def __init__(self, baseModel, configFile): self.base = baseModel # Initialize databases for this extension self.modelParams = baseModel.modelParams self.modelParams.addDatabase("proc_id_model") self.gpuPtrs = baseModel.gpuPtrs self.gpuPtrs.addDatabase("proc_id_model") if not self.base.data.isspatial: log.error( "SpatialGmmProcessIdModel only supports spatial datasets!") exit() # Check whether the data file has hard coded process IDs if self.base.data.proc_ids_known: log.warning( "K and C are present in the data file but the SpatialGmmProcessIdModel ignores them!" ) # Parse the configuration file to get params self.parseConfigurationFile(configFile) pprint_dict(self.params, "Process ID Model Params") self.initializeGpuKernels()
def __init__(self, baseModel, configFile): self.base = baseModel self.base.data = self.base.data # Check whether the data file has hard coded process IDs if not self.base.data.proc_ids_known: log.error("Process IDs are not present in the data!") # Parse the configuration file to get params self.parseConfigurationFile(configFile) pprint_dict(self.params, "Process ID Model Params") self.initializeGpuKernels()
def __init__(self, baseModel, configFile): super(StochasticBlockModelCoupledWithW,self).__init__(baseModel, configFile) # Initialize databases for this extension self.modelParams.addDatabase("weight_model") self.gpuPtrs.addDatabase("weight_model") # Load the GPU kernels necessary for background rate inference # Allocate memory on GPU for background rate inference # Initialize host params self.parseConfigurationFile(configFile) pprint_dict(self.params, "Weight and Graph Model Params") self.initializeGpuKernels()
def __init__(self, baseModel, configFile): super(StochasticBlockModelCoupledWithW, self).__init__(baseModel, configFile) # Initialize databases for this extension self.modelParams.addDatabase("weight_model") self.gpuPtrs.addDatabase("weight_model") # Load the GPU kernels necessary for background rate inference # Allocate memory on GPU for background rate inference # Initialize host params self.parseConfigurationFile(configFile) pprint_dict(self.params, "Weight and Graph Model Params") self.initializeGpuKernels()
def __init__(self, baseModel, configFile): # Store pointer to base model self.base = baseModel # Initialize databases for this extension self.modelParams = baseModel.modelParams self.modelParams.addDatabase("impulse_model") self.gpuPtrs = baseModel.gpuPtrs self.gpuPtrs.addDatabase("impulse_model") # Load the GPU kernels necessary for impulse response param inference # Allocate memory on GPU for inference # Initialize host params self.parseConfigurationFile(configFile) pprint_dict(self.params, "Impulse Model Params")
def __init__(self, baseModel, configFile): # Store pointer to base model self.base = baseModel # Initialize databases for this extension self.modelParams = baseModel.modelParams self.modelParams.addDatabase("weight_model") self.gpuPtrs = baseModel.gpuPtrs self.gpuPtrs.addDatabase("weight_model") # Load the GPU kernels necessary for background rate inference # Allocate memory on GPU for background rate inference # Initialize host params self.parseConfigurationFile(configFile) pprint_dict(self.params, "Weight Model Params") self.initializeGpuKernels() self.initializeGpuMemory()
def __init__(self, dataManager, configFile, data): """ Construct a new base model. """ self.parseConfigFile(configFile) pprint_dict(self.params, "Base Model Params") # Save a pointer to the data and compute the intervals between spikes self.dm = dataManager self.data = data self.prepareData() # Initialize parameter and GPU pointer databases self.modelParams = ParamsDatabase() self.gpuPtrs = ParamsDatabase() # Initialize model parameters on host and gpu self.initializeRandomness() self.initializeGpuKernels() self.constructModelExtensions(configFile) self.computeSampleOrder()
def __init__(self, baseModel, configFile): self.base = baseModel # Initialize databases for this extension self.modelParams = baseModel.modelParams self.modelParams.addDatabase("proc_id_model") self.gpuPtrs = baseModel.gpuPtrs self.gpuPtrs.addDatabase("proc_id_model") if not self.base.data.isspatial: log.error("SpatialGmmProcessIdModel only supports spatial datasets!") exit() # Check whether the data file has hard coded process IDs if self.base.data.proc_ids_known: log.warning("K and C are present in the data file but the SpatialGmmProcessIdModel ignores them!") # Parse the configuration file to get params self.parseConfigurationFile(configFile) pprint_dict(self.params, "Process ID Model Params") self.initializeGpuKernels()