예제 #1
0
def drawStreamLine_(axes, mesh, c, data, dataMesh=None, **kwargs):
    """
    Draw a single streamline into a given mesh for given data stating at
    the center of cell c.
    The Streamline will be enlarged until she reached a cell that
    already contains a streamline.

    Parameters
    ----------

    axes : matplotlib.axes
        axes to draw into

    mesh : :gimliapi:`GIMLI::Mesh`
        2d Mesh to draw the streamline

    c : :gimliapi:`GIMLI::Cell`
        start cell

    data : iterable float | [float, float]
        If data is an array (per cell or node) gradients are calculated
        otherwise the data will be interpreted as vector field.

    dataMesh : :gimliapi:`GIMLI::Mesh` [None]

        Optional mesh for the data. If you want high resolution
        data to plot on coarse draw mesh.
    """
    x, y = streamline(mesh, data, startCoord=c.center(),
                      dLengthSteps=5,
                      dataMesh=dataMesh,
                      maxSteps=10000,
                      verbose=False,
                      koords=[0, 1])

    if 'color' not in kwargs:
        kwargs['color'] = 'black'

    lines = None
    # print(len(x))
    if len(x) > 2:
        lines = axes.plot(x, y, **kwargs)
#        updateAxes_(axes, lines)

#        print( x, y)
#        axes.plot(x, y, '.-', color='black', **kwargs)
    if len(x) > 3:
        xmid = int(len(x) / 2)
        ymid = int(len(y) / 2)
        dx = x[xmid + 1] - x[xmid]
        dy = y[ymid + 1] - y[ymid]
        c = mesh.findCell([x[xmid], y[ymid]])
        dLength = c.center().dist(c.node(0).pos()) / 4.

        axes.arrow(x[xmid], y[ymid], dx, dy, width=dLength / 15.,
                   head_starts_at_zero=True,
                   **kwargs)

    return lines
예제 #2
0
파일: meshview.py 프로젝트: Kevin2599/gimli
def drawStreamLine_(ax, mesh, c, data, dataMesh=None, linewidth=1.0,
                    dropTol=0.0, **kwargs):
    """Draw a single streamline.

    Draw a single streamline into a given mesh for given data stating at
    the center of cell c.
    The Streamline will be enlarged until she reached a cell that
    already contains a streamline.

    TODO
        linewidth and color depends on absolute velocity
        or background color saturation

    Parameters
    ----------

    ax : matplotlib.ax
        ax to draw into

    mesh : :gimliapi:`GIMLI::Mesh`
        2d Mesh to draw the streamline

    c : :gimliapi:`GIMLI::Cell`
        start cell

    data : iterable float | [float, float]
        If data is an array (per cell or node) gradients are calculated
        otherwise the data will be interpreted as vector field.

    dataMesh : :gimliapi:`GIMLI::Mesh` [None]

        Optional mesh for the data. If you want high resolution
        data to plot on coarse draw mesh.

    linewidth : float [1.0]

        Streamline linewidth

    dropTol : float [0.0]

        Don't draw stream lines with velocity lower than drop tolerance.

    """
    x, y, v = streamline(mesh, data, startCoord=c.center(), dLengthSteps=5,
                         dataMesh=dataMesh, maxSteps=10000, verbose=False,
                         coords=[0, 1])

    if 'color' not in kwargs:
        kwargs['color'] = 'black'

    lines = None

    if len(x) > 2:
        points = np.array([x, y]).T.reshape(-1, 1, 2)

        segments = np.concatenate([points[:-1], points[1:]], axis=1)

        lwidths = pg.RVector(len(v), linewidth)
        lwidths[pg.find(pg.RVector(v) < dropTol)] = 0.0

        lines = mpl.collections.LineCollection(
            segments, linewidths=lwidths, **kwargs)
        ax.add_collection(lines)

        # probably the limits are wrong without plot call
        # lines = ax.plot(x, y, **kwargs)
        # updateAxes_(ax, lines)
        # ax.plot(x, y, '.-', color='black', **kwargs)
    if len(x) > 3:
        xmid = int(len(x) / 2)
        ymid = int(len(y) / 2)
        dx = x[xmid + 1] - x[xmid]
        dy = y[ymid + 1] - y[ymid]
        c = mesh.findCell([x[xmid], y[ymid]])
        # dLength = c.center().dist(c.node(0).pos()) / 4.  # NOT USED

        if v[xmid] > dropTol:
            # ax.arrow(x[xmid], y[ymid], dx, dy,
            #          #width=dLength / 3.,
            #          width=0,
            #          head_width=0.01,
            #          head_length=0.02
            #         #  head_width=dLength / 3.,
            #         #  head_length=dLength / 3.,
            #          head_starts_at_zero=True,
            #          length_includes_head=False,
            #          lw=4,
            #          ls=None,
            #          **kwargs)

            dx90 = -dy
            dy90 = dx
            aLen = 3
            aWid = 1
            xy = list(zip([x[xmid] + dx90*aWid, x[xmid] + dx*aLen,
                           x[xmid] - dx90*aWid],
                          [y[ymid] + dy90*aWid, y[ymid] + dy*aLen,
                           y[ymid] - dy90*aWid]))

            arrow = mpl.patches.Polygon(xy, ls=None, lw=0, closed=True,
                                        **kwargs)
            # arrow = mpl.collections.PolyCollection(xy, lines=None,
            #                                        closed=True, **kwargs)
            ax.add_patch(arrow)

    return lines
예제 #3
0
파일: meshview.py 프로젝트: gimli-org/gimli
def drawStreamLine_(ax, mesh, c, data, dataMesh=None, linewidth=1.0,
                    dropTol=0.0, **kwargs):
    """Draw a single streamline.

    Draw a single streamline into a given mesh for given data stating at
    the center of cell c.
    The Streamline will be enlarged until she reached a cell that
    already contains a streamline.

    TODO
        linewidth and color depends on absolute velocity
        or background color saturation

    Parameters
    ----------

    ax : matplotlib.ax
        ax to draw into

    mesh : :gimliapi:`GIMLI::Mesh`
        2d Mesh to draw the streamline

    c : :gimliapi:`GIMLI::Cell`
        start cell

    data : iterable float | [float, float]
        If data is an array (per cell or node) gradients are calculated
        otherwise the data will be interpreted as vector field.

    dataMesh : :gimliapi:`GIMLI::Mesh` [None]

        Optional mesh for the data. If you want high resolution
        data to plot on coarse draw mesh.

    linewidth : float [1.0]

        Streamline linewidth

    dropTol : float [0.0]

        Don't draw stream lines with velocity lower than drop tolerance.

    """
    x, y, v = streamline(mesh, data, startCoord=c.center(), dLengthSteps=5,
                         dataMesh=dataMesh, maxSteps=10000, verbose=False,
                         coords=[0, 1])

    if 'color' not in kwargs:
        kwargs['color'] = 'black'

    lines = None

    if len(x) > 2:
        points = np.array([x, y]).T.reshape(-1, 1, 2)

        segments = np.concatenate([points[:-1], points[1:]], axis=1)

        lwidths = pg.RVector(len(v), linewidth)
        lwidths[pg.find(pg.RVector(v) < dropTol)] = 0.0

        lines = mpl.collections.LineCollection(
            segments, linewidths=lwidths, **kwargs)
        ax.add_collection(lines)

        # probably the limits are wrong without plot call
        # lines = ax.plot(x, y, **kwargs)
        # updateAxes_(ax, lines)
        # ax.plot(x, y, '.-', color='black', **kwargs)
    if len(x) > 3:
        xmid = int(len(x) / 2)
        ymid = int(len(y) / 2)
        dx = x[xmid + 1] - x[xmid]
        dy = y[ymid + 1] - y[ymid]
        c = mesh.findCell([x[xmid], y[ymid]])
        # dLength = c.center().dist(c.node(0).pos()) / 4.  # NOT USED

        if v[xmid] > dropTol:
            # ax.arrow(x[xmid], y[ymid], dx, dy,
            #          #width=dLength / 3.,
            #          width=0,
            #          head_width=0.01,
            #          head_length=0.02
            #         #  head_width=dLength / 3.,
            #         #  head_length=dLength / 3.,
            #          head_starts_at_zero=True,
            #          length_includes_head=False,
            #          lw=4,
            #          ls=None,
            #          **kwargs)

            dx90 = -dy
            dy90 = dx
            aLen = 3
            aWid = 1
            xy = list(zip([x[xmid] + dx90*aWid, x[xmid] + dx*aLen,
                           x[xmid] - dx90*aWid],
                          [y[ymid] + dy90*aWid, y[ymid] + dy*aLen,
                           y[ymid] - dy90*aWid]))

            arrow = mpl.patches.Polygon(xy, ls=None, lw=0, closed=True,
                                        **kwargs)
            # arrow = mpl.collections.PolyCollection(xy, lines=None,
            #                                        closed=True, **kwargs)
            ax.add_patch(arrow)

    return lines