def test_2x2_img_easy(): w = SegGeometryEpix10kaV1(use_wide_pix_center=False) X, Y = w.get_seg_xy_maps_pix_with_offset() iX, iY = (X + 0.25).astype(int), (Y + 0.25).astype(int) img = gg.getImageFromIndexArrays(iY, iX, iX + iY) gg.plotImageLarge(img, amp_range=(0, 750), figsize=(10, 8)) gg.show()
def example_varsize(): print """Test HSpectrum for variable size bins""" from time import time edges = (0, 30, 40, 50, 60, 70, 100) # array of bin edges mu, sigma = 50, 10 # parameters of random Gaussian distribution of intensities nevts = 10 # number of events in this test ashape = (32, 185, 388) # data array shape spec = HSpectrum(edges, pbits=0377) for ev in range(nevts): arr = random_standard_array(ashape, mu, sigma) t0_sec = time() spec.fill(arr) print 'Event:%3d, t = %10.6f sec' % (ev, time() - t0_sec) if True: import pyimgalgos.GlobalGraphics as gg histarr, edges, nbins = spec.spectrum() #gg.plotImageLarge(arr, amp_range=(vmin,vmax), title='random') gg.plotImageLarge(histarr[0:500, :], amp_range=(0, nevts / 3), title='indexes') gg.show()
def show(): log( "rmin", rmin) log( "rmax", rmax) import pyimgalgos.GlobalGraphics as gg gg.plotImageLarge(imarr, amp_range=(rmin, rmax), title = title, origin = 'lower') if show_plot: gg.show()
def do_main(): """ Main method to do work """ from pyimgalgos.FiberIndexing import BinPars from pyimgalgos.GlobalUtils import create_directory # h-k space image parameters hmax = 4 kmax = 6 # recipical space image parameters, bins for 2-d image bpq = BinPars((-0.25, 0.25), 1200, vtype=np.float32, endpoint=True) #fname = '/reg/neh/home1/dubrovin/LCLS/rel-mengning/work/peak-idx-cxif5315-r0169-2015-11-13T17:04:37.txt' #fname = '/reg/neh/home1/dubrovin/LCLS/rel-mengning/work/peak-idx-cxif5315-r0169-2015-12-01T15:44:49.txt' fname = '/reg/neh/home1/dubrovin/LCLS/rel-mengning/work/peak-idx-cxif5315-r0169-2016-05-12T18:17:57.txt' rdir = './results-idx' create_directory(rdir) sp.prefix = '%s/2016-05-13-v01-idx-res-matched' % rdir # file name prefix for histograms #sp.prefix = '%s/2016-05-13-v01-idx-res-peak-nm' % rdir # file name prefix for histograms img_space, img_recip = proc_file(fname, hmax, kmax, bpq) print_crystal_in_hk_space(img_space, hmax, kmax) print 'img_recip.shape=', img_recip.shape if sp.DO_HIST: plot_histograms() if sp.DO_PLOT: import pyimgalgos.GlobalGraphics as gg img = img_space img_range = (-kmax - 0.5, kmax + 0.5, -hmax - 0.5, hmax + 0.5) axim = gg.plotImageLarge(img, img_range=img_range, amp_range=(0,1), figsize=(8,6),\ title='Crystal structure in h-k space', origin='upper', window=(0.1, 0.1, 0.9, 0.86)) axim.set_xlabel('k index', fontsize=18) axim.set_ylabel('h index', fontsize=18) gg.savefig('%s-%s-crystal-in-hk-space.png' % (sp.prefix, sp.exp_run)) # sp.tstamp img = img_recip ave, rms = img.mean(), img.std() amin, amax = 0, ave + 5 * rms img_range = (bpq.vmin, bpq.vmax, bpq.vmin, bpq.vmax) axim = gg.plotImageLarge(img, img_range=img_range, amp_range=(amin, amax), figsize=(10,8),\ title='Crystal structure in reciprocal space', origin='upper', window=(0.1, 0.1, 0.86, 0.86)) axim.set_xlabel('$q_x$ ($1/\AA$)', fontsize=18) axim.set_ylabel('$q_y$ ($1/\AA$)', fontsize=18) gg.savefig('%s-%s-crystal-in-recip-space.png' % (sp.prefix, sp.exp_run)) gg.show()
def test_2x2_mask(mbits=0o377): pc2x2 = SegGeometryEpix10kaV1(use_wide_pix_center=False) X, Y = pc2x2.get_seg_xy_maps_pix_with_offset() mask = pc2x2.pixel_mask_array(mbits, width=5, wcentral=5) mask[mask == 0] = 3 iX, iY = (X + 0.25).astype(int), (Y + 0.25).astype(int) img = gg.getImageFromIndexArrays(iX, iY, mask) gg.plotImageLarge(img, amp_range=(-1, 2), figsize=(10, 10)) gg.show()
def show(): log("rmin", rmin) log("rmax", rmax) import pyimgalgos.GlobalGraphics as gg gg.plotImageLarge(imarr, amp_range=(rmin, rmax), title=title, origin='lower') if show_plot: gg.show()
def test_xyz_maps(): w = SegGeometryEpix10kaV1() w.print_maps_seg_um() titles = ['X map', 'Y map'] #for i,arr2d in enumerate([w.x_pix_arr,w.y_pix_arr]) : for i, arr2d in enumerate(w.get_seg_xy_maps_pix()): amp_range = (arr2d.min(), arr2d.max()) gg.plotImageLarge(arr2d, amp_range=amp_range, figsize=(10, 8), title=titles[i]) gg.move(200 * i, 100 * i) gg.show()
def plot_lut_as_omega_vs_qh(list_oq) : """Plots content of the lookup table as an image of intensities for omega(deg) vs. hq(1/A) """ img = lut_as_image(list_oq) print_ndarr(img, 'img') img_range = (bpq.vmin(), bpq.vmax(), bpomega.vmax(), bpomega.vmin()) axim = gg.plotImageLarge(img, img_range=img_range, amp_range=None, figsize=(15,13),\ title='Plot reconstructed from look-up table', origin='upper',\ window=(0.06, 0.06, 0.94, 0.92), cmap='gray_r') axim.set_xlabel('$q_{H}$ ($1/\AA$)', fontsize=18) axim.set_ylabel('$\omega$ (degree)', fontsize=18) gg.save('img-lut-prob-omega-vs-qh.png', pbits=1) gg.show('do not block')
def plot_lut_as_omega_vs_qh(list_oq): """Plots content of the lookup table as an image of intensities for omega(deg) vs. hq(1/A) """ img = lut_as_image(list_oq) print_ndarr(img, 'img') img_range = (bpq.vmin(), bpq.vmax(), bpomega.vmax(), bpomega.vmin()) axim = gg.plotImageLarge(img, img_range=img_range, amp_range=None, figsize=(15,13),\ title='Plot reconstructed from look-up table', origin='upper',\ window=(0.06, 0.06, 0.94, 0.92), cmap='gray_r') axim.set_xlabel('$q_{H}$ ($1/\AA$)', fontsize=18) axim.set_ylabel('$\omega$ (degree)', fontsize=18) gg.save('img-lut-prob-omega-vs-qh.png', pbits=1) gg.show('do not block')
def plot_xy_lattice(list_oq) : """Plots image of the crystal lattice, using list of [(omega,<1-d-array-of-intensities-for-omega>)] """ img = xy_lattice_image(list_oq) print_ndarr(img, 'img') #--- Convolution of image from scipy.signal import convolve2d g2d = arr_2d_gauss(2, 1.5) img = convolve2d(img, g2d, mode='same', boundary='fill', fillvalue=0) #--- img_range = (bpq.vmin(), bpq.vmax(), bpq.vmin(), bpq.vmax()) axim = gg.plotImageLarge(img, img_range=img_range, amp_range=None, figsize=(15,13),\ title='Lattice', origin='upper',\ window=(0.08, 0.06, 0.94, 0.92)) # , cmap='gray_r') axim.set_xlabel('Reciprocal x ($1/\AA$)', fontsize=18) axim.set_ylabel('Reciprocal y ($1/\AA$)', fontsize=18) gg.save('img-lut-lattice-xy.png', pbits=1) gg.show()
def plot_xy_lattice(list_oq): """Plots image of the crystal lattice, using list of [(omega,<1-d-array-of-intensities-for-omega>)] """ img = xy_lattice_image(list_oq) print_ndarr(img, 'img') #--- Convolution of image from scipy.signal import convolve2d g2d = arr_2d_gauss(2, 1.5) img = convolve2d(img, g2d, mode='same', boundary='fill', fillvalue=0) #--- img_range = (bpq.vmin(), bpq.vmax(), bpq.vmin(), bpq.vmax()) axim = gg.plotImageLarge(img, img_range=img_range, amp_range=None, figsize=(15,13),\ title='Lattice', origin='upper',\ window=(0.08, 0.06, 0.94, 0.92)) # , cmap='gray_r') axim.set_xlabel('Reciprocal x ($1/\AA$)', fontsize=18) axim.set_ylabel('Reciprocal y ($1/\AA$)', fontsize=18) gg.save('img-lut-lattice-xy.png', pbits=1) gg.show()
def test03(ntest, prefix='fig-v01'): """Test for 2-d binning of the restricted rad-phi range of entire image """ from time import time import pyimgalgos.GlobalGraphics as gg from PSCalib.GeometryAccess import img_from_pixel_arrays arr, geo = data_geo(ntest) iX, iY = geo.get_pixel_coord_indexes() X, Y, Z = geo.get_pixel_coords() mask = geo.get_pixel_mask(mbits=0377).flatten() t0_sec = time() rb = RadialBkgd(X, Y, mask, nradbins=200, nphibins=32, phiedges=(-20, 240), radedges=(10000,80000)) if ntest in (51,52)\ else RadialBkgd(X, Y, mask, nradbins= 5, nphibins= 8, phiedges=(-20, 240), radedges=(10000,80000)) #rb = RadialBkgd(X, Y, mask, nradbins=3, nphibins=8, phiedges=(240, -20), radedges=(80000,10000)) # v3 print 'RadialBkgd initialization time %.3f sec' % (time() - t0_sec) #print 'npixels_per_bin:', rb.npixels_per_bin() #print 'intensity_per_bin:', rb.intensity_per_bin(arr) #print 'average_per_bin:', rb.average_per_bin(arr) t0_sec = time() nda, title = arr, None if ntest == 41: nda, title = arr, 'averaged data' elif ntest == 42: nda, title = rb.pixel_rad(), 'pixel radius value' elif ntest == 43: nda, title = rb.pixel_phi(), 'pixel phi value' elif ntest == 44: nda, title = rb.pixel_irad() + 2, 'pixel radial bin index' elif ntest == 45: nda, title = rb.pixel_iphi() + 2, 'pixel phi bin index' elif ntest == 46: nda, title = rb.pixel_iseq( ) + 2, 'pixel sequential (rad and phi) bin index' elif ntest == 47: nda, title = mask, 'mask' elif ntest == 48: nda, title = rb.pixel_avrg(nda), 'averaged radial background' elif ntest == 49: nda, title = rb.subtract_bkgd(nda) * mask, 'background-subtracted data' elif ntest == 50: nda, title = rb.bin_avrg_rad_phi(nda), 'r-phi' elif ntest == 51: nda, title = rb.pixel_avrg_interpol( nda), 'averaged radial interpolated background' elif ntest == 52: nda, title = rb.subtract_bkgd_interpol( nda) * mask, 'interpol-background-subtracted data' else: print 'Test %d is not implemented' % ntest return print 'Get %s n-d array time %.3f sec' % (title, time() - t0_sec) img = img_from_pixel_arrays( iX, iY, nda) if not ntest in (50, ) else nda # [100:300,:] colmap = 'jet' # 'cubehelix' 'cool' 'summer' 'jet' 'winter' 'gray' da = (nda.min() - 1, nda.max() + 1) ds = da if ntest in (41, 48, 49, 50, 51): ave, rms = nda.mean(), nda.std() da = ds = (ave - 2 * rms, ave + 3 * rms) elif ntest in (52, ): colmap = 'gray' ds = da = (-20, 20) gg.plotImageLarge(img, amp_range=da, figsize=(14, 12), title=title, cmap=colmap) gg.save('%s-%02d-img.png' % (prefix, ntest)) gg.hist1d(nda, bins=None, amp_range=ds, weights=None, color=None, show_stat=True, log=False, \ figsize=(6,5), axwin=(0.18, 0.12, 0.78, 0.80), \ title=None, xlabel='Pixel value', ylabel='Number of pixels', titwin=title) gg.save('%s-%02d-his.png' % (prefix, ntest)) gg.show() print 'End of test for %s' % title
def test01(ntest, prefix='fig-v01'): """Test for radial 1-d binning of entire image. """ from time import time import pyimgalgos.GlobalGraphics as gg from PSCalib.GeometryAccess import img_from_pixel_arrays arr, geo = data_geo(ntest) t0_sec = time() iX, iY = geo.get_pixel_coord_indexes() X, Y, Z = geo.get_pixel_coords() mask = geo.get_pixel_mask(mbits=0377).flatten() print 'Time to retrieve geometry %.3f sec' % (time() - t0_sec) t0_sec = time() rb = RadialBkgd(X, Y, mask, nradbins=500, nphibins=1) # v1 print 'RadialBkgd initialization time %.3f sec' % (time() - t0_sec) t0_sec = time() nda, title = arr, None if ntest == 1: nda, title = arr, 'averaged data' elif ntest == 2: nda, title = rb.pixel_rad(), 'pixel radius value' elif ntest == 3: nda, title = rb.pixel_phi(), 'pixel phi value' elif ntest == 4: nda, title = rb.pixel_irad() + 2, 'pixel radial bin index' elif ntest == 5: nda, title = rb.pixel_iphi() + 2, 'pixel phi bin index' elif ntest == 6: nda, title = rb.pixel_iseq( ) + 2, 'pixel sequential (rad and phi) bin index' elif ntest == 7: nda, title = mask, 'mask' elif ntest == 8: nda, title = rb.pixel_avrg(nda), 'averaged radial background' elif ntest == 9: nda, title = rb.subtract_bkgd(nda) * mask, 'background-subtracted data' else: t1_sec = time() pf = polarization_factor(rb.pixel_rad(), rb.pixel_phi(), 94e3) # Z=94mm print 'Time to evaluate polarization correction factor %.3f sec' % ( time() - t1_sec) if ntest == 10: nda, title = pf, 'polarization factor' elif ntest == 11: nda, title = arr * pf, 'polarization-corrected averaged data' elif ntest == 12: nda, title = rb.subtract_bkgd( arr * pf) * mask, 'polarization-corrected background subtracted data' elif ntest == 13: nda, title = rb.pixel_avrg( arr * pf), 'polarization-corrected averaged radial background' elif ntest == 14: nda, title = rb.pixel_avrg_interpol( arr * pf ) * mask, 'polarization-corrected interpolated radial background' elif ntest == 15: nda, title = rb.subtract_bkgd_interpol( arr * pf ) * mask, 'polarization-corrected interpolated radial background-subtracted data' else: print 'Test %d is not implemented' % ntest return print 'Get %s n-d array time %.3f sec' % (title, time() - t0_sec) img = img_from_pixel_arrays( iX, iY, nda) if not ntest in (21, ) else nda[100:300, :] da, ds = None, None colmap = 'jet' # 'cubehelix' 'cool' 'summer' 'jet' 'winter' if ntest in (2, 3, 4, 5, 6, 7): da = ds = (nda.min() - 1., nda.max() + 1.) if ntest in (12, 15): ds = da = (-20, 20) colmap = 'gray' else: ave, rms = nda.mean(), nda.std() da = ds = (ave - 2 * rms, ave + 3 * rms) gg.plotImageLarge(img, amp_range=da, figsize=(14, 12), title=title, cmap=colmap) gg.save('%s-%02d-img.png' % (prefix, ntest)) gg.hist1d(nda, bins=None, amp_range=ds, weights=None, color=None, show_stat=True, log=False, \ figsize=(6,5), axwin=(0.18, 0.12, 0.78, 0.80), \ title=None, xlabel='Pixel value', ylabel='Number of pixels', titwin=title) gg.save('%s-%02d-his.png' % (prefix, ntest)) gg.show() print 'End of test for %s' % title
def make_index_table(prefix='./v01-') : from pyimgalgos.GlobalUtils import str_tstamp fname = '%s**t-cxif5315-r0169-%s.txt' % (prefix, str_tstamp()) fout = open(fname,'w') fout.write('# file name: %s\n' % fname) #------------------------------ # Photon energy Egamma_eV = 6003.1936 # eV SIOC:SYS0:ML00:AO541 wavelen_nm = wavelength_nm_from_energy_ev(Egamma_eV) # nm evald_rad = wave_vector_value(Egamma_eV) # 1/A #------- sigma_ql = 0.002 * evald_rad sigma_qt = 0.002 * evald_rad #------- rec = '\n# photon energy = %.4f eV' % (Egamma_eV)\ + '\n# wavelength = %.4f A' % (wavelen_nm*10)\ + '\n# wave number/Evald radius k = 1/lambda = %.6f 1/A' % (evald_rad)\ + '\n# sigma_ql = %.6f 1/A (approximately = k * <pixel size>/' % (sigma_ql)\ + '\n# sigma_qt = %.6f 1/A (approximately = k * <pixel size>/' % (sigma_qt)\ + '<sample-to-detector distance> = k*100um/100mm)'\ + '\n# 3*sigma_ql = %.6f 1/A\n' % (3*sigma_ql)\ + '\n# 3*sigma_qt = %.6f 1/A\n' % (3*sigma_qt) print rec fout.write(rec) #------------------------------ # Lattice parameters # from previous analysis note: #a, b, c = 18.36, 26.65, 4.81 # Angstrom #alpha, beta, gamma = 90, 90, 77.17 # 180 - 102.83 degree a= 18.55 # Angstrom b, c = 1.466*a, 0.262*a # Angstrom alpha, beta, gamma = 90, 90, 78.47 # 180 - 101.53 degree hmax, kmax, lmax = 4, 6, 0 # size of lattice to consider #hmin, kmin, lmin =-4,-6, 0 # size of lattice to consider hmin, kmin, lmin = None, None, None # default [-hmax,hmax], [-kmax,kmax], a1, a2, a3 = triclinic_primitive_vectors(a, b, c, alpha, beta, gamma) b1, b2, b3 = reciprocal_from_bravias(a1, a2, a3) msg1 = '\n# Triclinic crystal cell parameters:'\ + '\n# a = %.2f A\n# b = %.2f A\n# c = %.2f A' % (a, b, c)\ + '\n# alpha = %.2f deg\n# beta = %.2f deg\n# gamma = %.2f deg' % (alpha, beta, gamma) msg2 = '\n# 3-d space primitive vectors:\n# a1 = %s\n# a2 = %s\n# a3 = %s' %\ (str(a1), str(a2), str(a3)) msg3 = '\n# reciprocal space primitive vectors:\n# b1 = %s\n# b2 = %s\n# b3 = %s' %\ (str(b1), str(b2), str(b3)) rec = '%s\n%s\n%s\n' % (msg1, msg2, msg3) print rec fout.write(rec) fout.write('\n# %s\n\n' % (89*'_')) #for line in triclinic_primitive_vectors.__doc__.split('\n') : fout.write('\n# %s' % line) test_lattice (b1, b2, b3, hmax, kmax, lmax, np.float32, hmin, kmin, lmin) lattice_node_radius(b1, b2, b3, hmax, kmax, lmax, np.float32, '%10.6f', hmin, kmin, lmin) lattice_node_radius(b1, b2, b3, hmax, kmax, 1, np.float32, '%10.6f', hmin, kmin, lmin) #------------------------------ #return #------------------------------ # binning for look-up table and plots # bin parameters for q in units of k = Evald's sphere radius [1/A] bpq = BinPars((-0.25, 0.25), 1000, vtype=np.float32, endpoint=False) # bin parameters for omega [degree] - fiber rotation angle around axis bpomega = BinPars((0., 180.), 360, vtype=np.float32, endpoint=False) # bin parameters for beta [degree] - fiber axis tilt angle #bpbeta = BinPars((15., 195.), 2, vtype=np.float32, endpoint=True) #bpbeta = BinPars((15., 15.), 1, vtype=np.float32, endpoint=False) #bpbeta = BinPars((5., 25.), 2, vtype=np.float32, endpoint=True) bpbeta = BinPars((0., 50.), 11, vtype=np.float32, endpoint=True) bpbeta2 = BinPars((180., 230.), 11, vtype=np.float32, endpoint=True) str_beta = 'for-beta:%s' % (bpbeta.strrange) print '\n%s\nIndexing lookup table\n' % (91*'_') lut = make_lookup_table_v2(b1, b2, b3, hmax, kmax, lmax, np.float32, evald_rad, sigma_ql, sigma_qt, fout, bpq, bpomega, bpbeta, hmin, kmin, lmin) lut2 = make_lookup_table_v2(b1, b2, b3, hmax, kmax, lmax, np.float32, evald_rad, sigma_ql, sigma_qt, fout, bpq, bpomega, bpbeta2, hmin, kmin, lmin) fout.close() print '\nIndexing lookup table is saved in the file: %s' % fname #------------------------------ # produce and save plots import pyimgalgos.GlobalGraphics as gg img = lut # or lut2 img = lut + lut2 img_range = (bpq.vmin, bpq.vmax, bpomega.vmax, bpomega.vmin) axim = gg.plotImageLarge(lut, img_range=img_range, amp_range=None, figsize=(15,13),\ title='Non-symmetrized for beta', origin='upper', window=(0.05, 0.06, 0.94, 0.94)) axim.set_xlabel('$q_{H}$ ($1/\AA$)', fontsize=18) axim.set_ylabel('$\omega$ (degree)', fontsize=18) gg.save('%splot-img-prob-omega-vs-qh-%s.png' % (prefix, str_beta), pbits=1) axim = gg.plotImageLarge(img, img_range=img_range, amp_range=None, figsize=(15,13),\ title='Symmetrized for beta (beta, beta+pi)', origin='upper', window=(0.05, 0.06, 0.94, 0.94)) axim.set_xlabel('$q_{H}$ ($1/\AA$)', fontsize=18) axim.set_ylabel('$\omega$ (degree)', fontsize=18) gg.save('%splot-img-prob-omega-vs-qh-sym-%s.png' % (prefix, str_beta), pbits=1) arrhi = np.sum(img,0) fighi, axhi, hi = gg.hist1d(bpq.binedges, bins=bpq.nbins-1, amp_range=(bpq.vmin, bpq.vmax), weights=arrhi,\ color='b', show_stat=True, log=False,\ figsize=(15,5), axwin=(0.05, 0.12, 0.85, 0.80),\ title=None, xlabel='$q_{H}$ ($1/\AA$)', ylabel='Intensity', titwin=None) gg.show() gg.save_fig(fighi, '%splot-his-prob-vs-qh-%s.png' % (prefix, str_beta), pbits=1) qh_weight = zip(bpq.bincenters, arrhi) fname = '%sarr-qh-weight-%s.npy' % (prefix, str_beta) print 'Save qh:weigt array in file %s' % fname np.save(fname, qh_weight)
def plot_image(img, img_range=None, amp_range=None, figsize=(12, 10)): #import pyimgalgos.GlobalGraphics as gg axim = gg.plotImageLarge(img, img_range, amp_range, figsize) gg.show()