def test_hard(self): # the SLIARD model is considered to be hard because a state can # go to multiple state. This is not as hard as the SEIHFR model # below. stateList = ['S', 'L', 'I', 'A', 'R', 'D'] paramList = [ 'beta', 'p', 'kappa', 'alpha', 'f', 'delta', 'epsilon', 'N' ] odeList = [ Transition('S', '- beta * S/N * ( I + delta * A)', 'ODE'), Transition('L', 'beta * S/N * (I + delta * A) - kappa * L', 'ODE'), Transition('I', 'p * kappa * L - alpha * I', 'ODE'), Transition('A', '(1-p) * kappa * L - epsilon * A', 'ODE'), Transition('R', 'f * alpha * I + epsilon * A', 'ODE'), Transition('D', '(1-f) * alpha * I', 'ODE') ] ode = SimulateOdeModel(stateList, paramList, odeList=odeList) ode2 = ode.returnObjWithTransitionsAndBD() diffEqZero = map(lambda x: x == 0, sympy.simplify(ode.getOde() - ode2.getOde())) if numpy.any(numpy.array(list(diffEqZero)) == False): raise Exception("Hard: SLIARD Decomposition failed")
def test_simple(self): ode1 = Transition('S','-beta*S*I', 'ode') ode2 = Transition('I','beta*S*I - gamma * I', 'ode') ode3 = Transition('R','gamma*I', 'ode') stateList = ['S','I','R'] paramList = ['beta','gamma'] ode = SimulateOdeModel(stateList, paramList, odeList=[ode1,ode2,ode3]) ode2 = ode.returnObjWithTransitionsAndBD() diffEqZero = map(lambda x: x==0, sympy.simplify(ode.getOde() - ode2.getOde())) if numpy.any(numpy.array(diffEqZero) == False): raise Exception("Simple: SIR Decomposition failed")
def test_simple(self): ode1 = Transition('S', '-beta*S*I', 'ode') ode2 = Transition('I', 'beta*S*I - gamma * I', 'ode') ode3 = Transition('R', 'gamma*I', 'ode') stateList = ['S', 'I', 'R'] paramList = ['beta', 'gamma'] ode = SimulateOdeModel(stateList, paramList, odeList=[ode1, ode2, ode3]) ode2 = ode.returnObjWithTransitionsAndBD() diffEqZero = map(lambda x: x == 0, sympy.simplify(ode.getOde() - ode2.getOde())) if numpy.any(numpy.array(list(diffEqZero)) == False): raise Exception("Simple: SIR Decomposition failed")
def test_derived_param(self): # the derived parameters are treated separately when compared to the # normal parameters and the odes ode = common_models.Legrand_Ebola_SEIHFR() odeList = [ Transition( 'S', '-(beta_I * S * I + beta_H_Time * S * H + beta_F_Time * S * F)' ), Transition( 'E', '(beta_I * S * I + beta_H_Time * S * H + beta_F_Time * S * F)-alpha * E' ), Transition( 'I', '-gamma_I * (1 - theta_1) * (1 - delta_1) * I - gamma_D * (1 - theta_1) * delta_1 * I - gamma_H * theta_1 * I + alpha * E' ), Transition( 'H', 'gamma_H * theta_1 * I - gamma_DH * delta_2 * H - gamma_IH * (1 - delta_2) * H' ), Transition( 'F', '- gamma_F * F + gamma_DH * delta_2 * H + gamma_D * (1 - theta_1) * delta_1 * I' ), Transition( 'R', 'gamma_I * (1 - theta_1) * (1 - delta_1) * I + gamma_F * F + gamma_IH * (1 - delta_2) * H' ), Transition('tau', '1') ] ode1 = SimulateOdeModel(ode._stateList, ode._paramList, ode._derivedParamEqn, odeList=odeList) ode2 = ode1.returnObjWithTransitionsAndBD() diffEqZero = map(lambda x: x == 0, sympy.simplify(ode.getOde() - ode2.getOde())) if numpy.any(numpy.array(list(diffEqZero)) == False): raise Exception("FAILED!")
def test_derived_param(self): # the derived parameters are treated separately when compared to the # normal parametes and the odes ode = common_models.Legrand_Ebola_SEIHFR() odeList = [ Transition('S', '-(beta_I * S * I + beta_H_Time * S * H + beta_F_Time * S * F)'), Transition('E', '(beta_I * S * I + beta_H_Time * S * H + beta_F_Time * S * F)-alpha * E'), Transition('I','-gamma_I * (1 - theta_1) * (1 - delta_1) * I - gamma_D * (1 - theta_1) * delta_1 * I - gamma_H * theta_1 * I + alpha * E'), Transition('H', 'gamma_H * theta_1 * I - gamma_DH * delta_2 * H - gamma_IH * (1 - delta_2) * H'), Transition('F','- gamma_F * F + gamma_DH * delta_2 * H + gamma_D * (1 - theta_1) * delta_1 * I'), Transition('R', 'gamma_I * (1 - theta_1) * (1 - delta_1) * I + gamma_F * F + gamma_IH * (1 - delta_2) * H'), Transition('tau', '1') ] ode1 = SimulateOdeModel(ode._stateList, ode._paramList, ode._derivedParamEqn, odeList=odeList) ode2 = ode1.returnObjWithTransitionsAndBD() diffEqZero = map(lambda x: x==0, sympy.simplify(ode.getOde() - ode2.getOde())) if numpy.any(numpy.array(diffEqZero) == False): raise Exception("FAILED!")
def test_hard(self): # the SLIARD model is considered to be hard because a state can # go to multiple state. This is not as hard as the SEIHFR model # below. stateList = ['S', 'L','I','A','R','D'] paramList = ['beta','p','kappa','alpha','f','delta','epsilon', 'N'] odeList = [ Transition('S', '- beta * S/N * ( I + delta * A)', 'ODE'), Transition('L', 'beta * S/N * (I + delta * A) - kappa * L', 'ODE'), Transition('I', 'p * kappa * L - alpha * I', 'ODE'), Transition('A', '(1-p) * kappa * L - epsilon * A', 'ODE'), Transition('R', 'f * alpha * I + epsilon * A', 'ODE'), Transition('D', '(1-f) * alpha * I', 'ODE') ] ode = SimulateOdeModel(stateList, paramList, odeList=odeList) ode2 = ode.returnObjWithTransitionsAndBD() diffEqZero = map(lambda x: x==0, sympy.simplify(ode.getOde() - ode2.getOde())) if numpy.any(numpy.array(diffEqZero) == False): raise Exception("Hard: SLIARD Decomposition failed")
def test_bd(self): stateList = ['S', 'I', 'R'] paramList = ['beta', 'gamma', 'B', 'mu'] odeList = [ Transition(origState='S', equation='-beta * S * I + B - mu * S', transitionType=TransitionType.ODE), Transition(origState='I', equation='beta * S * I - gamma * I - mu * I', transitionType=TransitionType.ODE), Transition(origState='R', destState='R', equation='gamma * I', transitionType=TransitionType.ODE) ] ode = SimulateOdeModel(stateList, paramList, odeList=odeList) ode2 = ode.returnObjWithTransitionsAndBD() diffEqZero = map(lambda x: x==0, sympy.simplify(ode.getOde() - ode2.getOde())) if numpy.any(numpy.array(diffEqZero) == False): raise Exception("Birth Death: SIR+BD Decomposition failed")
def test_bd(self): stateList = ['S', 'I', 'R'] paramList = ['beta', 'gamma', 'B', 'mu'] odeList = [ Transition(origState='S', equation='-beta * S * I + B - mu * S', transitionType=TransitionType.ODE), Transition(origState='I', equation='beta * S * I - gamma * I - mu * I', transitionType=TransitionType.ODE), Transition(origState='R', destState='R', equation='gamma * I', transitionType=TransitionType.ODE) ] ode = SimulateOdeModel(stateList, paramList, odeList=odeList) ode2 = ode.returnObjWithTransitionsAndBD() diffEqZero = map(lambda x: x == 0, sympy.simplify(ode.getOde() - ode2.getOde())) if numpy.any(numpy.array(list(diffEqZero)) == False): raise Exception("Birth Death: SIR+BD Decomposition failed")