz_shift_str_cum_fn print("Writing out shifted src_dem with median vertical offset removed: %s" % align_fn) #Open original uncorrected dataset at native resolution src_dem_ds = gdal.Open(src_dem_fn) src_dem_ds_align = iolib.mem_drv.CreateCopy('', src_dem_ds, 0) #Apply final horizontal and vertial shift to the original dataset #Note: potentially issues if we used a different projection during coregistration! src_dem_ds_align = coreglib.apply_xy_shift(src_dem_ds_align, dx_total, dy_total, createcopy=False) src_dem_ds_align = coreglib.apply_z_shift(src_dem_ds_align, dz_total, createcopy=False) if tiltcorr: xgrid, ygrid = geolib.get_xy_grids(src_dem_ds_align) valgrid = geolib.polyval2d(xgrid, ygrid, coeff) #For results of ma_fitplane #valgrid = coeff[0]*xgrid + coeff[1]*ygrid + coeff[2] src_dem_ds_align = coreglib.apply_z_shift(src_dem_ds_align, -valgrid, createcopy=False) #Might be cleaner way to write out MEM ds directly to disk src_dem_full_align = iolib.ds_getma(src_dem_ds_align) iolib.writeGTiff(src_dem_full_align, align_fn, src_dem_ds_align) if True: #Output final aligned src_dem, masked so only best pixels are preserved #Useful if creating a new reference product #Can also use apply_mask.py print("Applying filter to shiftec src_dem") align_diff_filt_full_ds = warplib.memwarp_multi_fn([align_diff_filt_fn,], res=src_dem_ds_align, extent=src_dem_ds_align, \ t_srs=src_dem_ds_align)[0] align_diff_filt_full = iolib.ds_getma(align_diff_filt_full_ds) align_diff_filt_full_ds = None align_fn_masked = outprefix + '%s_align_filt.tif' % xyz_shift_str_cum_fn iolib.writeGTiff(np.ma.array(src_dem_full_align, mask=np.ma.getmaskarray(align_diff_filt_full)), \ align_fn_masked, src_dem_ds_align) src_dem_full_align = None src_dem_ds_align = None #Compute original elevation difference if True: ref_dem_clip_ds, src_dem_clip_ds = warplib.memwarp_multi([ref_dem_ds, src_dem_ds], \ res=res, extent='intersection', t_srs=local_srs, r='cubic') src_dem_ds = None ref_dem_ds = None ref_dem_orig = iolib.ds_getma(ref_dem_clip_ds) src_dem_orig = iolib.ds_getma(src_dem_clip_ds) #Needed for plotting ref_dem_hs = geolib.gdaldem_mem_ds(ref_dem_clip_ds, processing='hillshade', returnma=True, computeEdges=True) src_dem_hs = geolib.gdaldem_mem_ds(src_dem_clip_ds, processing='hillshade', returnma=True, computeEdges=True) diff_orig = src_dem_orig - ref_dem_orig #Only compute stats over valid surfaces static_mask_orig = get_mask(src_dem_clip_ds, mask_list, src_dem_fn) #Note: this doesn't include outlier removal or slope mask! static_mask_orig = np.logical_or(np.ma.getmaskarray(diff_orig), static_mask_orig) #For some reason, ASTER DEM diff have a spike near the 0 bin, could be an issue with masking? diff_orig_compressed = diff_orig[~static_mask_orig] diff_orig_stats = malib.get_stats_dict(diff_orig_compressed, full=True) #Prepare filtered version for comparison diff_orig_filt = np.ma.array(diff_orig, mask=static_mask_orig) diff_orig_filt = outlier_filter(diff_orig_filt, f=3, max_dz=max_dz) #diff_orig_filt = outlier_filter(diff_orig_filt, perc=(12.5, 87.5), max_dz=max_dz) slope = get_filtered_slope(src_dem_clip_ds) diff_orig_filt = np.ma.array(diff_orig_filt, mask=np.ma.getmaskarray(slope)) diff_orig_filt_stats = malib.get_stats_dict(diff_orig_filt, full=True) #Write out original difference map print("Writing out original difference map for common intersection before alignment") orig_diff_fn = outprefix + '_orig_diff.tif' iolib.writeGTiff(diff_orig, orig_diff_fn, ref_dem_clip_ds) src_dem_clip_ds = None ref_dem_clip_ds = None if True: align_stats_fn = outprefix + '%s_align_stats.json' % xyz_shift_str_cum_fn align_stats = {} align_stats['src_fn'] = src_dem_fn align_stats['ref_fn'] = ref_dem_fn align_stats['align_fn'] = align_fn align_stats['res'] = {} align_stats['res']['src'] = src_dem_res align_stats['res']['ref'] = ref_dem_res align_stats['res']['coreg'] = res align_stats['center_coord'] = {'lon':center_coord_ll[0], 'lat':center_coord_ll[1], \ 'x':center_coord_xy[0], 'y':center_coord_xy[1]} align_stats['shift'] = {'dx':dx_total, 'dy':dy_total, 'dz':dz_total, 'dm':dm_total} #This tiltcorr flag gets set to false, need better flag if tiltcorr: align_stats['tiltcorr'] = {} align_stats['tiltcorr']['coeff'] = coeff.tolist() align_stats['tiltcorr']['val_stats'] = vals_stats align_stats['before'] = diff_orig_stats align_stats['before_filt'] = diff_orig_filt_stats align_stats['after'] = diff_align_stats align_stats['after_filt'] = diff_align_filt_stats import json with open(align_stats_fn, 'w') as f: json.dump(align_stats, f) #Create output plot if True: print("Creating final plot") kwargs = {'interpolation':'none'} #f, axa = plt.subplots(2, 4, figsize=(11, 8.5)) f, axa = plt.subplots(2, 4, figsize=(16, 8)) for ax in axa.ravel()[:-1]: ax.set_facecolor('k') pltlib.hide_ticks(ax) dem_clim = malib.calcperc(ref_dem_orig, (2,98)) axa[0,0].imshow(ref_dem_hs, cmap='gray', **kwargs) im = axa[0,0].imshow(ref_dem_orig, cmap='cpt_rainbow', clim=dem_clim, alpha=0.6, **kwargs) pltlib.add_cbar(axa[0,0], im, arr=ref_dem_orig, clim=dem_clim, label=None) pltlib.add_scalebar(axa[0,0], res=res) axa[0,0].set_title('Reference DEM') axa[0,1].imshow(src_dem_hs, cmap='gray', **kwargs) im = axa[0,1].imshow(src_dem_orig, cmap='cpt_rainbow', clim=dem_clim, alpha=0.6, **kwargs) pltlib.add_cbar(axa[0,1], im, arr=src_dem_orig, clim=dem_clim, label=None) axa[0,1].set_title('Source DEM') #axa[0,2].imshow(~static_mask_orig, clim=(0,1), cmap='gray') axa[0,2].imshow(~static_mask, clim=(0,1), cmap='gray', **kwargs) axa[0,2].set_title('Surfaces for co-registration') dz_clim = malib.calcperc_sym(diff_orig_compressed, (5, 95)) im = axa[1,0].imshow(diff_orig, cmap='RdBu', clim=dz_clim) pltlib.add_cbar(axa[1,0], im, arr=diff_orig, clim=dz_clim, label=None) axa[1,0].set_title('Elev. Diff. Before (m)') im = axa[1,1].imshow(diff_align, cmap='RdBu', clim=dz_clim) pltlib.add_cbar(axa[1,1], im, arr=diff_align, clim=dz_clim, label=None) axa[1,1].set_title('Elev. Diff. After (m)') #tight_dz_clim = (-1.0, 1.0) tight_dz_clim = (-2.0, 2.0) #tight_dz_clim = (-10.0, 10.0) #tight_dz_clim = malib.calcperc_sym(diff_align_filt, (5, 95)) im = axa[1,2].imshow(diff_align_filt, cmap='RdBu', clim=tight_dz_clim) pltlib.add_cbar(axa[1,2], im, arr=diff_align_filt, clim=tight_dz_clim, label=None) axa[1,2].set_title('Elev. Diff. After (m)') #Tried to insert Nuth fig here #ax_nuth.change_geometry(1,2,1) #f.axes.append(ax_nuth) bins = np.linspace(dz_clim[0], dz_clim[1], 128) axa[1,3].hist(diff_orig_compressed, bins, color='g', label='Before', alpha=0.5) axa[1,3].hist(diff_align_compressed, bins, color='b', label='After', alpha=0.5) axa[1,3].set_xlim(*dz_clim) axa[1,3].axvline(0, color='k', linewidth=0.5, linestyle=':') axa[1,3].set_xlabel('Elev. Diff. (m)') axa[1,3].set_ylabel('Count (px)') axa[1,3].set_title("Source - Reference") before_str = 'Before\nmed: %0.2f\nnmad: %0.2f' % (diff_orig_stats['med'], diff_orig_stats['nmad']) axa[1,3].text(0.05, 0.95, before_str, va='top', color='g', transform=axa[1,3].transAxes, fontsize=8) after_str = 'After\nmed: %0.2f\nnmad: %0.2f' % (diff_align_stats['med'], diff_align_stats['nmad']) axa[1,3].text(0.65, 0.95, after_str, va='top', color='b', transform=axa[1,3].transAxes, fontsize=8) #This is empty axa[0,3].axis('off') suptitle = '%s\nx: %+0.2fm, y: %+0.2fm, z: %+0.2fm' % (os.path.split(outprefix)[-1], dx_total, dy_total, dz_total) f.suptitle(suptitle) f.tight_layout() plt.subplots_adjust(top=0.90) fig_fn = outprefix + '%s_align.png' % xyz_shift_str_cum_fn print("Writing out figure: %s" % fig_fn) f.savefig(fig_fn, dpi=300)
def main2(args): #Should check that files exist dem1_fn = args.ref_fn dem2_fn = args.src_fn mode = args.mode apply_mask = not args.nomask max_offset_m = args.max_offset tiltcorr = args.tiltcorr #These are tolerances (in meters) to stop iteration tol = args.tol min_dx = tol min_dy = tol min_dz = tol #Maximum number of iterations max_n = 10 outdir = args.outdir if outdir is None: outdir = os.path.splitext(dem2_fn)[0] + '_dem_align' if not os.path.exists(outdir): os.makedirs(outdir) outprefix = '%s_%s' % (os.path.splitext(os.path.split(dem2_fn)[-1])[0], \ os.path.splitext(os.path.split(dem1_fn)[-1])[0]) outprefix = os.path.join(outdir, outprefix) print("\nReference: %s" % dem1_fn) print("Source: %s" % dem2_fn) print("Mode: %s" % mode) print("Output: %s\n" % outprefix) dem2_ds = gdal.Open(dem2_fn, gdal.GA_ReadOnly) #Often the "ref" DEM is high-res lidar or similar #This is a shortcut to resample to match "source" DEM dem1_ds = warplib.memwarp_multi_fn([ dem1_fn, ], res=dem2_ds, extent=dem2_ds, t_srs=dem2_ds)[0] #dem1_ds = gdal.Open(dem1_fn, gdal.GA_ReadOnly) #Create a copy to be updated in place dem2_ds_align = iolib.mem_drv.CreateCopy('', dem2_ds, 0) #dem2_ds_align = dem2_ds #Iteration number n = 1 #Cumulative offsets dx_total = 0 dy_total = 0 dz_total = 0 #Now iteratively update geotransform and vertical shift while True: print("*** Iteration %i ***" % n) dx, dy, dz, static_mask, fig = compute_offset(dem1_ds, dem2_ds_align, dem2_fn, mode, max_offset_m, apply_mask=apply_mask) if n == 1: static_mask_orig = static_mask xyz_shift_str_iter = "dx=%+0.2fm, dy=%+0.2fm, dz=%+0.2fm" % (dx, dy, dz) print("Incremental offset: %s" % xyz_shift_str_iter) #Should make an animation of this converging if fig is not None: dst_fn = outprefix + '_%s_iter%i_plot.png' % (mode, n) print("Writing offset plot: %s" % dst_fn) fig.gca().set_title(xyz_shift_str_iter) fig.savefig(dst_fn, dpi=300, bbox_inches='tight', pad_inches=0.1) #Apply the horizontal shift to the original dataset dem2_ds_align = coreglib.apply_xy_shift(dem2_ds_align, dx, dy, createcopy=False) dem2_ds_align = coreglib.apply_z_shift(dem2_ds_align, dz, createcopy=False) dx_total += dx dy_total += dy dz_total += dz print("Cumulative offset: dx=%+0.2fm, dy=%+0.2fm, dz=%+0.2fm" % (dx_total, dy_total, dz_total)) #Fit plane to residuals and remove #Might be better to do this after converging """ if tiltcorr: print("Applying planar tilt correction") gt = dem2_ds_align.GetGeoTransform() #Need to compute diff_euler here #Copy portions of compute_offset, create new function vals, resid, coeff = geolib.ma_fitplane(diff_euler_align, gt, perc=(4, 96)) dem2_ds_align = coreglib.apply_z_shift(dem2_ds_align, -vals, createcopy=False) """ n += 1 print("\n") #If magnitude of shift in all directions is less than tol #if n > max_n or (abs(dx) <= min_dx and abs(dy) <= min_dy and abs(dz) <= min_dz): #If magnitude of shift is less than tol dm = np.sqrt(dx**2 + dy**2 + dz**2) if n > max_n or dm < tol: break #String to append to output filenames xyz_shift_str_cum = '_%s_x%+0.2f_y%+0.2f_z%+0.2f' % (mode, dx_total, dy_total, dz_total) if tiltcorr: xyz_shift_str_cum += "_tiltcorr" #Compute original elevation difference if True: dem1_clip_ds, dem2_clip_ds = warplib.memwarp_multi([dem1_ds, dem2_ds], \ res='max', extent='intersection', t_srs=dem2_ds) dem1_orig = iolib.ds_getma(dem1_clip_ds, 1) dem2_orig = iolib.ds_getma(dem2_clip_ds, 1) diff_euler_orig = dem2_orig - dem1_orig if not apply_mask: static_mask_orig = np.ma.getmaskarray(diff_euler_orig) diff_euler_orig_compressed = diff_euler_orig[~static_mask_orig] diff_euler_orig_stats = np.array( malib.print_stats(diff_euler_orig_compressed)) #Write out original eulerian difference map print( "Writing out original euler difference map for common intersection before alignment" ) dst_fn = outprefix + '_orig_dz_eul.tif' iolib.writeGTiff(diff_euler_orig, dst_fn, dem1_clip_ds) #Compute final elevation difference if True: dem1_clip_ds_align, dem2_clip_ds_align = warplib.memwarp_multi([dem1_ds, dem2_ds_align], \ res='max', extent='intersection', t_srs=dem2_ds_align) dem1_align = iolib.ds_getma(dem1_clip_ds_align, 1) dem2_align = iolib.ds_getma(dem2_clip_ds_align, 1) diff_euler_align = dem2_align - dem1_align if not apply_mask: static_mask = np.ma.getmaskarray(diff_euler_align) diff_euler_align_compressed = diff_euler_align[~static_mask] diff_euler_align_stats = np.array( malib.print_stats(diff_euler_align_compressed)) #Fit plane to residuals and remove if tiltcorr: print("Applying planar tilt correction") gt = dem1_clip_ds_align.GetGeoTransform() #Need to apply the mask here, so we're only fitting over static surfaces #Note that the origmask=False will compute vals for all x and y indices, which is what we want vals, resid, coeff = geolib.ma_fitplane(np.ma.array(diff_euler_align, mask=static_mask), \ gt, perc=(4, 96), origmask=False) #Remove planar offset from difference map diff_euler_align -= vals #Remove planar offset from aligned dem2 #Note: dimensions of ds and vals will be different as vals are computed for clipped intersection #Recompute planar offset for dem2_ds_align extent xgrid, ygrid = geolib.get_xy_grids(dem2_ds_align) vals = coeff[0] * xgrid + coeff[1] * ygrid + coeff[2] dem2_ds_align = coreglib.apply_z_shift(dem2_ds_align, -vals, createcopy=False) if not apply_mask: static_mask = np.ma.getmaskarray(diff_euler_align) diff_euler_align_compressed = diff_euler_align[~static_mask] diff_euler_align_stats = np.array( malib.print_stats(diff_euler_align_compressed)) print("Creating fitplane plot") fig, ax = plt.subplots(figsize=(6, 6)) fitplane_clim = malib.calcperc(vals, (2, 98)) im = ax.imshow(vals, cmap='cpt_rainbow', clim=fitplane_clim) res = float(geolib.get_res(dem2_clip_ds, square=True)[0]) pltlib.add_scalebar(ax, res=res) pltlib.hide_ticks(ax) pltlib.add_cbar(ax, im, label='Fit plane residuals (m)') fig.tight_layout() dst_fn1 = outprefix + '%s_align_dz_eul_fitplane.png' % xyz_shift_str_cum print("Writing out figure: %s" % dst_fn1) fig.savefig(dst_fn1, dpi=300, bbox_inches='tight', pad_inches=0.1) #Compute higher-order fits? #Could also attempt to model along-track and cross-track artifacts #Write out aligned eulerian difference map for clipped extent with vertial offset removed dst_fn = outprefix + '%s_align_dz_eul.tif' % xyz_shift_str_cum print( "Writing out aligned difference map with median vertical offset removed" ) iolib.writeGTiff(diff_euler_align, dst_fn, dem1_clip_ds) #Write out aligned dem_2 with vertial offset removed if True: dst_fn2 = outprefix + '%s_align.tif' % xyz_shift_str_cum print( "Writing out shifted dem2 with median vertical offset removed: %s" % dst_fn2) #Might be cleaner way to write out MEM ds directly to disk dem2_align = iolib.ds_getma(dem2_ds_align) iolib.writeGTiff(dem2_align, dst_fn2, dem2_ds_align) dem2_ds_align = None #Create output plot if True: print("Creating final plot") dem1_hs = geolib.gdaldem_mem_ma(dem1_orig, dem1_clip_ds, returnma=True) dem2_hs = geolib.gdaldem_mem_ma(dem2_orig, dem2_clip_ds, returnma=True) f, axa = plt.subplots(2, 3, figsize=(11, 8.5)) for ax in axa.ravel()[:-1]: ax.set_facecolor('k') pltlib.hide_ticks(ax) dem_clim = malib.calcperc(dem1_orig, (2, 98)) axa[0, 0].imshow(dem1_hs, cmap='gray') axa[0, 0].imshow(dem1_orig, cmap='cpt_rainbow', clim=dem_clim, alpha=0.6) res = float(geolib.get_res(dem1_clip_ds, square=True)[0]) pltlib.add_scalebar(axa[0, 0], res=res) axa[0, 0].set_title('Reference DEM') axa[0, 1].imshow(dem2_hs, cmap='gray') axa[0, 1].imshow(dem2_orig, cmap='cpt_rainbow', clim=dem_clim, alpha=0.6) axa[0, 1].set_title('Source DEM') axa[0, 2].imshow(~static_mask_orig, clim=(0, 1), cmap='gray') axa[0, 2].set_title('Surfaces for co-registration') dz_clim = malib.calcperc_sym(diff_euler_orig_compressed, (5, 95)) im = axa[1, 0].imshow(diff_euler_orig, cmap='RdBu', clim=dz_clim) pltlib.add_cbar(axa[1, 0], im, label=None) axa[1, 0].set_title('Elev. Diff. Before (m)') im = axa[1, 1].imshow(diff_euler_align, cmap='RdBu', clim=dz_clim) pltlib.add_cbar(axa[1, 1], im, label=None) axa[1, 1].set_title('Elev. Diff. After (m)') #Tried to insert Nuth fig here #ax_nuth.change_geometry(1,2,1) #f.axes.append(ax_nuth) bins = np.linspace(dz_clim[0], dz_clim[1], 128) axa[1, 2].hist(diff_euler_orig_compressed, bins, color='g', label='Before', alpha=0.5) axa[1, 2].hist(diff_euler_align_compressed, bins, color='b', label='After', alpha=0.5) axa[1, 2].axvline(0, color='k', linewidth=0.5, linestyle=':') axa[1, 2].set_xlabel('Elev. Diff. (m)') axa[1, 2].set_ylabel('Count (px)') axa[1, 2].set_title("Source - Reference") #axa[1,2].legend(loc='upper right') #before_str = 'Before\nmean: %0.2f\nstd: %0.2f\nmed: %0.2f\nnmad: %0.2f' % tuple(diff_euler_orig_stats[np.array((3,4,5,6))]) #after_str = 'After\nmean: %0.2f\nstd: %0.2f\nmed: %0.2f\nnmad: %0.2f' % tuple(diff_euler_align_stats[np.array((3,4,5,6))]) before_str = 'Before\nmed: %0.2f\nnmad: %0.2f' % tuple( diff_euler_orig_stats[np.array((5, 6))]) axa[1, 2].text(0.05, 0.95, before_str, va='top', color='g', transform=axa[1, 2].transAxes) after_str = 'After\nmed: %0.2f\nnmad: %0.2f' % tuple( diff_euler_align_stats[np.array((5, 6))]) axa[1, 2].text(0.65, 0.95, after_str, va='top', color='b', transform=axa[1, 2].transAxes) suptitle = '%s\nx: %+0.2fm, y: %+0.2fm, z: %+0.2fm' % ( os.path.split(outprefix)[-1], dx_total, dy_total, dz_total) f.suptitle(suptitle) f.tight_layout() plt.subplots_adjust(top=0.90) dst_fn = outprefix + '%s_align.png' % xyz_shift_str_cum print("Writing out figure: %s" % dst_fn) f.savefig(dst_fn, dpi=300, bbox_inches='tight', pad_inches=0.1) #Removing residual planar tilt can introduce additional slope/aspect dependent offset #Want to run another round of main dem_align after removing planar tilt if tiltcorr: print("\n Rerunning after applying tilt correction \n") #Create copy of original arguments import copy args2 = copy.copy(args) #Use aligned, tilt-corrected DEM as input src_fn for second round args2.src_fn = dst_fn2 #Assume we've already corrected most of the tilt during first round (also prevents endless loop) args2.tiltcorr = False main2(args2)