def Main_vbjde_physio(graph, Y, Onsets, durations, Thrf, K, TR, beta, dt, scale=1, estimateSigmaH=True, estimateSigmaG=True, sigmaH=0.05, sigmaG=0.05, gamma_h=0, gamma_g=0, NitMax=-1, NitMin=1, estimateBeta=True, PLOT=False, contrasts=[], computeContrast=False, idx_first_tag=0, simulation=None, sigmaMu=None, estimateH=True, estimateG=True, estimateA=True, estimateC=True, estimateZ=True, estimateNoise=True, estimateMP=True, estimateLA=True, use_hyperprior=False, positivity=False, constraint=False, phy_params=PHY_PARAMS_KHALIDOV11, prior='omega', zc=False): logger.info("EM for ASL!") np.random.seed(6537540) logger.info("data shape: ") logger.info(Y.shape) Thresh = 1e-5 D, M = np.int(np.ceil(Thrf / dt)) + 1, len(Onsets) #D, M = np.int(np.ceil(Thrf / dt)), len(Onsets) n_sess, N, J = Y.shape[0], Y.shape[1], Y.shape[2] Crit_AH, Crit_CG, cTime, rerror, FE = 1, 1, [], [], [] EP, EPlh, Ent = [],[],[] Crit_H, Crit_G, Crit_Z, Crit_A, Crit_C = 1, 1, 1, 1, 1 cAH, cCG, AH1, CG1 = [], [], [], [] cA, cC, cH, cG, cZ = [], [], [], [], [] h_norm, g_norm = [], [] SUM_q_Z = [[] for m in xrange(M)] mua1 = [[] for m in xrange(M)] muc1 = [[] for m in xrange(M)] sigmaH = sigmaH * J / 100 print sigmaH gamma_h = gamma_h * 100 / J print gamma_h # Beta data MaxItGrad = 200 gradientStep = 0.005 gamma = 7.5 print 'gamma = ', gamma print 'voxels = ', J maxNeighbours, neighboursIndexes = vt.create_neighbours(graph, J) print 'graph.shape = ', graph.shape # Conditions print 'Onsets: ', Onsets print 'durations = ', durations print 'creating conditions...' X, XX, condition_names = vt.create_conditions_block_ms(Onsets, durations, M, N, D, n_sess, TR, dt) # Covariance matrix #R = vt.covariance_matrix(2, D, dt) _, R_inv = genGaussianSmoothHRF(zc, D, dt, 1., 2) R = np.linalg.inv(R_inv) if zc: XX = XX[:, :, :, 1:-1] # XX shape (S, M, N, D) D = D - 2 AH1, CG1 = np.zeros((J, M, D)), np.zeros((J, M, D)) print 'HRF length = ', D print 'Condition number = ', M print 'Number of scans = ', N print 'Number of voxels = ', J print 'Number of sessions = ', n_sess print 'XX.shape = ', XX.shape # Noise matrix Gamma = np.identity(N) # Noise initialization sigma_eps = np.ones((n_sess, J)) # Labels logger.info("Labels are initialized by setting active probabilities " "to ones ...") q_Z = np.ones((M, K, J), dtype=np.float64) / 2. #q_Z = np.zeros((M, K, J), dtype=np.float64) #q_Z[:, 1, :] = 1 q_Z1 = copy.deepcopy(q_Z) Z_tilde = copy.deepcopy(q_Z) # H and G TT, m_h = getCanoHRF(Thrf, dt) H = np.array(m_h[:D]).astype(np.float64) H /= np.linalg.norm(H) Hb = create_physio_brf(phy_params, response_dt=dt, response_duration=Thrf) Hb /= np.linalg.norm(Hb) if prior=='balloon': H = Hb.copy() H1 = copy.deepcopy(H) Sigma_H = np.zeros((D, D), dtype=np.float64) # Initialize model parameters Beta = beta * np.ones((M), dtype=np.float64) n_drift = 4 P = np.zeros((n_sess, N, n_drift+1), dtype=np.float64) L = np.zeros((n_drift+1, J, n_sess), dtype=np.float64) for s in xrange(0, n_sess): P[s, :, :] = vt.PolyMat(N, n_drift, TR) L[:, :, s] = vt.polyFit(Y[s, :, :], TR, n_drift, P[s, :, :]) print 'P shape = ', P.shape print 'L shape = ', L.shape WP = P.copy() AL = L.copy() PL = np.einsum('ijk,kli->ijl', P, L) y_tilde = Y - PL # Parameters Gaussian mixtures mu_Ma = np.append(np.zeros((M, 1)), np.ones((M, 1)), axis=1).astype(np.float64) sigma_Ma = np.ones((M, K), dtype=np.float64) * 0.3 # Params RLs m_A = np.zeros((n_sess, J, M), dtype=np.float64) for s in xrange(0, n_sess): for j in xrange(0, J): m_A[s, j, :] = (np.random.normal(mu_Ma, np.sqrt(sigma_Ma)) * q_Z[:, :, j]).sum(axis=1).T m_A1 = m_A.copy() Sigma_A = np.ones((M, M, J, n_sess)) * np.identity(M)[:, :, np.newaxis, np.newaxis] G = np.zeros_like(H) m_C = np.zeros_like(m_A) Sigma_G = np.zeros_like(Sigma_H) Sigma_C = np.zeros_like(Sigma_A) mu_Mc = np.zeros_like(mu_Ma) sigma_Mc = np.ones_like(sigma_Ma) W = np.zeros_like(Gamma) # (N, N) # Precomputations print 'W shape is ', W.shape WX = W.dot(XX).transpose(1, 2, 0, 3) # shape (S, M, N, D) Gamma_X = np.zeros((N, n_sess, M, D), dtype=np.float64) # shape (N, S, M, D) X_Gamma_X = np.zeros((D, M, n_sess, M, D), dtype=np.float64) # shape (D, M, S, M, D) Gamma_WX = np.zeros((N, n_sess, M, D), dtype=np.float64) # shape (N, S, M, D) XW_Gamma_WX = np.zeros((D, M, n_sess, M, D), dtype=np.float64) # shape (D, M, S, M, D) Gamma_WP = np.zeros((N, n_sess, n_drift+1), dtype=np.float64) # shape (N, S, M, D) WP_Gamma_WP = np.zeros((n_sess, n_drift+1, n_drift+1), dtype=np.float64) # shape (D, M, S, M, D) for s in xrange(0, n_sess): Gamma_X[:, s, :, :] = np.tensordot(Gamma, XX[s, :, :, :], axes=(1, 1)) X_Gamma_X[:, :, s, :, :] = np.tensordot(XX[s, :, :, :].T, Gamma_X[:, s, :, :], axes=(1, 0)) Gamma_WX[:, s, :, :] = np.tensordot(Gamma, WX[s, :, :, :], axes=(1, 1)) XW_Gamma_WX[:, :, s, :, :] = np.tensordot(WX[s, :, :, :].T, Gamma_WX[:, s, :, :], axes=(1, 0)) Gamma_WP[:, s, :] = Gamma.dot(WP[s, :, :]) # (N, n_drift) WP_Gamma_WP[s, :, :] = WP[s, :, :].T.dot(Gamma_WP[:, s, :]) # (n_drift, n_drift) sigma_eps_m = np.maximum(sigma_eps, eps) # (n_sess, J) cov_noise = sigma_eps_m[:, :, np.newaxis, np.newaxis] # (n_sess, J, 1, 1) ########################################################################### ############################################# VBJDE t1 = time.time() ni = 0 #while ((ni < NitMin + 1) or (((Crit_AH > Thresh) or (Crit_CG > Thresh)) \ # and (ni < NitMax))): #while ((ni < NitMin + 1) or (((Crit_AH > Thresh)) \ # and (ni < NitMax))): while ((ni < NitMin + 1) or (((Crit_FE > Thresh * np.ones_like(Crit_FE)).any()) \ and (ni < NitMax))): logger.info("-------- Iteration n° " + str(ni + 1) + " --------") if PLOT and ni >= 0: # Plotting HRF and PRF logger.info("Plotting HRF and PRF for current iteration") vt.plot_response_functions_it(ni, NitMin, M, H, G) # Managing types of prior priorH_cov_term = np.zeros_like(R_inv) matrix_covH = R_inv.copy() if prior=='balloon': logger.info(" prior balloon") #matrix_covH = np.eye(R_inv.shape[0], R_inv.shape[1]) priorH_mean_term = np.dot(matrix_covH / sigmaH, Hb) else: logger.info(" NO prior") priorH_mean_term = np.zeros_like(H) priorG_mean_term = np.zeros_like(G) ##################### # EXPECTATION ##################### # HRF H if estimateH: logger.info("E H step ...") Ht, Sigma_H = vt.expectation_H_ms(Sigma_A, m_A, m_C, G, XX, W, Gamma, Gamma_X, X_Gamma_X, J, y_tilde, cov_noise, matrix_covH, sigmaH, priorH_mean_term, priorH_cov_term, N, M, D, n_sess) if constraint: if not np.linalg.norm(Ht)==1: logger.info(" constraint l2-norm = 1") H = vt.constraint_norm1_b(Ht, Sigma_H) #H = Ht / np.linalg.norm(Ht) else: logger.info(" l2-norm already 1!!!!!") H = Ht.copy() Sigma_H = np.zeros_like(Sigma_H) else: H = Ht.copy() h_norm = np.append(h_norm, np.linalg.norm(H)) print 'h_norm = ', h_norm Crit_H = (np.linalg.norm(H - H1) / np.linalg.norm(H1)) ** 2 cH += [Crit_H] H1[:] = H[:] # A if estimateA: logger.info("E A step ...") m_A, Sigma_A = vt.expectation_A_ms(m_A, Sigma_A, H, G, m_C, W, XX, Gamma, Gamma_X, q_Z, mu_Ma, sigma_Ma, J, y_tilde, Sigma_H, sigma_eps_m, N, M, D, n_sess) cA += [(np.linalg.norm(m_A - m_A1) / np.linalg.norm(m_A1)) ** 2] m_A1[:, :, :] = m_A[:, :, :] # Q labels if estimateZ: logger.info("E Q step ...") q_Z, Z_tilde = vt.expectation_Q_ms(Sigma_A, m_A, Sigma_C, m_C, sigma_Ma, mu_Ma, sigma_Mc, mu_Mc, Beta, Z_tilde, q_Z, neighboursIndexes, graph, M, J, K, n_sess) if 0: import matplotlib.pyplot as plt plt.close('all') fig = plt.figure(1) for m in xrange(M): ax = fig.add_subplot(2, M, m + 1) im = ax.matshow(m_A[:, :, m].mean(0).reshape(20, 20)) plt.colorbar(im, ax=ax) ax = fig.add_subplot(2, M, m + 3) im = ax.matshow(q_Z[m, 1, :].reshape(20, 20)) plt.colorbar(im, ax=ax) fig = plt.figure(2) for m in xrange(M): for s in xrange(n_sess): ax = fig.add_subplot(M, n_sess, n_sess * m + s + 1) im = ax.matshow(m_A[s, :, m].reshape(20, 20)) plt.colorbar(im, ax=ax) plt.show() cZ += [(np.linalg.norm(q_Z - q_Z1) / (np.linalg.norm(q_Z1) + eps)) ** 2] q_Z1 = q_Z if ni > 0: free_energyE = 0 for s in xrange(n_sess): free_energyE += vt.Compute_FreeEnergy(y_tilde[s, :, :], m_A[s, :, :], Sigma_A[:, :, :, s], mu_Ma, sigma_Ma, H, Sigma_H, AuxH, R, R_inv, sigmaH, sigmaG, m_C[s, :, :], Sigma_C[:, :, :, s], mu_Mc, sigma_Mc, G, Sigma_G, AuxG, q_Z, neighboursIndexes, Beta, Gamma, gamma, gamma_h, gamma_g, sigma_eps[s, :], XX[s, :, :, :], W, J, D, M, N, K, use_hyperprior, Gamma_X[:, s, :, :], Gamma_WX[:, s, :, :], bold=True, S=n_sess) if free_energyE < free_energy: logger.info("free energy has decreased after E step from %f to %f", free_energy, free_energyE) # crit. AH and CG logger.info("crit. AH and CG") AH = m_A[:, :, :, np.newaxis] * H[np.newaxis, np.newaxis, :] Crit_AH = (np.linalg.norm(AH - AH1) / (np.linalg.norm(AH1) + eps)) ** 2 cAH += [Crit_AH] AH1 = AH.copy() logger.info("Crit_AH = " + str(Crit_AH)) ##################### # MAXIMIZATION ##################### if prior=='balloon': logger.info(" prior balloon") AuxH = H - Hb AuxG = G - Gb else: logger.info(" NO prior") AuxH = H.copy() AuxG = G.copy() # Variance HRF: sigmaH if estimateSigmaH: logger.info("M sigma_H step ...") sigmaH = vt.maximization_sigma_asl(D, Sigma_H, matrix_covH, AuxH, use_hyperprior, gamma_h) logger.info('sigmaH = ' + str(sigmaH)) if ni > 0: free_energyVh = 0 for s in xrange(n_sess): free_energyVh += vt.Compute_FreeEnergy(y_tilde[s, :, :], m_A[s, :, :], Sigma_A[:, :, :, s], mu_Ma, sigma_Ma, H, Sigma_H, AuxH, R, R_inv, sigmaH, sigmaG, m_C[s, :, :], Sigma_C[:, :, :, s], mu_Mc, sigma_Mc, G, Sigma_G, AuxG, q_Z, neighboursIndexes, Beta, Gamma, gamma, gamma_h, gamma_g, sigma_eps[s, :], XX[s, :, :, :], W, J, D, M, N, K, use_hyperprior, Gamma_X[:, s, :, :], Gamma_WX[:, s, :, :], bold=True, S=n_sess) if free_energyVh < free_energyE: logger.info("free energy has decreased after v_h computation from %f to %f", free_energyE, free_energyVh) # (mu,sigma) if estimateMP: logger.info("M (mu,sigma) a and c step ...") #print 'q_Z = ', q_Z #print q_Z.shape mu_Ma, sigma_Ma = vt.maximization_mu_sigma_ms(q_Z, m_A, Sigma_A, M, J, n_sess, K) print 'mu_Ma = ', mu_Ma print 'sigma_Ma = ', sigma_Ma if ni > 0: free_energyMP = 0 for s in xrange(n_sess): free_energyMP += vt.Compute_FreeEnergy(y_tilde[s, :, :], m_A[s, :, :], Sigma_A[:, :, :, s], mu_Ma, sigma_Ma, H, Sigma_H, AuxH, R, R_inv, sigmaH, sigmaG, m_C[s, :, :], Sigma_C[:, :, :, s], mu_Mc, sigma_Mc, G, Sigma_G, AuxG, q_Z, neighboursIndexes, Beta, Gamma, gamma, gamma_h, gamma_g, sigma_eps[s, :], XX[s, :, :, :], W, J, D, M, N, K, use_hyperprior, Gamma_X[:, s, :, :], Gamma_WX[:, s, :, :], bold=True, S=n_sess) if free_energyMP < free_energyVh: logger.info("free energy has decreased after GMM parameters computation from %f to %f", free_energyVh, free_energyMP) # Drift L, alpha if estimateLA: logger.info("M L, alpha step ...") for s in xrange(n_sess): AL[:, :, s] = vt.maximization_LA_asl(Y[s, :, :], m_A[s, :, :], m_C[s, :, :], XX[s, :, :, :], WP[s, :, :], W, WP_Gamma_WP[s, :, :], H, G, Gamma) PL = np.einsum('ijk,kli->ijl', WP, AL) y_tilde = Y - PL if ni > 0: free_energyLA = 0 for s in xrange(n_sess): free_energyLA += vt.Compute_FreeEnergy(y_tilde[s, :, :], m_A[s, :, :], Sigma_A[:, :, :, s], mu_Ma, sigma_Ma, H, Sigma_H, AuxH, R, R_inv, sigmaH, sigmaG, m_C[s, :, :], Sigma_C[:, :, :, s], mu_Mc, sigma_Mc, G, Sigma_G, AuxG, q_Z, neighboursIndexes, Beta, Gamma, gamma, gamma_h, gamma_g, sigma_eps[s, :], XX[s, :, :, :], W, J, D, M, N, K, use_hyperprior, Gamma_X[:, s, :, :], Gamma_WX[:, s, :, :], bold=True, S=n_sess) if free_energyLA < free_energyMP: logger.info("free energy has decreased after drifts computation from %f to %f", free_energyMP, free_energyLA) # Beta if estimateBeta: logger.info("M beta step ...") """Qtilde = np.concatenate((Z_tilde, np.zeros((M, K, 1), dtype=Z_tilde.dtype)), axis=2) Qtilde_sumneighbour = Qtilde[:, :, neighboursIndexes].sum(axis=3) Beta = vt.maximization_beta_m2(Beta.copy(), q_Z, Qtilde_sumneighbour, Qtilde, neighboursIndexes, maxNeighbours, gamma, MaxItGrad, gradientStep) logger.info(Beta) """ logger.info("M beta step ...") Qtilde = np.concatenate((Z_tilde, np.zeros((M, K, 1), dtype=Z_tilde.dtype)), axis=2) Qtilde_sumneighbour = Qtilde[:, :, neighboursIndexes].sum(axis=3) for m in xrange(0, M): Beta[m] = vt.maximization_beta_m2_scipy_asl(Beta[m].copy(), q_Z[m, :, :], Qtilde_sumneighbour[m, :, :], Qtilde[m, :, :], neighboursIndexes, maxNeighbours, gamma, MaxItGrad, gradientStep) logger.info(Beta) if ni > 0: free_energyB = 0 for s in xrange(n_sess): free_energyB += vt.Compute_FreeEnergy(y_tilde[s, :, :], m_A[s, :, :], Sigma_A[:, :, :, s], mu_Ma, sigma_Ma, H, Sigma_H, AuxH, R, R_inv, sigmaH, sigmaG, m_C[s, :, :], Sigma_C[:, :, :, s], mu_Mc, sigma_Mc, G, Sigma_G, AuxG, q_Z, neighboursIndexes, Beta, Gamma, gamma, gamma_h, gamma_g, sigma_eps[s, :], XX[s, :, :, :], W, J, D, M, N, K, use_hyperprior, Gamma_X[:, s, :, :], Gamma_WX[:, s, :, :], bold=True, S=n_sess) if free_energyB < free_energyLA: logger.info("free energy has decreased after Beta computation from %f to %f", \ free_energyLA, free_energyB) if 0 and ni < 5: plt.close('all') for m in xrange(0, M): range_b = np.arange(-10., 20., 0.1) beta_plotting = np.zeros_like(range_b) grad_plotting = np.zeros_like(range_b) for ib, b in enumerate(range_b): beta_plotting[ib] = vt.fun(b, q_Z[m, :, :], Qtilde_sumneighbour[m, :, :], neighboursIndexes, gamma) grad_plotting[ib] = vt.grad_fun(b, q_Z[m, :, :], Qtilde_sumneighbour[m, :, :], neighboursIndexes, gamma) #print beta_plotting plt.figure(1) plt.hold('on') plt.plot(range_b, beta_plotting) plt.figure(2) plt.hold('on') plt.plot(range_b, grad_plotting) plt.show() # Sigma noise if estimateNoise: logger.info("M sigma noise step ...") for s in xrange(n_sess): sigma_eps[s, :] = vt.maximization_sigma_noise_asl(XX[s, :, :, :], m_A[s, :, :], Sigma_A[:, :, :, s], H, m_C[s, :, :], Sigma_C[:, :, :, s], \ G, Sigma_H, Sigma_G, W, y_tilde[s, :, :], Gamma, \ Gamma_X[:, s, :, :], Gamma_WX[:, s, :, :], N) if PLOT: for m in xrange(M): SUM_q_Z[m] += [q_Z[m, 1, :].sum()] mua1[m] += [mu_Ma[m, 1]] free_energy = 0 for s in xrange(n_sess): if s==n_sess-1: plotFE = True else: plotFE = False free_energy += vt.Compute_FreeEnergy(y_tilde[s, :, :], m_A[s, :, :], Sigma_A[:, :, :, s], mu_Ma, sigma_Ma, H, Sigma_H, AuxH, R, R_inv, sigmaH, sigmaG, m_C[s, :, :], Sigma_C[:, :, :, s], mu_Mc, sigma_Mc, G, Sigma_G, AuxG, q_Z, neighboursIndexes, Beta, Gamma, gamma, gamma_h, gamma_g, sigma_eps[s, :], XX[s, :, :, :], W, J, D, M, N, K, use_hyperprior, Gamma_X[:, s, :, :], Gamma_WX[:, s, :, :], plot=plotFE, bold=True, S=n_sess) if ni > 0: if free_energy < free_energyB: logger.info("free energy has decreased after Noise computation from %f to %f", free_energyB, free_energy) if ni > 0: if free_energy < FE[-1]: logger.info("WARNING! free energy has decreased in this iteration from %f to %f", FE[-1], free_energy) FE += [free_energy] if ni > 5: #Crit_FE = np.abs((FE[-1] - FE[-2]) / FE[-2]) FE0 = np.array(FE) Crit_FE = np.abs((FE0[-5:] - FE0[-6:-1]) / FE0[-6:-1]) print Crit_FE print (Crit_FE > Thresh * np.ones_like(Crit_FE)).any() else: Crit_FE = 100 ni += 1 cTime += [time.time() - t1] logger.info("Computing reconstruction error") StimulusInducedSignal = vt.computeFit_asl(H, m_A[s, :, :], G, m_C[s, :, :], W, XX[s, :, :, :]) rerror = np.append(rerror, \ np.mean(((Y[s, :, :] - StimulusInducedSignal) ** 2).sum(axis=0)) \ / np.mean((Y[s, :, :] ** 2).sum(axis=0))) CompTime = time.time() - t1 # Normalize if not done already if not constraint: # or not normg: logger.info("l2-norm of H and G to 1 if not constraint") Hnorm = np.linalg.norm(H) H /= Hnorm Sigma_H /= Hnorm**2 m_A *= Hnorm if zc: H = np.concatenate(([0], H, [0])) ## Compute contrast maps and variance if computeContrast and len(contrasts) > 0: logger.info("Computing contrasts ... ") CONTRAST_A, CONTRASTVAR_A, \ CONTRAST_C, CONTRASTVAR_C = vt.compute_contrasts(condition_names, contrasts, m_A[s, :, :], m_C[s, :, :], Sigma_A[:, :, :, s], Sigma_C[:, :, :, s], M, J) else: CONTRAST_A, CONTRASTVAR_A, CONTRAST_C, CONTRASTVAR_C = 0, 0, 0, 0 ########################################################################### ########################################## PLOTS and SNR computation logger.info("Nb iterations to reach criterion: %d", ni) logger.info("Computational time = %s min %s s", str(np.int(CompTime // 60)), str(np.int(CompTime % 60))) logger.info("Iteration time = %s min %s s", str(np.int((CompTime // ni) // 60)), str(np.int((CompTime / ni) % 60))) logger.info("perfusion baseline mean = %f", np.mean(AL[0, :, s])) logger.info("perfusion baseline var = %f", np.var(AL[0, :, s])) logger.info("drifts mean = %f", np.mean(AL[1:, :, s])) logger.info("drifts var = %f", np.var(AL[1:, :, s])) logger.info("noise mean = %f", np.mean(sigma_eps[s, :])) logger.info("noise var = %f", np.var(sigma_eps[s, :])) SNR10 = 20 * (np.log10(np.linalg.norm(Y[s, :, :]) / \ np.linalg.norm(Y[s, :, :] - StimulusInducedSignal - PL[s, :, :]))) logger.info("SNR = %d", SNR10) return ni, m_A.mean(0), H, m_C.mean(0), G, Z_tilde, sigma_eps[s, :], \ mu_Ma, sigma_Ma, mu_Mc, sigma_Mc, Beta, AL[:, :, s], PL[s, :, :], \ np.zeros_like(AL[0, :, s]), Sigma_A[:, :, :, s], Sigma_C[:, :, :, s], Sigma_H, Sigma_G, rerror, \ CONTRAST_A, CONTRASTVAR_A, CONTRAST_C, CONTRASTVAR_C, \ cA[:], cH[2:], cC[2:], cG[2:], cZ[2:], cAH[2:], cCG[2:], \ cTime, FE