예제 #1
0
def test_MPI_gaugeopt(comm):
    #Gauge Opt to Target
    mdl_other = std.target_model().depolarize(op_noise=0.01, spam_noise=0.01)
    mdl_other['Gx'].rotate( (0,0,0.01) )
    mdl_other['Gy'].rotate( (0,0,0.01) )
    mdl_gopt = pygsti.gaugeopt_to_target(mdl_other, std.target_model(), verbosity=10, comm=comm)

    #use a method that isn't parallelized with non-None comm (warning is given)
    mdl_gopt_slow = pygsti.gaugeopt_to_target(mdl_other, std.target_model(), verbosity=10, method="BFGS", comm=comm)
예제 #2
0
def test_MPI_gatestrings_logl(comm):
    #Create dataset for serial and parallel runs
    ds, lsgstStrings = create_fake_dataset(comm)

    #Individual processors
    my1ProcResults = runOneQubit("logl", ds, lsgstStrings)

    #Using all processors
    myManyProcResults = runOneQubit("logl", ds, lsgstStrings, comm,
                                    "gatestrings")

    for i, (gs1, gs2) in enumerate(zip(my1ProcResults, myManyProcResults)):
        assertGatesetsInSync(gs1, comm)
        assertGatesetsInSync(gs2, comm)

        gs2_go = pygsti.gaugeopt_to_target(gs2, gs1, {
            'gates': 1.0,
            'spam': 1.0
        })
        print("Frobenius distance %d (rank %d) = " % (i, comm.Get_rank()),
              gs1.frobeniusdist(gs2_go))
        if gs1.frobeniusdist(gs2_go) >= 1e-5:
            print("DIFF (%d) = " % comm.Get_rank(), gs1.strdiff(gs2_go))
        assert (gs1.frobeniusdist(gs2_go) < 1e-5)
    return
예제 #3
0
    def test_LGST_1overSqrtN_dependence(self):
        my_datagen_gateset = self.model.depolarize(op_noise=0.05, spam_noise=0)
        # !!don't depolarize spam or 1/sqrt(N) dependence saturates!!

        nSamplesList = np.array([16, 128, 1024, 8192])
        diffs = []
        for nSamples in nSamplesList:
            ds = pygsti.construction.generate_fake_data(my_datagen_gateset,
                                                        self.lgstStrings,
                                                        nSamples,
                                                        sampleError='binomial',
                                                        seed=100)
            mdl_lgst = pygsti.do_lgst(ds,
                                      self.fiducials,
                                      self.fiducials,
                                      self.model,
                                      svdTruncateTo=4,
                                      verbosity=0)
            mdl_lgst_go = pygsti.gaugeopt_to_target(mdl_lgst,
                                                    my_datagen_gateset, {
                                                        'spam': 1.0,
                                                        'gate': 1.0
                                                    },
                                                    checkJac=True)
            diffs.append(my_datagen_gateset.frobeniusdist(mdl_lgst_go))

        diffs = np.array(diffs, 'd')
        a, b = polyfit(np.log10(nSamplesList), np.log10(diffs), deg=1)
        #print "\n",nSamplesList; print diffs; print a #DEBUG
        self.assertLess(a + 0.5, 0.05)
예제 #4
0
파일: fixtures.py 프로젝트: silky/pyGSTi
def mdl_lgst_go(self):
    return pygsti.gaugeopt_to_target(self.mdl_lgst,
                                     self.model, {
                                         'spam': 1.0,
                                         'gates': 1.0
                                     },
                                     checkJac=True)
예제 #5
0
    def test_LGST_no_sample_error(self):
        #change rep-count type so dataset can hold fractional counts for sampleError = 'none'
        oldType = pygsti.objects.dataset.Repcount_type
        pygsti.objects.dataset.Repcount_type = np.float64
        ds = pygsti.construction.generate_fake_data(self.datagen_gateset,
                                                    self.lgstStrings,
                                                    nSamples=10000,
                                                    sampleError='none')
        pygsti.objects.dataset.Repcount_type = oldType

        mdl_lgst = pygsti.do_lgst(ds,
                                  self.fiducials,
                                  self.fiducials,
                                  self.model,
                                  svdTruncateTo=4,
                                  verbosity=0)
        print("DATAGEN:")
        print(self.datagen_gateset)
        print("\nLGST RAW:")
        print(mdl_lgst)
        mdl_lgst = pygsti.gaugeopt_to_target(mdl_lgst,
                                             self.datagen_gateset, {
                                                 'spam': 1.0,
                                                 'gates': 1.0
                                             },
                                             checkJac=False)
        print("\nAfter gauge opt:")
        print(mdl_lgst)
        print(mdl_lgst.strdiff(self.datagen_gateset))
        self.assertAlmostEqual(mdl_lgst.frobeniusdist(self.datagen_gateset),
                               0,
                               places=4)
예제 #6
0
def main():
    gs, gs_target = load()
    #envSettings = dict(MKL_NUM_THREADS=1, NUMEXPR_NUM_THREADS=1, OMP_NUM_THREADS=1)

    with timed_block('TP penalty gauge opt'):
        gs_gaugeopt = pygsti.gaugeopt_to_target(gs, gs_target,
                                                item_weights={'spam' : 0.0001, 'gates':1.0},
                                                TPpenalty=1.0)
예제 #7
0
def runAnalysis(obj,
                ds,
                myspecs,
                gsTarget,
                lsgstStringsToUse,
                useFreqWeightedChiSq=False,
                minProbClipForWeighting=1e-4,
                fidPairList=None,
                comm=None,
                distributeMethod="gatestrings"):

    #Run LGST to get starting gate set
    assertGatesetsInSync(gsTarget, comm)
    gs_lgst = pygsti.do_lgst(ds,
                             myspecs,
                             gsTarget,
                             svdTruncateTo=gsTarget.dim,
                             verbosity=3)

    assertGatesetsInSync(gs_lgst, comm)
    gs_lgst_go = pygsti.gaugeopt_to_target(gs_lgst, gsTarget)

    assertGatesetsInSync(gs_lgst_go, comm)

    #Run full iterative LSGST
    tStart = time.time()
    if obj == "chi2":
        all_gs_lsgst = pygsti.do_iterative_mc2gst(
            ds,
            gs_lgst_go,
            lsgstStringsToUse,
            minProbClipForWeighting=minProbClipForWeighting,
            probClipInterval=(-1e5, 1e5),
            verbosity=1,
            memLimit=3 * (1024)**3,
            returnAll=True,
            useFreqWeightedChiSq=useFreqWeightedChiSq,
            comm=comm,
            distributeMethod=distributeMethod)
    elif obj == "logl":
        all_gs_lsgst = pygsti.do_iterative_mlgst(
            ds,
            gs_lgst_go,
            lsgstStringsToUse,
            minProbClip=minProbClipForWeighting,
            probClipInterval=(-1e5, 1e5),
            verbosity=1,
            memLimit=3 * (1024)**3,
            returnAll=True,
            useFreqWeightedChiSq=useFreqWeightedChiSq,
            comm=comm,
            distributeMethod=distributeMethod)

    tEnd = time.time()
    print("Time = ", (tEnd - tStart) / 3600.0, "hours")

    return all_gs_lsgst
예제 #8
0
    def test_LGST(self):

        ds = self.ds

        print("GG0 = ", self.model.default_gauge_group)
        mdl_lgst = pygsti.do_lgst(ds,
                                  self.fiducials,
                                  self.fiducials,
                                  self.model,
                                  svdTruncateTo=4,
                                  verbosity=0)
        mdl_lgst_verb = self.runSilent(pygsti.do_lgst,
                                       ds,
                                       self.fiducials,
                                       self.fiducials,
                                       self.model,
                                       svdTruncateTo=4,
                                       verbosity=10)
        self.assertAlmostEqual(mdl_lgst.frobeniusdist(mdl_lgst_verb), 0)

        print("GG = ", mdl_lgst.default_gauge_group)
        mdl_lgst_go = pygsti.gaugeopt_to_target(mdl_lgst,
                                                self.model, {
                                                    'spam': 1.0,
                                                    'gates': 1.0
                                                },
                                                checkJac=True)
        mdl_clgst = pygsti.contract(mdl_lgst_go, "CPTP")

        # RUN BELOW LINES TO SEED SAVED GATESET FILES
        if regenerate_references():
            pygsti.io.write_model(
                mdl_lgst, compare_files + "/lgst.model",
                "Saved LGST Model before gauge optimization")
            pygsti.io.write_model(mdl_lgst_go,
                                  compare_files + "/lgst_go.model",
                                  "Saved LGST Model after gauge optimization")
            pygsti.io.write_model(
                mdl_clgst, compare_files + "/clgst.model",
                "Saved LGST Model after G.O. and CPTP contraction")

        mdl_lgst_compare = pygsti.io.load_model(compare_files + "/lgst.model")
        mdl_lgst_go_compare = pygsti.io.load_model(compare_files +
                                                   "/lgst_go.model")
        mdl_clgst_compare = pygsti.io.load_model(compare_files +
                                                 "/clgst.model")

        self.assertAlmostEqual(mdl_lgst.frobeniusdist(mdl_lgst_compare),
                               0,
                               places=5)
        self.assertAlmostEqual(mdl_lgst_go.frobeniusdist(mdl_lgst_go_compare),
                               0,
                               places=5)
        self.assertAlmostEqual(mdl_clgst.frobeniusdist(mdl_clgst_compare),
                               0,
                               places=5)
예제 #9
0
파일: cp.py 프로젝트: stjordanis/pyGSTi
def main():
    gs, gs_target = load()
    with timed_block('Gauge opt with CP Penalty:'):
        gs_gaugeopt = pygsti.gaugeopt_to_target(gs,
                                                gs_target,
                                                itemWeights={
                                                    'spam': 0.0001,
                                                    'gates': 1.0
                                                },
                                                CPpenalty=1.0,
                                                validSpamPenalty=1.0)
예제 #10
0
파일: testCore.py 프로젝트: hwerbel/pyGSTi
    def test_model_selection(self):

        ds = self.ds
        #pygsti.construction.generate_fake_data(self.datagen_gateset, self.lsgstStrings[-1],
        #                                            nSamples=1000,sampleError='binomial', seed=100)


        mdl_lgst4 = pygsti.do_lgst(ds, self.fiducials, self.fiducials, self.model, svdTruncateTo=4, verbosity=0)
        mdl_lgst6 = pygsti.do_lgst(ds, self.fiducials, self.fiducials, self.model, svdTruncateTo=6, verbosity=0)
        sys.stdout.flush()

        self.runSilent(pygsti.do_lgst, ds, self.fiducials, self.fiducials, self.model, svdTruncateTo=6, verbosity=4) # test verbose prints

        chiSq4 = pygsti.chi2(mdl_lgst4, ds, self.lgstStrings, minProbClipForWeighting=1e-4)
        chiSq6 = pygsti.chi2(mdl_lgst6, ds, self.lgstStrings, minProbClipForWeighting=1e-4)

        print("LGST dim=4 chiSq = ",chiSq4)
        print("LGST dim=6 chiSq = ",chiSq6)
        #self.assertAlmostEqual(chiSq4, 174.061524953) #429.271983052)
        #self.assertAlmostEqual(chiSq6, 267012993.861, places=1) #1337.74222467) #Why is this so large??? -- DEBUG later

        # Least squares GST with model selection
        mdl_lsgst = self.runSilent(pygsti.do_iterative_mc2gst_with_model_selection, ds, mdl_lgst4, 1, self.lsgstStrings[0:3],
                                  verbosity=10, minProbClipForWeighting=1e-3, probClipInterval=(-1e5,1e5))

        # Run again with other parameters
        tuple_strings = [ list(map(tuple, gsList)) for gsList in self.lsgstStrings[0:3] ] #to test tuple argument
        errorVecs, mdl_lsgst_wts = self.runSilent(pygsti.do_iterative_mc2gst_with_model_selection, ds, mdl_lgst4,
                                                 1, tuple_strings, verbosity=10, minProbClipForWeighting=1e-3,
                                                 probClipInterval=(-1e5,1e5), circuitWeightsDict={ ('Gx',): 2.0 },
                                                 returnAll=True, returnErrorVec=True)

        # Do non-iterative to cover Circuit->tuple conversion
        mdl_non_iterative = self.runSilent( pygsti.do_mc2gst_with_model_selection, ds,
                                           mdl_lgst4, 1, self.lsgstStrings[0],
                                           verbosity=10, probClipInterval=(-1e5,1e5) )


        # RUN BELOW LINES TO SEED SAVED GATESET FILES
        if os.environ.get('PYGSTI_REGEN_REF_FILES','no').lower() in ("yes","1","true"):
            pygsti.io.write_model(mdl_lsgst,compare_files + "/lsgstMS.model", "Saved LSGST Model with model selection")

        mdl_lsgst_compare = pygsti.io.load_model(compare_files + "/lsgstMS.model")
        mdl_lsgst_go = pygsti.gaugeopt_to_target(mdl_lsgst, mdl_lsgst_compare, {'spam':1.0}, checkJac=True)
        self.assertAlmostEqual( mdl_lsgst_go.frobeniusdist(mdl_lsgst_compare), 0, places=4)
예제 #11
0
def test_MPI_mlgst_forcefn(comm):
    fiducials = std.fiducials
    target_model = std.target_model()
    lgstStrings = pygsti.construction.list_lgst_circuits(fiducials, fiducials,
                                                             list(target_model.operations.keys()))
    #Create dataset on root proc
    if comm is None or comm.Get_rank() == 0:
        datagen_gateset = target_model.depolarize(op_noise=0.01, spam_noise=0.01)
        ds = pygsti.construction.generate_fake_data(datagen_gateset, lgstStrings,
                                                    nSamples=10000, sampleError='binomial', seed=100)
        ds = comm.bcast(ds, root=0)
    else:
        ds = comm.bcast(None, root=0)


    mdl_lgst = pygsti.do_lgst(ds, fiducials, fiducials, target_model, svdTruncateTo=4, verbosity=0)
    mdl_lgst_go = pygsti.gaugeopt_to_target(mdl_lgst,target_model, {'spam':1.0, 'gates': 1.0})

    forcingfn_grad = np.ones((1,mdl_lgst_go.num_params()), 'd')
    mdl_lsgst_chk_opts3 = pygsti.algorithms.core._do_mlgst_base(
        ds, mdl_lgst_go, lgstStrings, verbosity=3,
        minProbClip=1e-4, probClipInterval=(-1e2,1e2),
        forcefn_grad=forcingfn_grad, comm=comm)
예제 #12
0
    def test_MLGST(self):

        ds = self.ds

        mdl_lgst = pygsti.do_lgst(ds,
                                  self.fiducials,
                                  self.fiducials,
                                  self.model,
                                  svdTruncateTo=4,
                                  verbosity=0)
        mdl_lgst_go = pygsti.gaugeopt_to_target(mdl_lgst,
                                                self.model, {
                                                    'spam': 1.0,
                                                    'gates': 1.0
                                                },
                                                checkJac=True)
        mdl_clgst = pygsti.contract(mdl_lgst_go, "CPTP")
        mdl_clgst = mdl_clgst.depolarize(
            op_noise=0.02, spam_noise=0.02
        )  # just to avoid infinity objective funct & jacs below
        CM = profiler._get_mem_usage()

        mdl_single_mlgst = pygsti.do_mlgst(ds,
                                           mdl_clgst,
                                           self.lsgstStrings[0],
                                           minProbClip=1e-4,
                                           probClipInterval=(-1e2, 1e2),
                                           verbosity=0)

        #this test often gives an assetion error "finite Jacobian has inf norm!" on Travis CI Python 3 case
        try:
            mdl_single_mlgst_cpsp = pygsti.do_mlgst(
                ds,
                mdl_clgst,
                self.lsgstStrings[0],
                minProbClip=1e-4,
                probClipInterval=(-1e2, 1e2),
                cptp_penalty_factor=1.0,
                spam_penalty_factor=1.0,
                verbosity=10)  #uses both penalty factors w/verbosity > 0
        except ValueError:
            pass  # ignore when assertions in customlm.py are disabled
        except AssertionError:
            pass  # just ignore for now.  FUTURE: see what we can do in custom LM about scaling large jacobians...

        try:
            mdl_single_mlgst_cp = pygsti.do_mlgst(ds,
                                                  mdl_clgst,
                                                  self.lsgstStrings[0],
                                                  minProbClip=1e-4,
                                                  probClipInterval=(-1e2, 1e2),
                                                  cptp_penalty_factor=1.0,
                                                  verbosity=10)
        except ValueError:
            pass  # ignore when assertions in customlm.py are disabled
        except AssertionError:
            pass  # just ignore for now.  FUTURE: see what we can do in custom LM about scaling large jacobians...

        try:
            mdl_single_mlgst_sp = pygsti.do_mlgst(ds,
                                                  mdl_clgst,
                                                  self.lsgstStrings[0],
                                                  minProbClip=1e-4,
                                                  probClipInterval=(-1e2, 1e2),
                                                  spam_penalty_factor=1.0,
                                                  verbosity=10)
        except ValueError:
            pass  # ignore when assertions in customlm.py are disabled
        except AssertionError:
            pass  # just ignore for now.  FUTURE: see what we can do in custom LM about scaling large jacobians...

        mdl_mlegst = pygsti.do_iterative_mlgst(ds,
                                               mdl_clgst,
                                               self.lsgstStrings,
                                               verbosity=0,
                                               minProbClip=1e-4,
                                               probClipInterval=(-1e2, 1e2),
                                               memLimit=CM + 1024**3)
        maxLogL, all_gs_mlegst_tups = pygsti.do_iterative_mlgst(
            ds,
            mdl_clgst,
            [[mdl.tup for mdl in gsList] for gsList in self.lsgstStrings],
            minProbClip=1e-4,
            probClipInterval=(-1e2, 1e2),
            returnAll=True,
            returnMaxLogL=True)

        mdl_mlegst_verb = self.runSilent(pygsti.do_iterative_mlgst,
                                         ds,
                                         mdl_clgst,
                                         self.lsgstStrings,
                                         verbosity=10,
                                         minProbClip=1e-4,
                                         probClipInterval=(-1e2, 1e2),
                                         memLimit=CM + 1024**3)
        self.assertAlmostEqual(mdl_mlegst.frobeniusdist(mdl_mlegst_verb),
                               0,
                               places=5)
        self.assertAlmostEqual(mdl_mlegst.frobeniusdist(
            all_gs_mlegst_tups[-1]),
                               0,
                               places=5)

        #Run internal checks on less max-L values (so it doesn't take forever)
        mdl_mlegst_chk = pygsti.do_iterative_mlgst(ds,
                                                   mdl_clgst,
                                                   self.lsgstStrings[0:2],
                                                   verbosity=0,
                                                   minProbClip=1e-4,
                                                   probClipInterval=(-1e2,
                                                                     1e2),
                                                   check=True)

        #Forcing function used by linear response error bars
        forcingfn_grad = np.ones((1, mdl_clgst.num_params()), 'd')
        mdl_lsgst_chk_opts3 = pygsti.algorithms.core._do_mlgst_base(
            ds,
            mdl_clgst,
            self.lsgstStrings[0],
            verbosity=0,
            minProbClip=1e-4,
            probClipInterval=(-1e2, 1e2),
            forcefn_grad=forcingfn_grad)
        with self.assertRaises(NotImplementedError):
            # Non-poisson picture needs support for a non-leastsq solver (not impl yet)
            mdl_lsgst_chk_opts4 = pygsti.algorithms.core._do_mlgst_base(
                ds,
                mdl_clgst,
                self.lsgstStrings[0],
                verbosity=0,
                poissonPicture=False,
                minProbClip=1e-4,
                probClipInterval=(-1e2, 1e2),
                forcefn_grad=forcingfn_grad)  # non-poisson picture

        #Check with small but ok memlimit -- not anymore since new mem estimation uses current memory, making this non-robust
        #self.runSilent(pygsti.do_mlgst, ds, mdl_clgst, self.lsgstStrings[0], minProbClip=1e-6,
        #                probClipInterval=(-1e2,1e2), verbosity=4, memLimit=curMem+8500000) #invoke memory control

        #non-Poisson picture - should use (-1,-1) model for consistency?
        with self.assertRaises(NotImplementedError):
            # Non-poisson picture needs support for a non-leastsq solver (not impl yet)
            pygsti.do_mlgst(ds,
                            mdl_clgst,
                            self.lsgstStrings[0],
                            minProbClip=1e-4,
                            probClipInterval=(-1e2, 1e2),
                            verbosity=0,
                            poissonPicture=False)
            try:
                pygsti.do_mlgst(
                    ds,
                    mdl_clgst,
                    self.lsgstStrings[0],
                    minProbClip=1e-1,  # 1e-1 b/c get inf Jacobians...
                    probClipInterval=(-1e2, 1e2),
                    verbosity=0,
                    poissonPicture=False,
                    spam_penalty_factor=1.0,
                    cptp_penalty_factor=1.0)
            except ValueError:
                pass  # ignore when assertions in customlm.py are disabled
            except AssertionError:
                pass  # just ignore for now.  FUTURE: see what we can do in custom LM about scaling large jacobians...

        #Check errors:
        with self.assertRaises(MemoryError):
            pygsti.do_mlgst(ds,
                            mdl_clgst,
                            self.lsgstStrings[0],
                            minProbClip=1e-4,
                            probClipInterval=(-1e2, 1e2),
                            verbosity=0,
                            memLimit=1)

        # RUN BELOW LINES TO SEED SAVED GATESET FILES
        if regenerate_references():
            pygsti.io.write_model(mdl_mlegst, compare_files + "/mle_gst.model",
                                  "Saved MLE-GST Model")

        mdl_mle_compare = pygsti.io.load_model(compare_files +
                                               "/mle_gst.model")
        mdl_mlegst_go = pygsti.gaugeopt_to_target(mdl_mlegst,
                                                  mdl_mle_compare,
                                                  {'spam': 1.0},
                                                  checkJac=True)

        self.assertAlmostEqual(mdl_mlegst_go.frobeniusdist(mdl_mle_compare),
                               0,
                               places=4)
예제 #13
0
    def test_MC2GST(self):

        ds = self.ds

        mdl_lgst = pygsti.do_lgst(ds,
                                  self.fiducials,
                                  self.fiducials,
                                  self.model,
                                  svdTruncateTo=4,
                                  verbosity=0)
        mdl_lgst_go = pygsti.gaugeopt_to_target(mdl_lgst,
                                                self.model, {
                                                    'spam': 1.0,
                                                    'gates': 1.0
                                                },
                                                checkJac=True)
        mdl_clgst = pygsti.contract(mdl_lgst_go, "CPTP")
        CM = profiler._get_mem_usage()

        mdl_lsgst = pygsti.do_iterative_mc2gst(ds,
                                               mdl_clgst,
                                               self.lsgstStrings,
                                               verbosity=0,
                                               minProbClipForWeighting=1e-6,
                                               probClipInterval=(-1e6, 1e6),
                                               memLimit=CM + 1024**3)
        all_minErrs, all_gs_lsgst_tups = pygsti.do_iterative_mc2gst(
            ds,
            mdl_clgst,
            [[mdl.tup for mdl in gsList] for gsList in self.lsgstStrings],
            minProbClipForWeighting=1e-6,
            probClipInterval=(-1e6, 1e6),
            returnAll=True,
            returnErrorVec=True)
        mdl_lsgst_verb = self.runSilent(pygsti.do_iterative_mc2gst,
                                        ds,
                                        mdl_clgst,
                                        self.lsgstStrings,
                                        verbosity=10,
                                        minProbClipForWeighting=1e-6,
                                        probClipInterval=(-1e6, 1e6),
                                        memLimit=CM + 1024**3)
        mdl_lsgst_reg = self.runSilent(pygsti.do_iterative_mc2gst,
                                       ds,
                                       mdl_clgst,
                                       self.lsgstStrings,
                                       verbosity=10,
                                       minProbClipForWeighting=1e-6,
                                       probClipInterval=(-1e6, 1e6),
                                       regularizeFactor=10,
                                       memLimit=CM + 1024**3)
        self.assertAlmostEqual(mdl_lsgst.frobeniusdist(mdl_lsgst_verb), 0)
        self.assertAlmostEqual(mdl_lsgst.frobeniusdist(all_gs_lsgst_tups[-1]),
                               0)

        # RUN BELOW LINES TO SEED SAVED GATESET FILES
        if regenerate_references():
            pygsti.io.write_model(mdl_lsgst, compare_files + "/lsgst.model",
                                  "Saved LSGST Model")
            pygsti.io.write_model(mdl_lsgst_reg,
                                  compare_files + "/lsgst_reg.model",
                                  "Saved LSGST Model w/Regularization")

        mdl_lsgst_compare = pygsti.io.load_model(compare_files +
                                                 "/lsgst.model")
        mdl_lsgst_reg_compare = pygsti.io.load_model(compare_files +
                                                     "/lsgst_reg.model")

        mdl_lsgst_go = pygsti.gaugeopt_to_target(mdl_lsgst,
                                                 mdl_lsgst_compare,
                                                 {'spam': 1.0},
                                                 checkJac=True)

        mdl_lsgst_reg_go = pygsti.gaugeopt_to_target(mdl_lsgst_reg,
                                                     mdl_lsgst_reg_compare,
                                                     {'spam': 1.0},
                                                     checkJac=True)

        self.assertAlmostEqual(mdl_lsgst_go.frobeniusdist(mdl_lsgst_compare),
                               0,
                               places=4)
        self.assertAlmostEqual(
            mdl_lsgst_reg_go.frobeniusdist(mdl_lsgst_reg_compare), 0, places=4)

        # RUN BELOW LINES TO SEED SAVED GATESET FILES
        if regenerate_references():
            mdl_lsgst_go = pygsti.gaugeopt_to_target(mdl_lsgst, self.model,
                                                     {'spam': 1.0})
            pygsti.io.write_model(mdl_lsgst_go,
                                  compare_files + "/analysis.model",
                                  "Saved LSGST Analysis Model")
            print("DEBUG: analysis.model = ")
            print(mdl_lgst_go)
예제 #14
0
    def test_eLGST(self):

        ds = self.ds

        assert (pygsti.obj.Model._pcheck)
        mdl_lgst = pygsti.do_lgst(ds,
                                  self.fiducials,
                                  self.fiducials,
                                  self.model,
                                  svdTruncateTo=4,
                                  verbosity=0)
        #mdl_lgst._check_paramvec() #will fail, but OK, since paramvec is computed only when *needed* now
        mdl_lgst_go = pygsti.gaugeopt_to_target(mdl_lgst,
                                                self.model, {
                                                    'spam': 1.0,
                                                    'gates': 1.0
                                                },
                                                checkJac=True)
        mdl_lgst_go._check_paramvec()
        mdl_clgst = pygsti.contract(mdl_lgst_go, "CPTP")
        mdl_clgst.to_vector()  # to make sure we're in sync
        mdl_clgst._check_paramvec()
        self.model._check_paramvec()

        _, mdl_single_exlgst = pygsti.do_exlgst(ds,
                                                mdl_clgst,
                                                self.elgstStrings[0],
                                                self.fiducials,
                                                self.fiducials,
                                                self.model,
                                                regularizeFactor=1e-3,
                                                svdTruncateTo=4,
                                                verbosity=0)
        mdl_single_exlgst._check_paramvec()

        _, mdl_single_exlgst_verb = self.runSilent(pygsti.do_exlgst,
                                                   ds,
                                                   mdl_clgst,
                                                   self.elgstStrings[0],
                                                   self.fiducials,
                                                   self.fiducials,
                                                   self.model,
                                                   regularizeFactor=1e-3,
                                                   svdTruncateTo=4,
                                                   verbosity=10)
        mdl_single_exlgst_verb._check_paramvec()

        self.assertAlmostEqual(
            mdl_single_exlgst.frobeniusdist(mdl_single_exlgst_verb), 0)

        mdl_exlgst = pygsti.do_iterative_exlgst(ds,
                                                mdl_clgst,
                                                self.fiducials,
                                                self.fiducials,
                                                self.elgstStrings,
                                                targetModel=self.model,
                                                svdTruncateTo=4,
                                                verbosity=0)

        all_minErrs, all_gs_exlgst_tups = pygsti.do_iterative_exlgst(
            ds,
            mdl_clgst,
            self.fiducials,
            self.fiducials,
            [[mdl.tup for mdl in gsList] for gsList in self.elgstStrings],
            targetModel=self.model,
            svdTruncateTo=4,
            verbosity=0,
            returnAll=True,
            returnErrorVec=True)

        mdl_exlgst_verb = self.runSilent(pygsti.do_iterative_exlgst,
                                         ds,
                                         mdl_clgst,
                                         self.fiducials,
                                         self.fiducials,
                                         self.elgstStrings,
                                         targetModel=self.model,
                                         svdTruncateTo=4,
                                         verbosity=10)
        mdl_exlgst_reg = pygsti.do_iterative_exlgst(ds,
                                                    mdl_clgst,
                                                    self.fiducials,
                                                    self.fiducials,
                                                    self.elgstStrings,
                                                    targetModel=self.model,
                                                    svdTruncateTo=4,
                                                    verbosity=0,
                                                    regularizeFactor=10)
        self.assertAlmostEqual(mdl_exlgst.frobeniusdist(mdl_exlgst_verb), 0)
        self.assertAlmostEqual(
            mdl_exlgst.frobeniusdist(all_gs_exlgst_tups[-1]), 0)

        #Run internal checks on less max-L values (so it doesn't take forever)
        mdl_exlgst_chk = pygsti.do_iterative_exlgst(ds,
                                                    mdl_clgst,
                                                    self.fiducials,
                                                    self.fiducials,
                                                    self.elgstStrings[0:2],
                                                    targetModel=self.model,
                                                    svdTruncateTo=4,
                                                    verbosity=0,
                                                    check_jacobian=True)
        mdl_exlgst_chk_verb = self.runSilent(pygsti.do_iterative_exlgst,
                                             ds,
                                             mdl_clgst,
                                             self.fiducials,
                                             self.fiducials,
                                             self.elgstStrings[0:2],
                                             targetModel=self.model,
                                             svdTruncateTo=4,
                                             verbosity=10,
                                             check_jacobian=True)

        # RUN BELOW LINES TO SEED SAVED GATESET FILES
        if regenerate_references():
            pygsti.io.write_model(mdl_exlgst, compare_files + "/exlgst.model",
                                  "Saved Extended-LGST (eLGST) Model")
            pygsti.io.write_model(
                mdl_exlgst_reg, compare_files + "/exlgst_reg.model",
                "Saved Extended-LGST (eLGST) Model w/regularization")

        mdl_exlgst_compare = pygsti.io.load_model(compare_files +
                                                  "/exlgst.model")
        mdl_exlgst_reg_compare = pygsti.io.load_model(compare_files +
                                                      "/exlgst_reg.model")
        mdl_exlgst.set_all_parameterizations(
            "full"
        )  # b/c ex-LGST sets spam to StaticSPAMVec objects (b/c they're not optimized)
        mdl_exlgst_reg.set_all_parameterizations(
            "full"
        )  # b/c ex-LGST sets spam to StaticSPAMVec objects (b/c they're not optimized)
        mdl_exlgst_go = pygsti.gaugeopt_to_target(mdl_exlgst,
                                                  mdl_exlgst_compare,
                                                  {'spam': 1.0},
                                                  checkJac=True)
        mdl_exlgst_reg_go = pygsti.gaugeopt_to_target(mdl_exlgst_reg,
                                                      mdl_exlgst_reg_compare,
                                                      {'spam': 1.0},
                                                      checkJac=True)
예제 #15
0
    def testIntermediateMeas(self):
        # Mess with the target model to add some error to the povm and instrument
        self.assertEqual(self.target_model.num_params(), 92)  # 4*3 + 16*5 = 92
        mdl = self.target_model.depolarize(op_noise=0.01, spam_noise=0.01)
        gs2 = self.target_model.depolarize(
            max_op_noise=0.01, max_spam_noise=0.01,
            seed=1234)  #another way to depolarize
        mdl.povms['Mdefault'].depolarize(0.01)

        # Introducing a rotation error to the measurement
        Uerr = pygsti.rotation_gate_mx(
            [0, 0.02, 0])  # input angles are halved by the method
        E = np.dot(mdl.povms['Mdefault']['0'].T,
                   Uerr).T  # effect is stored as column vector
        Erem = self.povm_ident - E
        mdl.povms['Mdefault'] = pygsti.obj.UnconstrainedPOVM({
            '0': E,
            '1': Erem
        })

        # Now add the post-measurement gates from the vector E0 and remainder = id-E0
        Gmz_plus = np.dot(
            E, E.T)  #since E0 is stored internally as column spamvec
        Gmz_minus = np.dot(Erem, Erem.T)
        mdl.instruments['Iz'] = pygsti.obj.Instrument({
            'plus': Gmz_plus,
            'minus': Gmz_minus
        })
        self.assertEqual(mdl.num_params(), 92)  # 4*3 + 16*5 = 92
        #print(mdl)

        germs = std.germs
        fiducials = std.fiducials
        max_lengths = [1]  #,2,4,8]
        glbls = list(mdl.operations.keys()) + list(mdl.instruments.keys())
        lsgst_list = pygsti.construction.make_lsgst_experiment_list(
            glbls, fiducials, fiducials, germs, max_lengths)
        lsgst_list2 = pygsti.construction.make_lsgst_experiment_list(
            mdl, fiducials, fiducials, germs, max_lengths)  #use mdl as source
        self.assertEqual(lsgst_list, lsgst_list2)

        mdl_datagen = mdl
        ds = pygsti.construction.generate_fake_data(mdl, lsgst_list, 1000,
                                                    'none')  #'multinomial')
        pygsti.io.write_dataset(temp_files + "/intermediate_meas_dataset.txt",
                                ds)
        ds2 = pygsti.io.load_dataset(temp_files +
                                     "/intermediate_meas_dataset.txt")
        for opstr, dsRow in ds.items():
            for lbl, cnt in dsRow.counts.items():
                self.assertAlmostEqual(cnt, ds2[opstr].counts[lbl], places=2)
        #print(ds)

        #LGST
        mdl_lgst = pygsti.do_lgst(
            ds, fiducials, fiducials,
            self.target_model)  #, guessModelForGauge=mdl_datagen)
        self.assertTrue("Iz" in mdl_lgst.instruments)
        mdl_opt = pygsti.gaugeopt_to_target(mdl_lgst,
                                            mdl_datagen)  #, method="BFGS")
        print(mdl_datagen.strdiff(mdl_opt))
        print("Frobdiff = ", mdl_datagen.frobeniusdist(mdl_lgst))
        print("Frobdiff after GOpt = ", mdl_datagen.frobeniusdist(mdl_opt))
        self.assertAlmostEqual(mdl_datagen.frobeniusdist(mdl_opt),
                               0.0,
                               places=4)
        #print(mdl_lgst)
        #print(mdl_datagen)

        #DEBUG compiling w/dataset
        #dbList = pygsti.construction.make_lsgst_experiment_list(self.target_model,fiducials,fiducials,germs,max_lengths)
        ##self.target_model.simplify_circuits(dbList, ds)
        #self.target_model.simplify_circuits([ pygsti.obj.Circuit(None,stringrep="Iz") ], ds )
        #assert(False),"STOP"

        #LSGST
        results = pygsti.do_long_sequence_gst(ds, self.target_model, fiducials,
                                              fiducials, germs, max_lengths)
        #print(results.estimates['default'].models['go0'])
        mdl_est = results.estimates['default'].models['go0']
        mdl_est_opt = pygsti.gaugeopt_to_target(mdl_est, mdl_datagen)
        print("Frobdiff = ", mdl_datagen.frobeniusdist(mdl_est))
        print("Frobdiff after GOpt = ", mdl_datagen.frobeniusdist(mdl_est_opt))
        self.assertAlmostEqual(mdl_datagen.frobeniusdist(mdl_est_opt),
                               0.0,
                               places=4)

        #LGST w/TP gates
        mdl_targetTP = self.target_model.copy()
        mdl_targetTP.set_all_parameterizations("TP")
        self.assertEqual(mdl_targetTP.num_params(), 71)  # 3 + 4*2 + 12*5 = 71
        #print(mdl_targetTP)
        resultsTP = pygsti.do_long_sequence_gst(ds, mdl_targetTP, fiducials,
                                                fiducials, germs, max_lengths)
        mdl_est = resultsTP.estimates['default'].models['go0']
        mdl_est_opt = pygsti.gaugeopt_to_target(mdl_est, mdl_datagen)
        print("TP Frobdiff = ", mdl_datagen.frobeniusdist(mdl_est))
        print("TP Frobdiff after GOpt = ",
              mdl_datagen.frobeniusdist(mdl_est_opt))
        self.assertAlmostEqual(mdl_datagen.frobeniusdist(mdl_est_opt),
                               0.0,
                               places=4)
예제 #16
0
파일: testCore.py 프로젝트: hwerbel/pyGSTi
    def test_LGST(self):

        ds = self.ds
        #pygsti.construction.generate_fake_data(self.datagen_gateset, self.lgstStrings, nSamples=1000,
        #                                            sampleError='binomial', seed=None)

        print("GG0 = ",self.model.default_gauge_group)
        mdl_lgst = pygsti.do_lgst(ds, self.fiducials, self.fiducials, self.model, svdTruncateTo=4, verbosity=0)
        mdl_lgst_verb = self.runSilent(pygsti.do_lgst, ds, self.fiducials, self.fiducials, self.model, svdTruncateTo=4, verbosity=10)
        self.assertAlmostEqual(mdl_lgst.frobeniusdist(mdl_lgst_verb),0)

        print("GG = ",mdl_lgst.default_gauge_group)
        mdl_lgst_go = pygsti.gaugeopt_to_target(mdl_lgst,self.model, {'spam':1.0, 'gates': 1.0}, checkJac=True)
        mdl_clgst = pygsti.contract(mdl_lgst_go, "CPTP")

        # RUN BELOW LINES TO SEED SAVED GATESET FILES
        if os.environ.get('PYGSTI_REGEN_REF_FILES','no').lower() in ("yes","1","true"):
            pygsti.io.write_model(mdl_lgst,compare_files + "/lgst.model", "Saved LGST Model before gauge optimization")
            pygsti.io.write_model(mdl_lgst_go,compare_files + "/lgst_go.model", "Saved LGST Model after gauge optimization")
            pygsti.io.write_model(mdl_clgst,compare_files + "/clgst.model", "Saved LGST Model after G.O. and CPTP contraction")

        mdl_lgst_compare = pygsti.io.load_model(compare_files + "/lgst.model")
        mdl_lgst_go_compare = pygsti.io.load_model(compare_files + "/lgst_go.model")
        mdl_clgst_compare = pygsti.io.load_model(compare_files + "/clgst.model")

        self.assertAlmostEqual( mdl_lgst.frobeniusdist(mdl_lgst_compare), 0, places=5)
        self.assertAlmostEqual( mdl_lgst_go.frobeniusdist(mdl_lgst_go_compare), 0, places=5)
        self.assertAlmostEqual( mdl_clgst.frobeniusdist(mdl_clgst_compare), 0, places=5)

        #Check for error conditions
        with self.assertRaises(ValueError):
            mdl_lgst = pygsti.do_lgst(ds, self.fiducials, self.fiducials, None, svdTruncateTo=4, verbosity=0) #no target model

        with self.assertRaises(ValueError):
            mdl_lgst = pygsti.do_lgst(ds, self.fiducials, self.fiducials, None, opLabels=list(self.model.operations.keys()),
                                     svdTruncateTo=4, verbosity=0) #no spam dict

        #No need for identity vector anymore
        #with self.assertRaises(ValueError):
        #    mdl_lgst = pygsti.do_lgst(ds, self.fiducials, self.fiducials, None, opLabels=list(self.model.operations.keys()),
        #                             spamDict=self.model.get_reverse_spam_defs(),
        #                             svdTruncateTo=4, verbosity=0) #no identity vector

        with self.assertRaises(ValueError):
            bad_fids =pygsti.construction.circuit_list([('Gx',),('Gx',),('Gx',),('Gx',)])
            mdl_lgst = pygsti.do_lgst(ds, bad_fids, bad_fids, self.model, svdTruncateTo=4, verbosity=0) # bad fiducials (rank deficient)


        with self.assertRaises(KeyError): # AB-matrix construction error
            incomplete_strings = self.lgstStrings[5:] #drop first 5 strings...
            bad_ds = pygsti.construction.generate_fake_data(
                self.datagen_gateset, incomplete_strings,
                nSamples=10, sampleError='none')
            mdl_lgst = pygsti.do_lgst(bad_ds, self.fiducials, self.fiducials, self.model,
                                     svdTruncateTo=4, verbosity=0)
                      # incomplete dataset

        with self.assertRaises(KeyError): # X-matrix construction error
            incomplete_strings = self.lgstStrings[:-5] #drop last 5 strings...
            bad_ds = pygsti.construction.generate_fake_data(
                self.datagen_gateset, incomplete_strings,
                nSamples=10, sampleError='none')
            mdl_lgst = pygsti.do_lgst(bad_ds, self.fiducials, self.fiducials, self.model,
                                     svdTruncateTo=4, verbosity=0)
예제 #17
0
    def setUpClass(cls):
        """
        Handle all once-per-class (slow) computation and loading,
         to avoid calling it for each test (like setUp).  Store
         results in class variable for use within setUp.
        """
        super(ReportBaseCase, cls).setUpClass()

        orig_cwd = os.getcwd()
        os.chdir(os.path.abspath(os.path.dirname(__file__)))
        os.chdir('..') # The test_packages directory

        target_model = std.target_model()
        datagen_gateset = target_model.depolarize(op_noise=0.05, spam_noise=0.1)
        datagen_gateset2 = target_model.depolarize(op_noise=0.1, spam_noise=0.05).rotate((0.15,-0.03,0.03))

        #cls.specs = pygsti.construction.build_spam_specs(std.fiducials, effect_labels=['E0'])
        #  #only use the first EVec

        op_labels = std.gates
        cls.lgstStrings = pygsti.circuits.create_lgst_circuits(std.fiducials, std.fiducials, op_labels)
        cls.maxLengthList = [1,2,4,8]

        cls.lsgstStrings = pygsti.circuits.create_lsgst_circuit_lists(
            op_labels, std.fiducials, std.fiducials, std.germs, cls.maxLengthList)
        cls.lsgstStructs = pygsti.circuits.make_lsgst_structs(
            op_labels, std.fiducials, std.fiducials, std.germs, cls.maxLengthList)


        # RUN BELOW LINES TO GENERATE ANALYSIS DATASET (SAVE)
        if regenerate_references():
            ds = pygsti.data.simulate_data(datagen_gateset, cls.lsgstStrings[-1], num_samples=1000,
                                                   sample_error='binomial', seed=100)
            ds.save(compare_files + "/reportgen.dataset")
            ds2 = pygsti.data.simulate_data(datagen_gateset2, cls.lsgstStrings[-1], num_samples=1000,
                                                    sample_error='binomial', seed=100)
            ds2.save(compare_files + "/reportgen2.dataset")


        cls.ds = pygsti.data.DataSet(file_to_load_from=compare_files + "/reportgen.dataset")
        cls.ds2 = pygsti.data.DataSet(file_to_load_from=compare_files + "/reportgen2.dataset")

        mdl_lgst = pygsti.run_lgst(cls.ds, std.fiducials, std.fiducials, target_model, svd_truncate_to=4, verbosity=0)
        mdl_lgst_go = pygsti.gaugeopt_to_target(mdl_lgst, target_model, {'gates': 1.0, 'spam': 0.0})
        cls.mdl_clgst = pygsti.contract(mdl_lgst_go, "CPTP")
        cls.mdl_clgst_tp = pygsti.contract(cls.mdl_clgst, "vSPAM")
        cls.mdl_clgst_tp.set_all_parameterizations("full TP")

        #Compute results for MC2GST
        lsgst_gatesets_prego, *_ = pygsti.run_iterative_gst(
            cls.ds, cls.mdl_clgst, cls.lsgstStrings,
            optimizer={'tol': 1e-5},
            iteration_objfn_builders=['chi2'],
            final_objfn_builders=[],
            resource_alloc=None,
            verbosity=0
        )

        experiment_design = pygsti.protocols.StandardGSTDesign(
            target_model.create_processor_spec(), std.fiducials, std.fiducials, std.germs, cls.maxLengthList
        )
        data = pygsti.protocols.ProtocolData(experiment_design, cls.ds)
        protocol = pygsti.protocols.StandardGST()
        cls.results = pygsti.protocols.gst.ModelEstimateResults(data, protocol)
        cls.results.add_estimate(pygsti.protocols.estimate.Estimate.create_gst_estimate(
            cls.results, target_model, cls.mdl_clgst,lsgst_gatesets_prego,
            {'objective': "chi2",
             'min_prob_clip_for_weighting': 1e-4,
             'prob_clip_interval': (-1e6,1e6), 'radius': 1e-4,
             'weights': None, 'defaultDirectory': temp_files + "",
             'defaultBasename': "MyDefaultReportName"}
        ))

        gaugeOptParams = collections.OrderedDict([
                ('model', lsgst_gatesets_prego[-1]),  #so can gauge-propagate CIs
                ('target_model', target_model),       #so can gauge-propagate CIs
                ('cptp_penalty_factor', 0),
                ('gates_metric',"frobenius"),
                ('spam_metric',"frobenius"),
                ('item_weights', {'gates': 1.0, 'spam': 0.001}),
                ('return_all', True) ])

        _, gaugeEl, go_final_gateset = pygsti.gaugeopt_to_target(**gaugeOptParams)
        gaugeOptParams['_gaugeGroupEl'] = gaugeEl  #so can gauge-propagate CIs
        cls.results.estimates['default'].add_gaugeoptimized(gaugeOptParams, go_final_gateset)
        cls.results.estimates['default'].add_gaugeoptimized(gaugeOptParams, go_final_gateset, "go_dup")

        #Compute results for MLGST with TP constraint
        # Use run_long_sequence_gst with a non-mark dataset to trigger data scaling
        tp_target = target_model.copy(); tp_target.set_all_parameterizations("full TP")


        cls.ds3 = cls.ds.copy_nonstatic()
        cls.ds3.add_counts_from_dataset(cls.ds2)
        cls.ds3.done_adding_data()

        cls.results_logL = pygsti.run_long_sequence_gst(cls.ds3, tp_target, std.fiducials, std.fiducials,
                                                        std.germs, cls.maxLengthList, verbosity=0,
                                                        advanced_options={'tolerance': 1e-6, 'starting_point': 'LGST',
                                                                        'on_bad_fit': ["robust","Robust","robust+","Robust+"],
                                                                        'bad_fit_threshold': -1.0,
                                                                        'germ_length_limits': {('Gx','Gi','Gi'): 2} })

        #OLD
        #lsgst_gatesets_TP = pygsti.do_iterative_mlgst(cls.ds, cls.mdl_clgst_tp, cls.lsgstStrings, verbosity=0,
        #                                           min_prob_clip=1e-4, prob_clip_interval=(-1e6,1e6),
        #                                           returnAll=True) #TP initial model => TP output models
        #cls.results_logL = pygsti.objects.Results()
        #cls.results_logL.init_dataset(cls.ds)
        #cls.results_logL.init_circuits(cls.lsgstStructs)
        #cls.results_logL.add_estimate(target_model, cls.mdl_clgst_tp,
        #                         lsgst_gatesets_TP,
        #                         {'objective': "logl",
        #                          'min_prob_clip': 1e-4,
        #                          'prob_clip_interval': (-1e6,1e6), 'radius': 1e-4,
        #                          'weights': None, 'defaultDirectory': temp_files + "",
        #                          'defaultBasename': "MyDefaultReportName"})
        #
        #tp_target = target_model.copy(); tp_target.set_all_parameterizations("full TP")
        #gaugeOptParams = gaugeOptParams.copy() #just to be safe
        #gaugeOptParams['model'] = lsgst_gatesets_TP[-1]  #so can gauge-propagate CIs
        #gaugeOptParams['target_model'] = tp_target  #so can gauge-propagate CIs
        #_, gaugeEl, go_final_gateset = pygsti.gaugeopt_to_target(**gaugeOptParams)
        #gaugeOptParams['_gaugeGroupEl'] = gaugeEl #so can gauge-propagate CIs
        #cls.results_logL.estimates['default'].add_gaugeoptimized(gaugeOptParams, go_final_gateset)
        #
        ##self.results_logL.options.precision = 3
        ##self.results_logL.options.polar_precision = 2

        os.chdir(orig_cwd)
예제 #18
0
    def test_MC2GST(self):

        ds = self.ds
        #pygsti.construction.generate_fake_data(self.datagen_gateset, self.lsgstStrings[-1],
        #                                            nSamples=1000, sampleError='binomial', seed=100)

        gs_lgst = pygsti.do_lgst(ds, self.fiducials, self.fiducials, self.gateset, svdTruncateTo=4, verbosity=0)
        gs_lgst_go = pygsti.gaugeopt_to_target(gs_lgst,self.gateset, {'spam':1.0, 'gates': 1.0}, checkJac=True)
        gs_clgst = pygsti.contract(gs_lgst_go, "CPTP")
        CM = pygsti.baseobjs.profiler._get_mem_usage()

        gs_single_lsgst = pygsti.do_mc2gst(ds, gs_clgst, self.lsgstStrings[0], minProbClipForWeighting=1e-4,
                                           probClipInterval=(-1e6,1e6), regularizeFactor=1e-3,
                                           verbosity=0) #uses regularizeFactor

        gs_single_lsgst_cp = pygsti.do_mc2gst(ds, gs_clgst, self.lsgstStrings[0], minProbClipForWeighting=1e-4,
                                           probClipInterval=(-1e6,1e6), cptp_penalty_factor=1.0,
                                           verbosity=0) #uses cptp_penalty_factor

        gs_single_lsgst_sp = pygsti.do_mc2gst(ds, gs_clgst, self.lsgstStrings[0], minProbClipForWeighting=1e-4,
                                              probClipInterval=(-1e6,1e6), spam_penalty_factor=1.0,
                                              verbosity=0) #uses spam_penalty_factor

        gs_single_lsgst_cpsp = pygsti.do_mc2gst(ds, gs_clgst, self.lsgstStrings[0], minProbClipForWeighting=1e-4,
                                                probClipInterval=(-1e6,1e6), cptp_penalty_factor=1.0,
                                                spam_penalty_factor=1.0, verbosity=0) #uses both penalty factors

        gs_single_lsgst_cpsp = self.runSilent(pygsti.do_mc2gst, ds, gs_clgst, self.lsgstStrings[0], minProbClipForWeighting=1e-4,
                                              probClipInterval=(-1e6,1e6), cptp_penalty_factor=1.0,
                                              spam_penalty_factor=1.0, verbosity=10) #uses both penalty factors w/verbosity high
        gs_single_lsgst_cp = self.runSilent(pygsti.do_mc2gst, ds, gs_clgst, self.lsgstStrings[0], minProbClipForWeighting=1e-4,
                                            probClipInterval=(-1e6,1e6), cptp_penalty_factor=1.0,
                                            verbosity=10) #uses cptp_penalty_factor w/verbosity high
        gs_single_lsgst_sp = self.runSilent(pygsti.do_mc2gst, ds, gs_clgst, self.lsgstStrings[0], minProbClipForWeighting=1e-4,
                                            probClipInterval=(-1e6,1e6), spam_penalty_factor=1.0,
                                            verbosity=10) #uses spam_penalty_factor w/verbosity high


        
        gs_lsgst = pygsti.do_iterative_mc2gst(ds, gs_clgst, self.lsgstStrings, verbosity=0,
                                             minProbClipForWeighting=1e-6, probClipInterval=(-1e6,1e6),
                                             memLimit=CM + 1024**3)
        all_minErrs, all_gs_lsgst_tups = pygsti.do_iterative_mc2gst(
            ds, gs_clgst, [ [gs.tup for gs in gsList] for gsList in self.lsgstStrings],
            minProbClipForWeighting=1e-6, probClipInterval=(-1e6,1e6), returnAll=True, returnErrorVec=True)
        gs_lsgst_verb = self.runSilent(pygsti.do_iterative_mc2gst, ds, gs_clgst, self.lsgstStrings, verbosity=10,
                                             minProbClipForWeighting=1e-6, probClipInterval=(-1e6,1e6),
                                             memLimit=CM + 1024**3)
        gs_lsgst_reg = self.runSilent(pygsti.do_iterative_mc2gst,ds, gs_clgst,
                                      self.lsgstStrings, verbosity=10,
                                      minProbClipForWeighting=1e-6,
                                      probClipInterval=(-1e6,1e6),
                                      regularizeFactor=10, memLimit=CM + 1024**3)
        self.assertAlmostEqual(gs_lsgst.frobeniusdist(gs_lsgst_verb),0)
        self.assertAlmostEqual(gs_lsgst.frobeniusdist(all_gs_lsgst_tups[-1]),0)


        #Run internal checks on less max-L values (so it doesn't take forever)
        gs_lsgst_chk = pygsti.do_iterative_mc2gst(ds, gs_clgst, self.lsgstStrings[0:2], verbosity=0,
                                                 minProbClipForWeighting=1e-6, probClipInterval=(-1e6,1e6),
                                                 check=True, check_jacobian=True)
        gs_lsgst_chk_verb = self.runSilent(pygsti.do_iterative_mc2gst, ds, gs_clgst, self.lsgstStrings[0:2], verbosity=10,
                                                      minProbClipForWeighting=1e-6, probClipInterval=(-1e6,1e6),
                                                      check=True, check_jacobian=True, memLimit=CM + 1024**3)

        #Other option variations - just make sure they run at this point
        gs_lsgst_chk_opts = pygsti.do_iterative_mc2gst(ds, gs_clgst, self.lsgstStrings[0:2], verbosity=0,
                                                      minProbClipForWeighting=1e-6, probClipInterval=(-1e6,1e6),
                                                      useFreqWeightedChiSq=True, gateStringSetLabels=["Set1","Set2"],
                                                      gatestringWeightsDict={ ('Gx',): 2.0 } )

        aliased_list = [ pygsti.obj.GateString( [ (x if x != "Gx" else "GA1") for x in gs]) for gs in self.lsgstStrings[0] ]
        gs_withA1 = gs_clgst.copy(); gs_withA1.gates["GA1"] = gs_clgst.gates["Gx"]
        del gs_withA1.gates["Gx"] # otherwise gs_withA1 will have Gx params that we have no knowledge of!
        gs_lsgst_chk_opts2 = pygsti.do_mc2gst(ds, gs_withA1, aliased_list, minProbClipForWeighting=1e-6,
                                              probClipInterval=(-1e2,1e2), verbosity=10,
                                              gateLabelAliases={ 'GA1': ('Gx',) })

        
        #Check with small but ok memlimit -- not anymore since new mem estimation uses current memory, making this non-robust
        #self.runSilent(pygsti.do_mc2gst,ds, gs_clgst, self.lsgstStrings[0], minProbClipForWeighting=1e-6,
        #                 probClipInterval=(-1e6,1e6), regularizeFactor=1e-3,
        #                 verbosity=10, memLimit=CM + 1024**3)


        #Check errors:
        with self.assertRaises(MemoryError):
            pygsti.do_mc2gst(ds, gs_clgst, self.lsgstStrings[0], minProbClipForWeighting=1e-6,
                             probClipInterval=(-1e6,1e6), regularizeFactor=1e-3,
                             verbosity=0, memLimit=1)

        with self.assertRaises(AssertionError):
            pygsti.do_mc2gst(ds, gs_clgst, self.lsgstStrings[0], minProbClipForWeighting=1e-6,
                             probClipInterval=(-1e6,1e6), regularizeFactor=1e-3,
                             verbosity=0, cptp_penalty_factor=1.0) #can't specify both cptp_penalty_factor and regularizeFactor


        # RUN BELOW LINES TO SEED SAVED GATESET FILES
        #pygsti.io.write_gateset(gs_lsgst,compare_files + "/lsgst.gateset", "Saved LSGST Gateset")
        #pygsti.io.write_gateset(gs_lsgst_reg,compare_files + "/lsgst_reg.gateset", "Saved LSGST Gateset w/Regularization")

        gs_lsgst_compare = pygsti.io.load_gateset(compare_files + "/lsgst.gateset")
        gs_lsgst_reg_compare = pygsti.io.load_gateset(compare_files + "/lsgst_reg.gateset")

        gs_lsgst_go = pygsti.gaugeopt_to_target(gs_lsgst, gs_lsgst_compare, {'spam':1.0}, checkJac=True)

        gs_lsgst_reg_go = pygsti.gaugeopt_to_target(gs_lsgst_reg, gs_lsgst_reg_compare, {'spam':1.0}, checkJac=True)

        self.assertAlmostEqual( gs_lsgst_go.frobeniusdist(gs_lsgst_compare), 0, places=4)
        self.assertAlmostEqual( gs_lsgst_reg_go.frobeniusdist(gs_lsgst_reg_compare), 0, places=4)
예제 #19
0
    def test_LGST(self):

        ds = self.ds
        #pygsti.construction.generate_fake_data(self.datagen_gateset, self.lgstStrings, nSamples=1000,
        #                                            sampleError='binomial', seed=None)

        print("GG0 = ",self.gateset.default_gauge_group)
        gs_lgst = pygsti.do_lgst(ds, self.fiducials, self.fiducials, self.gateset, svdTruncateTo=4, verbosity=0)
        gs_lgst_verb = self.runSilent(pygsti.do_lgst, ds, self.fiducials, self.fiducials, self.gateset, svdTruncateTo=4, verbosity=10)
        self.assertAlmostEqual(gs_lgst.frobeniusdist(gs_lgst_verb),0)

        print("GG = ",gs_lgst.default_gauge_group)
        gs_lgst_go = pygsti.gaugeopt_to_target(gs_lgst,self.gateset, {'spam':1.0, 'gates': 1.0}, checkJac=True)
        gs_clgst = pygsti.contract(gs_lgst_go, "CPTP")

        # RUN BELOW LINES TO SEED SAVED GATESET FILES
        #pygsti.io.write_gateset(gs_lgst,compare_files + "/lgst.gateset", "Saved LGST Gateset before gauge optimization")
        #pygsti.io.write_gateset(gs_lgst_go,compare_files + "/lgst_go.gateset", "Saved LGST Gateset after gauge optimization")
        #pygsti.io.write_gateset(gs_clgst,compare_files + "/clgst.gateset", "Saved LGST Gateset after G.O. and CPTP contraction")

        gs_lgst_compare = pygsti.io.load_gateset(compare_files + "/lgst.gateset")
        gs_lgst_go_compare = pygsti.io.load_gateset(compare_files + "/lgst_go.gateset")
        gs_clgst_compare = pygsti.io.load_gateset(compare_files + "/clgst.gateset")

        self.assertAlmostEqual( gs_lgst.frobeniusdist(gs_lgst_compare), 0, places=5)
        self.assertAlmostEqual( gs_lgst_go.frobeniusdist(gs_lgst_go_compare), 0, places=5)
        self.assertAlmostEqual( gs_clgst.frobeniusdist(gs_clgst_compare), 0, places=5)

        #Check for error conditions
        with self.assertRaises(ValueError):
            gs_lgst = pygsti.do_lgst(ds, self.fiducials, self.fiducials, None, svdTruncateTo=4, verbosity=0) #no target gateset

        with self.assertRaises(ValueError):
            gs_lgst = pygsti.do_lgst(ds, self.fiducials, self.fiducials, None, gateLabels=list(self.gateset.gates.keys()),
                                     svdTruncateTo=4, verbosity=0) #no spam dict

        #No need for identity vector anymore
        #with self.assertRaises(ValueError):
        #    gs_lgst = pygsti.do_lgst(ds, self.fiducials, self.fiducials, None, gateLabels=list(self.gateset.gates.keys()),
        #                             spamDict=self.gateset.get_reverse_spam_defs(),
        #                             svdTruncateTo=4, verbosity=0) #no identity vector

        with self.assertRaises(ValueError):
            bad_fids =pygsti.construction.gatestring_list([('Gx',),('Gx',),('Gx',),('Gx',)])
            gs_lgst = pygsti.do_lgst(ds, bad_fids, bad_fids, self.gateset, svdTruncateTo=4, verbosity=0) # bad fiducials (rank deficient)


        with self.assertRaises(KeyError): # AB-matrix construction error
            incomplete_strings = self.lgstStrings[5:] #drop first 5 strings...
            bad_ds = pygsti.construction.generate_fake_data(
                self.datagen_gateset, incomplete_strings,
                nSamples=10, sampleError='none')
            gs_lgst = pygsti.do_lgst(bad_ds, self.fiducials, self.fiducials, self.gateset,
                                     svdTruncateTo=4, verbosity=0)
                      # incomplete dataset

        with self.assertRaises(KeyError): # X-matrix construction error
            incomplete_strings = self.lgstStrings[:-5] #drop last 5 strings...
            bad_ds = pygsti.construction.generate_fake_data(
                self.datagen_gateset, incomplete_strings,
                nSamples=10, sampleError='none')
            gs_lgst = pygsti.do_lgst(bad_ds, self.fiducials, self.fiducials, self.gateset,
                                     svdTruncateTo=4, verbosity=0)
예제 #20
0
파일: testCore.py 프로젝트: hwerbel/pyGSTi
    def test_MLGST(self):

        ds = self.ds
        #pygsti.construction.generate_fake_data(self.datagen_gateset, self.lsgstStrings[-1],
        #                                            nSamples=1000, sampleError='binomial', seed=100)

        mdl_lgst = pygsti.do_lgst(ds, self.fiducials, self.fiducials, self.model, svdTruncateTo=4, verbosity=0)
        mdl_lgst_go = pygsti.gaugeopt_to_target(mdl_lgst,self.model, {'spam':1.0, 'gates': 1.0}, checkJac=True)
        mdl_clgst = pygsti.contract(mdl_lgst_go, "CPTP") 
        mdl_clgst = mdl_clgst.depolarize(op_noise=0.02, spam_noise=0.02) # just to avoid infinity objective funct & jacs below
        CM = pygsti.baseobjs.profiler._get_mem_usage()

        mdl_single_mlgst = pygsti.do_mlgst(ds, mdl_clgst, self.lsgstStrings[0], minProbClip=1e-4,
                                          probClipInterval=(-1e2,1e2), verbosity=0)

        #this test often gives an assetion error "finite Jacobian has inf norm!" on Travis CI Python 3 case
        try:
            mdl_single_mlgst_cpsp = pygsti.do_mlgst(ds, mdl_clgst, self.lsgstStrings[0], minProbClip=1e-4,
                                                  probClipInterval=(-1e2,1e2), cptp_penalty_factor=1.0,
                                                  spam_penalty_factor=1.0, verbosity=10) #uses both penalty factors w/verbosity > 0
        except ValueError: pass # ignore when assertions in customlm.py are disabled
        except AssertionError:
            pass # just ignore for now.  FUTURE: see what we can do in custom LM about scaling large jacobians...
        
        try:
            mdl_single_mlgst_cp = pygsti.do_mlgst(ds, mdl_clgst, self.lsgstStrings[0], minProbClip=1e-4,
                                                  probClipInterval=(-1e2,1e2), cptp_penalty_factor=1.0,
                                                  verbosity=10)
        except ValueError: pass # ignore when assertions in customlm.py are disabled
        except AssertionError:
            pass # just ignore for now.  FUTURE: see what we can do in custom LM about scaling large jacobians...
        
        try:
            mdl_single_mlgst_sp = pygsti.do_mlgst(ds, mdl_clgst, self.lsgstStrings[0], minProbClip=1e-4,
                                                  probClipInterval=(-1e2,1e2), spam_penalty_factor=1.0,
                                                  verbosity=10)
        except ValueError: pass # ignore when assertions in customlm.py are disabled
        except AssertionError:
            pass # just ignore for now.  FUTURE: see what we can do in custom LM about scaling large jacobians...
            

        mdl_mlegst = pygsti.do_iterative_mlgst(ds, mdl_clgst, self.lsgstStrings, verbosity=0,
                                               minProbClip=1e-4, probClipInterval=(-1e2,1e2),
                                               memLimit=CM + 1024**3)
        maxLogL, all_gs_mlegst_tups = pygsti.do_iterative_mlgst(
            ds, mdl_clgst, [ [mdl.tup for mdl in gsList] for gsList in self.lsgstStrings],
            minProbClip=1e-4, probClipInterval=(-1e2,1e2), returnAll=True, returnMaxLogL=True)

        mdl_mlegst_verb = self.runSilent(pygsti.do_iterative_mlgst, ds, mdl_clgst, self.lsgstStrings, verbosity=10,
                                             minProbClip=1e-4, probClipInterval=(-1e2,1e2),
                                             memLimit=CM + 1024**3)
        self.assertAlmostEqual(mdl_mlegst.frobeniusdist(mdl_mlegst_verb),0, places=5)
        self.assertAlmostEqual(mdl_mlegst.frobeniusdist(all_gs_mlegst_tups[-1]),0,places=5)


        #Run internal checks on less max-L values (so it doesn't take forever)
        mdl_mlegst_chk = pygsti.do_iterative_mlgst(ds, mdl_clgst, self.lsgstStrings[0:2], verbosity=0,
                                                 minProbClip=1e-4, probClipInterval=(-1e2,1e2),
                                                 check=True)

        #Other option variations - just make sure they run at this point
        mdl_mlegst_chk_opts = pygsti.do_iterative_mlgst(ds, mdl_clgst, self.lsgstStrings[0:2], verbosity=0,
                                                       minProbClip=1e-4, probClipInterval=(-1e2,1e2),
                                                       circuitSetLabels=["Set1","Set2"], useFreqWeightedChiSq=True,
                                                       circuitWeightsDict={ (L('Gx'),): 2.0 } )

        aliased_list = [ pygsti.obj.Circuit( [ (x if x != L("Gx") else L("GA1")) for x in mdl]) for mdl in self.lsgstStrings[0] ]
        mdl_withA1 = mdl_clgst.copy(); mdl_withA1.operations["GA1"] = mdl_clgst.operations["Gx"]
        del mdl_withA1.operations["Gx"] # otherwise mdl_withA1 will have Gx params that we have no knowledge of!
        mdl_mlegst_chk_opts2 = pygsti.do_mlgst(ds, mdl_withA1, aliased_list, minProbClip=1e-4,
                                              probClipInterval=(-1e2,1e2), verbosity=10,
                                              opLabelAliases={ L('GA1'): (L('Gx'),) })

        #Other option variations - just make sure they run at this point
        mdl_mlegst_chk_opts3 = pygsti.do_iterative_mlgst(ds, mdl_clgst, self.lsgstStrings[0:2], verbosity=0,
                                                       minProbClip=1e-4, probClipInterval=(-1e2,1e2),
                                                       circuitSetLabels=["Set1","Set2"], useFreqWeightedChiSq=True,
                                                        circuitWeightsDict={ (L('Gx'),): 2.0 }, alwaysPerformMLE=True )

        #Forcing function used by linear response error bars
        forcingfn_grad = np.ones((1,mdl_clgst.num_params()), 'd')
        mdl_lsgst_chk_opts3 = pygsti.algorithms.core._do_mlgst_base(
            ds, mdl_clgst, self.lsgstStrings[0], verbosity=0,
            minProbClip=1e-4, probClipInterval=(-1e2,1e2),
            forcefn_grad=forcingfn_grad)
        with self.assertRaises(NotImplementedError):
            # Non-poisson picture needs support for a non-leastsq solver (not impl yet)
            mdl_lsgst_chk_opts4 = pygsti.algorithms.core._do_mlgst_base(
                ds, mdl_clgst, self.lsgstStrings[0], verbosity=0, poissonPicture=False, 
                minProbClip=1e-4, probClipInterval=(-1e2,1e2),
                forcefn_grad=forcingfn_grad) # non-poisson picture

        #Check with small but ok memlimit -- not anymore since new mem estimation uses current memory, making this non-robust
        #self.runSilent(pygsti.do_mlgst, ds, mdl_clgst, self.lsgstStrings[0], minProbClip=1e-6,
        #                probClipInterval=(-1e2,1e2), verbosity=4, memLimit=curMem+8500000) #invoke memory control

        #non-Poisson picture - should use (-1,-1) model for consistency?
        with self.assertRaises(NotImplementedError):
            # Non-poisson picture needs support for a non-leastsq solver (not impl yet)
            pygsti.do_mlgst(ds, mdl_clgst, self.lsgstStrings[0], minProbClip=1e-4,
                            probClipInterval=(-1e2,1e2), verbosity=0, poissonPicture=False)
            try:
                pygsti.do_mlgst(ds, mdl_clgst, self.lsgstStrings[0], minProbClip=1e-1, # 1e-1 b/c get inf Jacobians...
                                probClipInterval=(-1e2,1e2), verbosity=0, poissonPicture=False,
                                spam_penalty_factor=1.0, cptp_penalty_factor=1.0)
            except ValueError: pass # ignore when assertions in customlm.py are disabled
            except AssertionError:
                pass # just ignore for now.  FUTURE: see what we can do in custom LM about scaling large jacobians...



        #Check errors:
        with self.assertRaises(MemoryError):
            pygsti.do_mlgst(ds, mdl_clgst, self.lsgstStrings[0], minProbClip=1e-4,
                            probClipInterval=(-1e2,1e2),verbosity=0, memLimit=1)


        # RUN BELOW LINES TO SEED SAVED GATESET FILES
        if os.environ.get('PYGSTI_REGEN_REF_FILES','no').lower() in ("yes","1","true"):
            pygsti.io.write_model(mdl_mlegst,compare_files + "/mle_gst.model", "Saved MLE-GST Model")

        mdl_mle_compare = pygsti.io.load_model(compare_files + "/mle_gst.model")
        mdl_mlegst_go = pygsti.gaugeopt_to_target(mdl_mlegst, mdl_mle_compare, {'spam':1.0}, checkJac=True)

        self.assertAlmostEqual( mdl_mlegst_go.frobeniusdist(mdl_mle_compare), 0, places=4)
예제 #21
0
    def test_eLGST(self):

        ds = self.ds
        #pygsti.construction.generate_fake_data(self.datagen_gateset, self.lsgstStrings[-1],
        #                                            nSamples=1000,sampleError='binomial', seed=100)

        assert(pygsti.obj.GateSet._pcheck)
        gs_lgst = pygsti.do_lgst(ds, self.fiducials, self.fiducials, self.gateset, svdTruncateTo=4, verbosity=0)
        gs_lgst._check_paramvec()
        gs_lgst_go = pygsti.gaugeopt_to_target(gs_lgst,self.gateset, {'spam':1.0, 'gates': 1.0}, checkJac=True)
        gs_lgst_go._check_paramvec()
        gs_clgst = pygsti.contract(gs_lgst_go, "CPTP")
        gs_clgst._check_paramvec()
        self.gateset._check_paramvec()
        
        _,gs_single_exlgst = pygsti.do_exlgst(ds, gs_clgst, self.elgstStrings[0], self.fiducials, self.fiducials,
                                            self.gateset, regularizeFactor=1e-3, svdTruncateTo=4,
                                              verbosity=0)
        gs_single_exlgst._check_paramvec()

        _,gs_single_exlgst_verb = self.runSilent(pygsti.do_exlgst, ds, gs_clgst, self.elgstStrings[0], self.fiducials, self.fiducials,
                                               self.gateset, regularizeFactor=1e-3, svdTruncateTo=4,
                                               verbosity=10)
        gs_single_exlgst_verb._check_paramvec()
        
        self.assertAlmostEqual(gs_single_exlgst.frobeniusdist(gs_single_exlgst_verb),0)

        gs_exlgst = pygsti.do_iterative_exlgst(ds, gs_clgst, self.fiducials, self.fiducials, self.elgstStrings,
                                               targetGateset=self.gateset, svdTruncateTo=4, verbosity=0)

        all_minErrs, all_gs_exlgst_tups = pygsti.do_iterative_exlgst(
            ds, gs_clgst, self.fiducials, self.fiducials, [ [gs.tup for gs in gsList] for gsList in self.elgstStrings],
            targetGateset=self.gateset, svdTruncateTo=4, verbosity=0, returnAll=True, returnErrorVec=True)

        gs_exlgst_verb = self.runSilent(pygsti.do_iterative_exlgst, ds, gs_clgst, self.fiducials, self.fiducials, self.elgstStrings,
                                        targetGateset=self.gateset, svdTruncateTo=4, verbosity=10)
        gs_exlgst_reg = pygsti.do_iterative_exlgst(ds, gs_clgst, self.fiducials, self.fiducials, self.elgstStrings,
                                               targetGateset=self.gateset, svdTruncateTo=4, verbosity=0,
                                               regularizeFactor=10)
        self.assertAlmostEqual(gs_exlgst.frobeniusdist(gs_exlgst_verb),0)
        self.assertAlmostEqual(gs_exlgst.frobeniusdist(all_gs_exlgst_tups[-1]),0)


        #Run internal checks on less max-L values (so it doesn't take forever)
        gs_exlgst_chk = pygsti.do_iterative_exlgst(ds, gs_clgst, self.fiducials, self.fiducials, self.elgstStrings[0:2],
                                                   targetGateset=self.gateset, svdTruncateTo=4, verbosity=0,
                                                   check_jacobian=True)
        gs_exlgst_chk_verb = self.runSilent(pygsti.do_iterative_exlgst,ds, gs_clgst, self.fiducials, self.fiducials, self.elgstStrings[0:2],
                                                   targetGateset=self.gateset, svdTruncateTo=4, verbosity=10,
                                                   check_jacobian=True)

        # RUN BELOW LINES TO SEED SAVED GATESET FILES
        #pygsti.io.write_gateset(gs_exlgst,compare_files + "/exlgst.gateset", "Saved Extended-LGST (eLGST) Gateset")
        #pygsti.io.write_gateset(gs_exlgst_reg,compare_files + "/exlgst_reg.gateset", "Saved Extended-LGST (eLGST) Gateset w/regularization")

        gs_exlgst_compare = pygsti.io.load_gateset(compare_files + "/exlgst.gateset")
        gs_exlgst_reg_compare = pygsti.io.load_gateset(compare_files + "/exlgst_reg.gateset")
        gs_exlgst.set_all_parameterizations("full") # b/c ex-LGST sets spam to StaticSPAMVec objects (b/c they're not optimized)
        gs_exlgst_reg.set_all_parameterizations("full") # b/c ex-LGST sets spam to StaticSPAMVec objects (b/c they're not optimized)
        gs_exlgst_go = pygsti.gaugeopt_to_target(gs_exlgst,gs_exlgst_compare, {'spam':1.0 }, checkJac=True)
        gs_exlgst_reg_go = pygsti.gaugeopt_to_target(gs_exlgst_reg,gs_exlgst_reg_compare, {'spam':1.0 }, checkJac=True)
예제 #22
0
        'updnup': ('rho0', 'E2'),
        'updndn': ('rho0', 'E3'),
        'dnupup': ('rho0', 'E4'),
        'dnupdn': ('rho0', 'E5'),
        'dndnup': ('rho0', 'E6'),
        'dndndn': ('rho0', 'remainder')
    },
    basis="pp")
#print gs_target.num_params()

# In[3]:

#Test Gauge optimization
gs_depol = gs_target.copy().depolarize(max_gate_noise=0.05,
                                       spam_noise=0.1,
                                       seed=1200)
gs_kicked = gs_depol.kick(absmag=0.25, seed=1200)

# In[ ]:

t0 = time.time()
gs_go = pygsti.gaugeopt_to_target(gs_kicked, gs_target, tol=1e-10, verbosity=3)
print("%g sec" % (time.time() - t0))
print(gs_go.frobeniusdist(gs_target))

# In[ ]:

pickle.dump(results, open("3qbit_results.pkl", "wb"))

# In[ ]:
예제 #23
0
    def setUpClass(cls):
        """ 
        Handle all once-per-class (slow) computation and loading,
         to avoid calling it for each test (like setUp).  Store
         results in class variable for use within setUp.
        """
        super(ReportBaseCase, cls).setUpClass()

        orig_cwd = os.getcwd()
        os.chdir(os.path.abspath(os.path.dirname(__file__)))
        os.chdir('..')  # The test_packages directory

        targetGateset = std.gs_target
        datagen_gateset = targetGateset.depolarize(gate_noise=0.05,
                                                   spam_noise=0.1)
        datagen_gateset2 = targetGateset.depolarize(gate_noise=0.1,
                                                    spam_noise=0.05).rotate(
                                                        (0.15, -0.03, 0.03))

        #cls.specs = pygsti.construction.build_spam_specs(std.fiducials, effect_labels=['E0'])
        #  #only use the first EVec

        gateLabels = std.gates
        cls.lgstStrings = pygsti.construction.list_lgst_gatestrings(
            std.fiducials, std.fiducials, gateLabels)
        cls.maxLengthList = [1, 2, 4, 8]

        cls.lsgstStrings = pygsti.construction.make_lsgst_lists(
            gateLabels, std.fiducials, std.fiducials, std.germs,
            cls.maxLengthList)
        cls.lsgstStructs = pygsti.construction.make_lsgst_structs(
            gateLabels, std.fiducials, std.fiducials, std.germs,
            cls.maxLengthList)

        try:
            basestring  #Only defined in Python 2
            cls.versionsuffix = ""  #Python 2
        except NameError:
            cls.versionsuffix = "v3"  #Python 3

        # RUN BELOW LINES TO GENERATE ANALYSIS DATASET
        #ds = pygsti.construction.generate_fake_data(datagen_gateset, cls.lsgstStrings[-1], nSamples=1000,
        #                                            sampleError='binomial', seed=100)
        #ds.save(compare_files + "/reportgen.dataset%s" % cls.versionsuffix)
        #ds2 = pygsti.construction.generate_fake_data(datagen_gateset2, cls.lsgstStrings[-1], nSamples=1000,
        #                                            sampleError='binomial', seed=100)
        #ds2.save(compare_files + "/reportgen2.dataset%s" % cls.versionsuffix)

        cls.ds = pygsti.objects.DataSet(
            fileToLoadFrom=compare_files +
            "/reportgen.dataset%s" % cls.versionsuffix)
        cls.ds2 = pygsti.objects.DataSet(
            fileToLoadFrom=compare_files +
            "/reportgen2.dataset%s" % cls.versionsuffix)

        gs_lgst = pygsti.do_lgst(cls.ds,
                                 std.fiducials,
                                 std.fiducials,
                                 targetGateset,
                                 svdTruncateTo=4,
                                 verbosity=0)
        gs_lgst_go = pygsti.gaugeopt_to_target(gs_lgst, targetGateset, {
            'gates': 1.0,
            'spam': 0.0
        })
        cls.gs_clgst = pygsti.contract(gs_lgst_go, "CPTP")
        cls.gs_clgst_tp = pygsti.contract(cls.gs_clgst, "vSPAM")
        cls.gs_clgst_tp.set_all_parameterizations("TP")

        #Compute results for MC2GST
        lsgst_gatesets_prego = pygsti.do_iterative_mc2gst(
            cls.ds,
            cls.gs_clgst,
            cls.lsgstStrings,
            verbosity=0,
            minProbClipForWeighting=1e-6,
            probClipInterval=(-1e6, 1e6),
            returnAll=True)

        cls.results = pygsti.objects.Results()
        cls.results.init_dataset(cls.ds)
        cls.results.init_gatestrings(cls.lsgstStructs)
        cls.results.add_estimate(
            targetGateset, cls.gs_clgst, lsgst_gatesets_prego, {
                'objective': "chi2",
                'minProbClipForWeighting': 1e-4,
                'probClipInterval': (-1e6, 1e6),
                'radius': 1e-4,
                'weights': None,
                'defaultDirectory': temp_files + "",
                'defaultBasename': "MyDefaultReportName"
            })

        gaugeOptParams = collections.OrderedDict([
            ('gateset', lsgst_gatesets_prego[-1]),  #so can gauge-propagate CIs
            ('targetGateset', targetGateset),  #so can gauge-propagate CIs
            ('cptp_penalty_factor', 0),
            ('gatesMetric', "frobenius"),
            ('spamMetric', "frobenius"),
            ('itemWeights', {
                'gates': 1.0,
                'spam': 0.001
            }),
            ('returnAll', True)
        ])

        _, gaugeEl, go_final_gateset = pygsti.gaugeopt_to_target(
            **gaugeOptParams)
        gaugeOptParams['_gaugeGroupEl'] = gaugeEl  #so can gauge-propagate CIs
        cls.results.estimates['default'].add_gaugeoptimized(
            gaugeOptParams, go_final_gateset)
        cls.results.estimates['default'].add_gaugeoptimized(
            gaugeOptParams, go_final_gateset, "go_dup")

        #Compute results for MLGST with TP constraint
        # Use do_long_sequence_gst with a non-mark dataset to trigger data scaling
        tp_target = targetGateset.copy()
        tp_target.set_all_parameterizations("TP")

        cls.ds3 = cls.ds.copy_nonstatic()
        cls.ds3.add_counts_from_dataset(cls.ds2)
        cls.ds3.done_adding_data()

        cls.results_logL = pygsti.do_long_sequence_gst(
            cls.ds3,
            tp_target,
            std.fiducials,
            std.fiducials,
            std.germs,
            cls.maxLengthList,
            verbosity=0,
            advancedOptions={
                'tolerance': 1e-6,
                'starting point': 'LGST',
                'onBadFit': ["robust", "Robust", "robust+", "Robust+"],
                'badFitThreshold': -1.0,
                'germLengthLimits': {
                    ('Gx', 'Gi', 'Gi'): 2
                }
            })
        #OLD
        #lsgst_gatesets_TP = pygsti.do_iterative_mlgst(cls.ds, cls.gs_clgst_tp, cls.lsgstStrings, verbosity=0,
        #                                           minProbClip=1e-4, probClipInterval=(-1e6,1e6),
        #                                           returnAll=True) #TP initial gateset => TP output gatesets
        #cls.results_logL = pygsti.objects.Results()
        #cls.results_logL.init_dataset(cls.ds)
        #cls.results_logL.init_gatestrings(cls.lsgstStructs)
        #cls.results_logL.add_estimate(targetGateset, cls.gs_clgst_tp,
        #                         lsgst_gatesets_TP,
        #                         {'objective': "logl",
        #                          'minProbClip': 1e-4,
        #                          'probClipInterval': (-1e6,1e6), 'radius': 1e-4,
        #                          'weights': None, 'defaultDirectory': temp_files + "",
        #                          'defaultBasename': "MyDefaultReportName"})
        #
        #tp_target = targetGateset.copy(); tp_target.set_all_parameterizations("TP")
        #gaugeOptParams = gaugeOptParams.copy() #just to be safe
        #gaugeOptParams['gateset'] = lsgst_gatesets_TP[-1]  #so can gauge-propagate CIs
        #gaugeOptParams['targetGateset'] = tp_target  #so can gauge-propagate CIs
        #_, gaugeEl, go_final_gateset = pygsti.gaugeopt_to_target(**gaugeOptParams)
        #gaugeOptParams['_gaugeGroupEl'] = gaugeEl #so can gauge-propagate CIs
        #cls.results_logL.estimates['default'].add_gaugeoptimized(gaugeOptParams, go_final_gateset)
        #
        ##self.results_logL.options.precision = 3
        ##self.results_logL.options.polar_precision = 2

        os.chdir(orig_cwd)
예제 #24
0
    def testIntermediateMeas(self):
        # Mess with the target gateset to add some error to the povm and instrument
        self.assertEqual(self.gs_target.num_params(), 92)  # 4*3 + 16*5 = 92
        gs = self.gs_target.depolarize(gate_noise=0.01, spam_noise=0.01)
        gs2 = self.gs_target.depolarize(max_gate_noise=0.01,
                                        max_spam_noise=0.01,
                                        seed=1234)  #another way to depolarize
        gs.povms['Mdefault'].depolarize(0.01)

        # Introducing a rotation error to the measurement
        Uerr = pygsti.rotation_gate_mx(
            [0, 0.02, 0])  # input angles are halved by the method
        E = np.dot(gs.povms['Mdefault']['0'].T,
                   Uerr).T  # effect is stored as column vector
        Erem = self.povm_ident - E
        gs.povms['Mdefault'] = pygsti.obj.UnconstrainedPOVM({
            '0': E,
            '1': Erem
        })

        # Now add the post-measurement gates from the vector E0 and remainder = id-E0
        Gmz_plus = np.dot(
            E, E.T)  #since E0 is stored internally as column spamvec
        Gmz_minus = np.dot(Erem, Erem.T)
        gs.instruments['Iz'] = pygsti.obj.Instrument({
            'plus': Gmz_plus,
            'minus': Gmz_minus
        })
        self.assertEqual(gs.num_params(), 92)  # 4*3 + 16*5 = 92
        #print(gs)

        germs = std.germs
        fiducials = std.fiducials
        max_lengths = [1]  #,2,4,8]
        glbls = list(gs.gates.keys()) + list(gs.instruments.keys())
        lsgst_list = pygsti.construction.make_lsgst_experiment_list(
            glbls, fiducials, fiducials, germs, max_lengths)
        lsgst_list2 = pygsti.construction.make_lsgst_experiment_list(
            gs, fiducials, fiducials, germs, max_lengths)  #use gs as source
        self.assertEqual(lsgst_list, lsgst_list2)

        gs_datagen = gs
        ds = pygsti.construction.generate_fake_data(gs, lsgst_list, 1000,
                                                    'none')  #'multinomial')
        pygsti.io.write_dataset(temp_files + "/intermediate_meas_dataset.txt",
                                ds)
        ds2 = pygsti.io.load_dataset(temp_files +
                                     "/intermediate_meas_dataset.txt")
        for gstr, dsRow in ds.items():
            for lbl, cnt in dsRow.counts.items():
                self.assertAlmostEqual(cnt, ds2[gstr].counts[lbl], places=2)
        #print(ds)

        #LGST
        gs_lgst = pygsti.do_lgst(
            ds, fiducials, fiducials,
            self.gs_target)  #, guessGatesetForGauge=gs_datagen)
        self.assertTrue("Iz" in gs_lgst.instruments)
        gs_opt = pygsti.gaugeopt_to_target(gs_lgst,
                                           gs_datagen)  #, method="BFGS")
        print(gs_datagen.strdiff(gs_opt))
        print("Frobdiff = ", gs_datagen.frobeniusdist(gs_lgst))
        print("Frobdiff after GOpt = ", gs_datagen.frobeniusdist(gs_opt))
        self.assertAlmostEqual(gs_datagen.frobeniusdist(gs_opt), 0.0, places=4)
        #print(gs_lgst)
        #print(gs_datagen)

        #LSGST
        results = pygsti.do_long_sequence_gst(ds, self.gs_target, fiducials,
                                              fiducials, germs, max_lengths)
        #print(results.estimates['default'].gatesets['go0'])
        gs_est = results.estimates['default'].gatesets['go0']
        gs_est_opt = pygsti.gaugeopt_to_target(gs_est, gs_datagen)
        print("Frobdiff = ", gs_datagen.frobeniusdist(gs_est))
        print("Frobdiff after GOpt = ", gs_datagen.frobeniusdist(gs_est_opt))
        self.assertAlmostEqual(gs_datagen.frobeniusdist(gs_est_opt),
                               0.0,
                               places=4)

        #LGST w/TP gates
        gs_targetTP = self.gs_target.copy()
        gs_targetTP.set_all_parameterizations("TP")
        self.assertEqual(gs_targetTP.num_params(), 71)  # 3 + 4*2 + 12*5 = 71
        #print(gs_targetTP)
        resultsTP = pygsti.do_long_sequence_gst(ds, gs_targetTP, fiducials,
                                                fiducials, germs, max_lengths)
        gs_est = resultsTP.estimates['default'].gatesets['go0']
        gs_est_opt = pygsti.gaugeopt_to_target(gs_est, gs_datagen)
        print("TP Frobdiff = ", gs_datagen.frobeniusdist(gs_est))
        print("TP Frobdiff after GOpt = ",
              gs_datagen.frobeniusdist(gs_est_opt))
        self.assertAlmostEqual(gs_datagen.frobeniusdist(gs_est_opt),
                               0.0,
                               places=4)
예제 #25
0
    def setUp(self):
        super(ReportBaseCase, self).setUp()

        self.targetGateset = std.gs_target
        datagen_gateset = self.targetGateset.depolarize(gate_noise=0.05, spam_noise=0.1)

        self.fiducials = std.fiducials
        self.germs = std.germs

        self.specs = pygsti.construction.build_spam_specs(self.fiducials, effect_labels=['E0']) #only use the first EVec

        self.gateLabels = list(self.targetGateset.gates.keys()) # also == std.gates
        self.lgstStrings = pygsti.construction.list_lgst_gatestrings(self.specs, self.gateLabels)

        self.maxLengthList = [0,1,2,4,8]

        self.lsgstStrings = pygsti.construction.make_lsgst_lists(
            self.gateLabels, self.fiducials, self.fiducials, self.germs, self.maxLengthList)

        self.ds = pygsti.objects.DataSet(fileToLoadFrom=compare_files + "/reportgen.dataset")

        # RUN BELOW LINES TO GENERATE ANALYSIS DATASET
        #ds = pygsti.construction.generate_fake_data(datagen_gateset, lsgstStrings[-1], nSamples=1000,
        #                                            sampleError='binomial', seed=100)
        #ds.save(compare_files + "/reportgen.dataset")

        gs_lgst = pygsti.do_lgst(self.ds, self.specs, self.targetGateset, svdTruncateTo=4, verbosity=0)
        #gs_lgst_go = pygsti.optimize_gauge(gs_lgst,"target",targetGateset=self.targetGateset,gateWeight=1.0,spamWeight=0.0) #DEPRECATED
        gs_lgst_go = pygsti.gaugeopt_to_target(gs_lgst, self.targetGateset, {'gates': 1.0, 'spam': 0.0})
        self.gs_clgst = pygsti.contract(gs_lgst_go, "CPTP")
        self.gs_clgst_tp = pygsti.contract(self.gs_clgst, "vSPAM")
        self.gs_clgst_tp.set_all_parameterizations("TP")


        try:
            import pptx
            self.have_python_pptx = True
        except ImportError:
            warnings.warn("**** IMPORT: Cannot import pptx (python-pptx), and so" +
                         " Powerpoint slide generation tests have been disabled.")
            self.have_python_pptx = False


        #Compute results for MC2GST
        lsgst_gatesets_prego = pygsti.do_iterative_mc2gst(self.ds, self.gs_clgst, self.lsgstStrings, verbosity=0,
                                                          minProbClipForWeighting=1e-6, probClipInterval=(-1e6,1e6),
                                                          returnAll=True)
        gaugeOptParams = collections.OrderedDict([
                ('TPpenalty', 0),
                ('CPpenalty', 0),
                ('gatesMetric',"frobenius"),
                ('spamMetric',"frobenius"),
                ('itemWeights', {'gates': 1.0, 'spam': 0.001}) ])

        lsgst_gatesets = []
        for gs in lsgst_gatesets_prego:
            lsgst_gatesets.append( pygsti.gaugeopt_to_target(gs,self.targetGateset,
                                                             **gaugeOptParams) )

        self.results = pygsti.report.Results()
        self.results.init_Ls_and_germs("chi2", self.targetGateset, self.ds, self.gs_clgst,
                                       self.maxLengthList, self.germs,
                                       lsgst_gatesets, self.lsgstStrings, self.fiducials, self.fiducials,
                                       pygsti.construction.repeat_with_max_length, None, lsgst_gatesets_prego)
        self.results.parameters.update({'minProbClip': 1e-6, 'minProbClipForWeighting': 1e-4,
                                        'probClipInterval': (-1e6,1e6), 'radius': 1e-4,
                                        'weights': None, 'defaultDirectory': temp_files + "",
                                        'defaultBasename': "MyDefaultReportName",
                                        'gaugeOptParams': gaugeOptParams} )
        self.results.options.precision = 3
        self.results.options.polar_precision = 2



        #Compute results for MLGST with TP constraint
        lsgst_gatesets_TP = pygsti.do_iterative_mlgst(self.ds, self.gs_clgst_tp, self.lsgstStrings, verbosity=0,
                                                   minProbClip=1e-4, probClipInterval=(-1e6,1e6),
                                                   returnAll=True) #TP initial gateset => TP output gatesets
        tp_target = self.targetGateset.copy(); tp_target.set_all_parameterizations("TP")
        lsgst_gatesets_TP = [ pygsti.gaugeopt_to_target(gs, tp_target, {'gates': 1.0, 'spam': 0.001})
                              for gs in lsgst_gatesets_TP ]

        self.results_logL = pygsti.report.Results()
        self.results_logL.init_Ls_and_germs("logl", self.targetGateset, self.ds, self.gs_clgst_tp, self.maxLengthList, self.germs,
                                     lsgst_gatesets_TP, self.lsgstStrings, self.fiducials, self.fiducials,
                                     pygsti.construction.repeat_with_max_length)
        self.results_logL.options.precision = 3
        self.results_logL.options.polar_precision = 2

        try:
            basestring #Only defined in Python 2
            self.versionsuffix = "" #Python 2
        except NameError:
            self.versionsuffix = "v3" #Python 3
예제 #26
0
파일: testCore.py 프로젝트: hwerbel/pyGSTi
    def test_MC2GST(self):

        ds = self.ds
        #pygsti.construction.generate_fake_data(self.datagen_gateset, self.lsgstStrings[-1],
        #                                            nSamples=1000, sampleError='binomial', seed=100)

        mdl_lgst = pygsti.do_lgst(ds, self.fiducials, self.fiducials, self.model, svdTruncateTo=4, verbosity=0)
        mdl_lgst_go = pygsti.gaugeopt_to_target(mdl_lgst,self.model, {'spam':1.0, 'gates': 1.0}, checkJac=True)
        mdl_clgst = pygsti.contract(mdl_lgst_go, "CPTP")
        CM = pygsti.baseobjs.profiler._get_mem_usage()

        mdl_single_lsgst = pygsti.do_mc2gst(ds, mdl_clgst, self.lsgstStrings[0], minProbClipForWeighting=1e-4,
                                           probClipInterval=(-1e6,1e6), regularizeFactor=1e-3,
                                           verbosity=0) #uses regularizeFactor

        mdl_single_lsgst_cp = pygsti.do_mc2gst(ds, mdl_clgst, self.lsgstStrings[0], minProbClipForWeighting=1e-4,
                                           probClipInterval=(-1e6,1e6), cptp_penalty_factor=1.0,
                                           verbosity=0) #uses cptp_penalty_factor

        mdl_single_lsgst_sp = pygsti.do_mc2gst(ds, mdl_clgst, self.lsgstStrings[0], minProbClipForWeighting=1e-4,
                                              probClipInterval=(-1e6,1e6), spam_penalty_factor=1.0,
                                              verbosity=0) #uses spam_penalty_factor

        mdl_single_lsgst_cpsp = pygsti.do_mc2gst(ds, mdl_clgst, self.lsgstStrings[0], minProbClipForWeighting=1e-4,
                                                probClipInterval=(-1e6,1e6), cptp_penalty_factor=1.0,
                                                spam_penalty_factor=1.0, verbosity=0) #uses both penalty factors

        mdl_single_lsgst_cpsp = self.runSilent(pygsti.do_mc2gst, ds, mdl_clgst, self.lsgstStrings[0], minProbClipForWeighting=1e-4,
                                              probClipInterval=(-1e6,1e6), cptp_penalty_factor=1.0,
                                              spam_penalty_factor=1.0, verbosity=10) #uses both penalty factors w/verbosity high
        mdl_single_lsgst_cp = self.runSilent(pygsti.do_mc2gst, ds, mdl_clgst, self.lsgstStrings[0], minProbClipForWeighting=1e-4,
                                            probClipInterval=(-1e6,1e6), cptp_penalty_factor=1.0,
                                            verbosity=10) #uses cptp_penalty_factor w/verbosity high
        mdl_single_lsgst_sp = self.runSilent(pygsti.do_mc2gst, ds, mdl_clgst, self.lsgstStrings[0], minProbClipForWeighting=1e-4,
                                            probClipInterval=(-1e6,1e6), spam_penalty_factor=1.0,
                                            verbosity=10) #uses spam_penalty_factor w/verbosity high


        
        mdl_lsgst = pygsti.do_iterative_mc2gst(ds, mdl_clgst, self.lsgstStrings, verbosity=0,
                                             minProbClipForWeighting=1e-6, probClipInterval=(-1e6,1e6),
                                             memLimit=CM + 1024**3)
        all_minErrs, all_gs_lsgst_tups = pygsti.do_iterative_mc2gst(
            ds, mdl_clgst, [ [mdl.tup for mdl in gsList] for gsList in self.lsgstStrings],
            minProbClipForWeighting=1e-6, probClipInterval=(-1e6,1e6), returnAll=True, returnErrorVec=True)
        mdl_lsgst_verb = self.runSilent(pygsti.do_iterative_mc2gst, ds, mdl_clgst, self.lsgstStrings, verbosity=10,
                                             minProbClipForWeighting=1e-6, probClipInterval=(-1e6,1e6),
                                             memLimit=CM + 1024**3)
        mdl_lsgst_reg = self.runSilent(pygsti.do_iterative_mc2gst,ds, mdl_clgst,
                                      self.lsgstStrings, verbosity=10,
                                      minProbClipForWeighting=1e-6,
                                      probClipInterval=(-1e6,1e6),
                                      regularizeFactor=10, memLimit=CM + 1024**3)
        self.assertAlmostEqual(mdl_lsgst.frobeniusdist(mdl_lsgst_verb),0)
        self.assertAlmostEqual(mdl_lsgst.frobeniusdist(all_gs_lsgst_tups[-1]),0)


        #Run internal checks on less max-L values (so it doesn't take forever)
        mdl_lsgst_chk = pygsti.do_iterative_mc2gst(ds, mdl_clgst, self.lsgstStrings[0:2], verbosity=0,
                                                 minProbClipForWeighting=1e-6, probClipInterval=(-1e6,1e6),
                                                 check=True, check_jacobian=True)
        mdl_lsgst_chk_verb = self.runSilent(pygsti.do_iterative_mc2gst, ds, mdl_clgst, self.lsgstStrings[0:2], verbosity=10,
                                                      minProbClipForWeighting=1e-6, probClipInterval=(-1e6,1e6),
                                                      check=True, check_jacobian=True, memLimit=CM + 1024**3)

        #Other option variations - just make sure they run at this point
        mdl_lsgst_chk_opts = pygsti.do_iterative_mc2gst(ds, mdl_clgst, self.lsgstStrings[0:2], verbosity=0,
                                                      minProbClipForWeighting=1e-6, probClipInterval=(-1e6,1e6),
                                                      useFreqWeightedChiSq=True, circuitSetLabels=["Set1","Set2"],
                                                      circuitWeightsDict={ ('Gx',): 2.0 } )

        aliased_list = [ pygsti.obj.Circuit( [ (x if x != L("Gx") else L("GA1")) for x in mdl]) for mdl in self.lsgstStrings[0] ]
        mdl_withA1 = mdl_clgst.copy(); mdl_withA1.operations["GA1"] = mdl_clgst.operations["Gx"]
        del mdl_withA1.operations["Gx"] # otherwise mdl_withA1 will have Gx params that we have no knowledge of!
        mdl_lsgst_chk_opts2 = pygsti.do_mc2gst(ds, mdl_withA1, aliased_list, minProbClipForWeighting=1e-6,
                                              probClipInterval=(-1e2,1e2), verbosity=10,
                                              opLabelAliases={ L('GA1'): (L('Gx'),) })

        
        #Check with small but ok memlimit -- not anymore since new mem estimation uses current memory, making this non-robust
        #self.runSilent(pygsti.do_mc2gst,ds, mdl_clgst, self.lsgstStrings[0], minProbClipForWeighting=1e-6,
        #                 probClipInterval=(-1e6,1e6), regularizeFactor=1e-3,
        #                 verbosity=10, memLimit=CM + 1024**3)


        #Check errors:
        with self.assertRaises(MemoryError):
            pygsti.do_mc2gst(ds, mdl_clgst, self.lsgstStrings[0], minProbClipForWeighting=1e-6,
                             probClipInterval=(-1e6,1e6), regularizeFactor=1e-3,
                             verbosity=0, memLimit=1)

        with self.assertRaises(AssertionError):
            pygsti.do_mc2gst(ds, mdl_clgst, self.lsgstStrings[0], minProbClipForWeighting=1e-6,
                             probClipInterval=(-1e6,1e6), regularizeFactor=1e-3,
                             verbosity=0, cptp_penalty_factor=1.0) #can't specify both cptp_penalty_factor and regularizeFactor


        # RUN BELOW LINES TO SEED SAVED GATESET FILES
        if os.environ.get('PYGSTI_REGEN_REF_FILES','no').lower() in ("yes","1","true"):
            pygsti.io.write_model(mdl_lsgst,compare_files + "/lsgst.model", "Saved LSGST Model")
            pygsti.io.write_model(mdl_lsgst_reg,compare_files + "/lsgst_reg.model", "Saved LSGST Model w/Regularization")

        mdl_lsgst_compare = pygsti.io.load_model(compare_files + "/lsgst.model")
        mdl_lsgst_reg_compare = pygsti.io.load_model(compare_files + "/lsgst_reg.model")

        mdl_lsgst_go = pygsti.gaugeopt_to_target(mdl_lsgst, mdl_lsgst_compare, {'spam':1.0}, checkJac=True)

        mdl_lsgst_reg_go = pygsti.gaugeopt_to_target(mdl_lsgst_reg, mdl_lsgst_reg_compare, {'spam':1.0}, checkJac=True)

        self.assertAlmostEqual( mdl_lsgst_go.frobeniusdist(mdl_lsgst_compare), 0, places=4)
        self.assertAlmostEqual( mdl_lsgst_reg_go.frobeniusdist(mdl_lsgst_reg_compare), 0, places=4)

        # RUN BELOW LINES TO SEED SAVED GATESET FILES
        if os.environ.get('PYGSTI_REGEN_REF_FILES','no').lower() in ("yes","1","true"):
            mdl_lsgst_go = pygsti.gaugeopt_to_target(mdl_lsgst, self.model, {'spam':1.0})
            pygsti.io.write_model(mdl_lsgst_go,compare_files + "/analysis.model", "Saved LSGST Analysis Model")
            print("DEBUG: analysis.model = "); print(mdl_lgst_go)
예제 #27
0
파일: fixtures.py 프로젝트: silky/pyGSTi
def mdl_lsgst_go(self):
    # Was previously written to disk as 'analysis.model'
    return pygsti.gaugeopt_to_target(self.mdl_lsgst, self.model, {'spam': 1.0})
예제 #28
0
def main():
    gs_target = std1Q_XYI.gs_target
    fiducials = std1Q_XYI.fiducials
    germs = std1Q_XYI.germs
    maxLengths = [1, 2, 4]
    #maxLengths = [1, 2, 4, 8, 16, 32, 64]

    #Generate some data
    gs_datagen = gs_target.depolarize(gate_noise=0.1, spam_noise=0.001)
    gs_datagen = gs_datagen.rotate(rotate=0.04)
    listOfExperiments = pygsti.construction.create_lsgst_circuits(
        gs_target, fiducials, fiducials, germs, maxLengths)
    ds = pygsti.construction.simulate_data(gs_datagen,
                                           listOfExperiments,
                                           n_samples=1000,
                                           sample_error="binomial",
                                           seed=1234)
    #Run GST
    gs_target.set_all_parameterizations("TP")  #TP-constrained
    results = pygsti.run_long_sequence_gst(ds,
                                           gs_target,
                                           fiducials,
                                           fiducials,
                                           germs,
                                           maxLengths,
                                           verbosity=0)
    with open('data/example_report_results.pkl', 'wb') as outfile:
        pickle.dump(results, outfile, protocol=2)

    # Case1: TP-constrained GST
    tpTarget = gs_target.copy()
    tpTarget.set_all_parameterizations("TP")
    results_tp = pygsti.run_long_sequence_gst(ds,
                                              tpTarget,
                                              fiducials,
                                              fiducials,
                                              germs,
                                              maxLengths,
                                              gauge_opt_params=False,
                                              verbosity=0)
    # Gauge optimize
    est = results_tp.estimates['default']
    gsFinal = est.gatesets['final iteration estimate']
    gsTarget = est.gatesets['target']
    for spamWt in [1e-4, 1e-3, 1e-2, 1e-1, 1.0]:
        gs = pygsti.gaugeopt_to_target(gsFinal, gsTarget, {
            'gates': 1,
            'spam': spamWt
        })
        est.add_gaugeoptimized({'item_weights': {
            'gates': 1,
            'spam': spamWt
        }}, gs, "Spam %g" % spamWt)

    #Case2: "Full" GST
    fullTarget = gs_target.copy()
    fullTarget.set_all_parameterizations("full")
    results_full = pygsti.run_long_sequence_gst(ds,
                                                fullTarget,
                                                fiducials,
                                                fiducials,
                                                germs,
                                                maxLengths,
                                                gauge_opt_params=False,
                                                verbosity=0)
    #Gauge optimize
    est = results_full.estimates['default']
    gsFinal = est.gatesets['final iteration estimate']
    gsTarget = est.gatesets['target']
    for spamWt in [1e-4, 1e-3, 1e-2, 1e-1, 1.0]:
        gs = pygsti.gaugeopt_to_target(gsFinal, gsTarget, {
            'gates': 1,
            'spam': spamWt
        })
        est.add_gaugeoptimized({'item_weights': {
            'gates': 1,
            'spam': spamWt
        }}, gs, "Spam %g" % spamWt)

    with open('data/full_report_results.pkl', 'wb') as outfile:
        pickle.dump((results_tp, results_full), outfile, protocol=2)