예제 #1
0
    def bridge_damage_analysis_bulk_input(self, bridges, hazard_type,
                                          hazard_dataset_id):
        """Run analysis for multiple bridges.

        Args:
            bridges (list): Multiple bridges from input inventory set.
            hazard_type (str): Hazard type, either earthquake, tornado, tsunami, or hurricane.
            hazard_dataset_id (str): An id of the hazard exposure.

        Returns:
            list: A list of ordered dictionaries with bridge damage values and other data/metadata.

        """
        # Get Fragility key
        fragility_key = self.get_parameter("fragility_key")
        if fragility_key is None:
            fragility_key = BridgeUtil.DEFAULT_TSUNAMI_HMAX_FRAGILITY_KEY if hazard_type == 'tsunami' else \
                BridgeUtil.DEFAULT_FRAGILITY_KEY
            self.set_parameter("fragility_key", fragility_key)

        # Hazard Uncertainty
        use_hazard_uncertainty = False
        if hazard_type == "earthquake" and self.get_parameter(
                "use_hazard_uncertainty") is not None:
            use_hazard_uncertainty = self.get_parameter(
                "use_hazard_uncertainty")

        # Liquefaction
        use_liquefaction = False
        if hazard_type == "earthquake" and self.get_parameter(
                "use_liquefaction") is not None:
            use_liquefaction = self.get_parameter("use_liquefaction")

        fragility_set = dict()
        fragility_set = self.fragilitysvc.match_inventory(self.get_input_dataset("dfr3_mapping_set"), bridges,
                                                          fragility_key)

        bridge_results = []
        list_bridges = bridges

        # Converting list of bridges into a dictionary for ease of reference
        bridges = dict()
        for br in list_bridges:
            bridges[br["id"]] = br
        list_bridges = None  # Clear as it's not needed anymore

        processed_bridges = []
        grouped_bridges = AnalysisUtil.group_by_demand_type(bridges, fragility_set)

        for demand, grouped_brs in grouped_bridges.items():

            input_demand_type = demand[0]
            input_demand_units = demand[1]

            # For every group of unique demand and demand unit, call the end-point once
            br_chunks = list(AnalysisUtil.chunks(grouped_brs, 50))  # TODO: Move to globals?
            for brs in br_chunks:
                points = []
                for br_id in brs:
                    location = GeoUtil.get_location(bridges[br_id])
                    points.append(str(location.y) + "," + str(location.x))

                if hazard_type == "earthquake":
                    hazard_vals = \
                        self.hazardsvc.get_earthquake_hazard_values(
                            hazard_dataset_id,
                            input_demand_type,
                            input_demand_units,
                            points)
                elif hazard_type == "tsunami":
                    hazard_vals = self.hazardsvc.get_tsunami_hazard_values(
                        hazard_dataset_id, input_demand_type, input_demand_units, points)
                elif hazard_type == "tornado":
                    hazard_vals = self.hazardsvc.get_tornado_hazard_values(
                        hazard_dataset_id, input_demand_units, points)
                elif hazard_type == "hurricane":
                    hazard_vals = self.hazardsvc.get_hurricanewf_values(
                        hazard_dataset_id, input_demand_type, input_demand_units, points)
                else:
                    raise ValueError("We only support Earthquake, Tornado, Tsunami, and Hurricane at the moment!")

                # Parse the batch hazard value results and map them back to the building and fragility.
                # This is a potential pitfall as we are relying on the order of the returned results
                i = 0
                for br_id in brs:
                    bridge_result = collections.OrderedDict()
                    bridge = bridges[br_id]
                    selected_fragility_set = fragility_set[br_id]

                    hazard_val = hazard_vals[i]['hazardValue']

                    hazard_std_dev = 0.0
                    if use_hazard_uncertainty:
                        # TODO Get this from API once implemented
                        raise ValueError("Uncertainty Not Implemented!")

                    adjusted_fragility_set = copy.deepcopy(selected_fragility_set)
                    if use_liquefaction and 'liq' in bridge['properties']:
                        for fragility in adjusted_fragility_set.fragility_curves:
                            fragility.adjust_fragility_for_liquefaction(bridge['properties']['liq'])

                    dmg_probability = adjusted_fragility_set.calculate_limit_state(hazard_val, std_dev=hazard_std_dev)
                    retrofit_cost = BridgeUtil.get_retrofit_cost(fragility_key)
                    retrofit_type = BridgeUtil.get_retrofit_type(fragility_key)

                    dmg_intervals = AnalysisUtil.calculate_damage_interval(dmg_probability)

                    bridge_result['guid'] = bridge['properties']['guid']
                    bridge_result.update(dmg_probability)
                    bridge_result.update(dmg_intervals)
                    bridge_result["retrofit"] = retrofit_type
                    bridge_result["retrocost"] = retrofit_cost
                    bridge_result["demandtype"] = input_demand_type
                    bridge_result["demandunits"] = input_demand_units
                    bridge_result["hazardtype"] = hazard_type
                    bridge_result["hazardval"] = hazard_val

                    # add spans to bridge output so mean damage calculation can use that info
                    if "spans" in bridge["properties"] and bridge["properties"]["spans"] \
                            is not None and bridge["properties"]["spans"].isdigit():
                        bridge_result['spans'] = int(bridge["properties"]["spans"])
                    elif "SPANS" in bridge["properties"] and bridge["properties"]["SPANS"] \
                            is not None and bridge["properties"]["SPANS"].isdigit():
                        bridge_result['spans'] = int(bridge["properties"]["SPANS"])
                    else:
                        bridge_result['spans'] = 1

                    bridge_results.append(bridge_result)
                    processed_bridges.append(br_id)  # remove processed bridges
                    i = i + 1

        unmapped_dmg_probability = {"ls-slight": 0.0, "ls-moderat": 0.0,
                                    "ls-extensi": 0.0, "ls-complet": 0.0}
        unmapped_dmg_intervals = AnalysisUtil.calculate_damage_interval(unmapped_dmg_probability)
        for br_id, br in bridges.items():
            if br_id not in processed_bridges:
                unmapped_br_result = collections.OrderedDict()
                unmapped_br_result['guid'] = br['properties']['guid']
                unmapped_br_result.update(unmapped_dmg_probability)
                unmapped_br_result.update(unmapped_dmg_intervals)
                unmapped_br_result["retrofit"] = "Non-Retrofit"
                unmapped_br_result["retrocost"] = 0.0
                unmapped_br_result["demandtype"] = "None"
                unmapped_br_result['demandunits'] = "None"
                unmapped_br_result["hazardtype"] = "None"
                unmapped_br_result['hazardval'] = 0.0
                bridge_results.append(unmapped_br_result)

        return bridge_results
예제 #2
0
    def epf_damage_analysis_bulk_input(self, epfs, hazard_type,
                                       hazard_dataset_id,
                                       use_hazard_uncertainty,
                                       use_liquefaction,
                                       liq_geology_dataset_id):
        """Run analysis for multiple epfs.

        Args:
            epfs (list): Multiple epfs from input inventory set.
            hazard_type (str): A type of hazard exposure (earthquake, tsunami, tornado, or hurricane).
            hazard_dataset_id (str): An id of the hazard exposure.
            use_hazard_uncertainty (bool):  Hazard uncertainty. True for using uncertainty when computing damage,
                False otherwise.
            use_liquefaction (bool): Liquefaction. True for using liquefaction information to modify the damage,
                False otherwise.
            liq_geology_dataset_id (str): geology_dataset_id (str): A dataset id for geology dataset for liquefaction.

        Returns:
            list: A list of ordered dictionaries with epf damage values and other data/metadata.

        """
        result = []

        fragility_key = self.get_parameter("fragility_key")

        fragility_set = dict()
        fragility_set = self.fragilitysvc.match_inventory(
            self.get_input_dataset("dfr3_mapping_set"), epfs, fragility_key)
        epf_results = []

        # Converting list of epfs into a dictionary for ease of reference
        list_epfs = epfs
        epfs = dict()
        for epf in list_epfs:
            epfs[epf["id"]] = epf
        del list_epfs  # Clear as it's not needed anymore

        processed_epf = []
        grouped_epfs = AnalysisUtil.group_by_demand_type(epfs, fragility_set)
        for demand, grouped_epf_items in grouped_epfs.items():
            input_demand_type = demand[0]
            input_demand_units = demand[1]

            # For every group of unique demand and demand unit, call the end-point once
            epf_chunks = list(AnalysisUtil.chunks(grouped_epf_items, 50))
            for epf_chunk in epf_chunks:
                points = []
                for epf_id in epf_chunk:
                    location = GeoUtil.get_location(epfs[epf_id])
                    points.append(str(location.y) + "," + str(location.x))

                if hazard_type == 'earthquake':
                    hazard_vals = self.hazardsvc.get_earthquake_hazard_values(
                        hazard_dataset_id, input_demand_type,
                        input_demand_units, points)
                elif hazard_type == 'tornado':
                    hazard_vals = self.hazardsvc.get_tornado_hazard_values(
                        hazard_dataset_id, input_demand_units, points)
                elif hazard_type == 'hurricane':
                    # TODO: implement hurricane
                    raise ValueError(
                        'Hurricane hazard has not yet been implemented!')

                elif hazard_type == 'tsunami':
                    hazard_vals = self.hazardsvc.get_tsunami_hazard_values(
                        hazard_dataset_id, input_demand_type,
                        input_demand_units, points)
                else:
                    raise ValueError("Missing hazard type.")

                # Parse the batch hazard value results and map them back to the building and fragility.
                # This is a potential pitfall as we are relying on the order of the returned results
                i = 0
                for epf_id in epf_chunk:
                    epf_result = collections.OrderedDict()
                    epf = epfs[epf_id]
                    hazard_val = hazard_vals[i]['hazardValue']

                    # Sometimes the geotiffs give large negative values for out of bounds instead of 0
                    if hazard_val <= 0.0:
                        hazard_val = 0.0

                    std_dev = 0.0
                    if use_hazard_uncertainty:
                        raise ValueError("Uncertainty Not Implemented!")

                    selected_fragility_set = fragility_set[epf_id]
                    limit_states = selected_fragility_set.calculate_limit_state(
                        hazard_val, std_dev=std_dev)
                    dmg_interval = AnalysisUtil.calculate_damage_interval(
                        limit_states)

                    epf_result['guid'] = epf['properties']['guid']
                    epf_result.update(limit_states)
                    epf_result.update(dmg_interval)
                    epf_result['demandtype'] = input_demand_type
                    epf_result['demandunits'] = input_demand_units
                    epf_result['hazardtype'] = hazard_type
                    epf_result['hazardval'] = hazard_val

                    epf_results.append(epf_result)
                    processed_epf.append(epf_id)
                    i = i + 1

        # when there is liquefaction, limit state need to be modified
        if hazard_type == 'earthquake' and use_liquefaction and liq_geology_dataset_id is not None:
            liq_fragility_key = self.get_parameter(
                "liquefaction_fragility_key")
            if liq_fragility_key is None:
                liq_fragility_key = self.DEFAULT_LIQ_FRAGILITY_KEY
            liq_fragility_set = self.fragilitysvc.match_inventory(
                self.get_input_dataset("dfr3_mapping_set"), epfs,
                liq_fragility_key)
            grouped_liq_epfs = AnalysisUtil.group_by_demand_type(
                epfs, liq_fragility_set)

            for liq_demand, grouped_liq_epf_items in grouped_liq_epfs.items():
                liq_input_demand_type = liq_demand[0]
                liq_input_demand_units = liq_demand[1]

                # For every group of unique demand and demand unit, call the end-point once
                liq_epf_chunks = list(
                    AnalysisUtil.chunks(grouped_liq_epf_items, 50))
                for liq_epf_chunk in liq_epf_chunks:
                    points = []
                    for liq_epf_id in liq_epf_chunk:
                        location = GeoUtil.get_location(epfs[liq_epf_id])
                        points.append(str(location.y) + "," + str(location.x))
                    liquefaction_vals = self.hazardsvc.get_liquefaction_values(
                        hazard_dataset_id, liq_geology_dataset_id,
                        liq_input_demand_units, points)

                    # Parse the batch hazard value results and map them back to the building and fragility.
                    # This is a potential pitfall as we are relying on the order of the returned results
                    i = 0
                    for liq_epf_id in liq_epf_chunk:
                        liq_hazard_val = liquefaction_vals[i][
                            liq_input_demand_type]

                        std_dev = 0.0
                        if use_hazard_uncertainty:
                            raise ValueError("Uncertainty Not Implemented!")

                        liquefaction_prob = liquefaction_vals[i][
                            'liqProbability']

                        selected_liq_fragility = liq_fragility_set[liq_epf_id]
                        pgd_limit_states = selected_liq_fragility.calculate_limit_state(
                            liq_hazard_val, std_dev=std_dev)

                        # match id and add liqhaztype, liqhazval, liqprobability field as well as rewrite limit
                        # states and dmg_interval
                        for epf_result in epf_results:
                            if epf_result['guid'] == epfs[liq_epf_id]['guid']:
                                limit_states = {
                                    "ls-slight": epf_result['ls-slight'],
                                    "ls-moderat": epf_result['ls-moderat'],
                                    "ls-extensi": epf_result['ls-extensi'],
                                    "ls-complet": epf_result['ls-complet']
                                }
                                liq_limit_states = AnalysisUtil.adjust_limit_states_for_pgd(
                                    limit_states, pgd_limit_states)
                                liq_dmg_interval = AnalysisUtil.calculate_damage_interval(
                                    liq_limit_states)
                                epf_result.update(liq_limit_states)
                                epf_result.update(liq_dmg_interval)
                                epf_result[
                                    'liqhaztype'] = liq_input_demand_type
                                epf_result['liqhazval'] = liq_hazard_val
                                epf_result[
                                    'liqprobability'] = liquefaction_prob
                        i = i + 1

        unmapped_limit_states = {
            "ls-slight": 0.0,
            "ls-moderat": 0.0,
            "ls-extensi": 0.0,
            "ls-complet": 0.0
        }
        unmapped_dmg_intervals = AnalysisUtil.calculate_damage_interval(
            unmapped_limit_states)
        for epf_id, epf in epfs.items():
            if epf_id not in processed_epf:
                unmapped_epf_result = collections.OrderedDict()
                unmapped_epf_result['guid'] = epf['properties']['guid']
                unmapped_epf_result.update(unmapped_limit_states)
                unmapped_epf_result.update(unmapped_dmg_intervals)
                unmapped_epf_result["demandtype"] = "None"
                unmapped_epf_result['demandunits'] = "None"
                unmapped_epf_result["hazardtype"] = "None"
                unmapped_epf_result['hazardval'] = 0.0
                unmapped_epf_result['liqhaztype'] = "NA"
                unmapped_epf_result['liqhazval'] = "NA"
                unmapped_epf_result['liqprobability'] = "NA"
                epf_results.append(unmapped_epf_result)

        return epf_results
예제 #3
0
    def building_damage_analysis_bulk_input(self, buildings, hazard_type,
                                            hazard_dataset_id):
        """Run analysis for multiple buildings.

        Args:
            buildings (list): Multiple buildings from input inventory set.
            hazard_type (str): Hazard type, either earthquake, tornado, or tsunami.
            hazard_dataset_id (str): An id of the hazard exposure.

        Returns:
            list: A list of ordered dictionaries with building damage values and other data/metadata.

        """
        fragility_key = self.get_parameter("fragility_key")

        fragility_sets = dict()
        fragility_sets = self.fragilitysvc.match_inventory(
            self.get_input_dataset("dfr3_mapping_set"), buildings,
            fragility_key)

        bldg_results = []
        list_buildings = buildings

        buildings = dict()
        # Converting list of buildings into a dictionary for ease of reference
        for b in list_buildings:
            buildings[b["id"]] = b

        list_buildings = None  # Clear as it's not needed anymore

        grouped_buildings = AnalysisUtil.group_by_demand_type(buildings,
                                                              fragility_sets,
                                                              hazard_type,
                                                              is_building=True)

        for demand, grouped_bldgs in grouped_buildings.items():

            input_demand_type = demand[0]
            input_demand_units = demand[1]

            # For every group of unique demand and demand unit, call the end-point once
            bldg_chunks = list(AnalysisUtil.chunks(
                grouped_bldgs, 50))  # TODO: Move to globals?
            for bldgs in bldg_chunks:
                points = []
                for bldg_id in bldgs:
                    location = GeoUtil.get_location(buildings[bldg_id])
                    points.append(str(location.y) + "," + str(location.x))

                if hazard_type == 'earthquake':
                    hazard_vals = self.hazardsvc.get_earthquake_hazard_values(
                        hazard_dataset_id, input_demand_type,
                        input_demand_units, points)
                elif hazard_type == 'tornado':
                    hazard_vals = self.hazardsvc.get_tornado_hazard_values(
                        hazard_dataset_id, input_demand_units, points)
                elif hazard_type == 'tsunami':
                    hazard_vals = self.hazardsvc.get_tsunami_hazard_values(
                        hazard_dataset_id, input_demand_type,
                        input_demand_units, points)
                elif hazard_type == 'hurricane':
                    # TODO implement hurricane
                    print("hurricane not yet implemented")

                # Parse the batch hazard value results and map them back to the building and fragility.
                # This is a potential pitfall as we are relying on the order of the returned results
                i = 0
                for bldg_id in bldgs:
                    bldg_result = collections.OrderedDict()
                    building = buildings[bldg_id]
                    hazard_val = hazard_vals[i]['hazardValue']
                    output_demand_type = hazard_vals[i]['demand']
                    if hazard_type == 'earthquake':
                        period = float(hazard_vals[i]['period'])
                        if period > 0:
                            output_demand_type = str(
                                hazard_vals[i]
                                ['period']) + " " + output_demand_type

                    num_stories = building['properties']['no_stories']
                    selected_fragility_set = fragility_sets[bldg_id]
                    building_period = selected_fragility_set.fragility_curves[
                        0].get_building_period(num_stories)
                    dmg_probability = selected_fragility_set.calculate_limit_state(
                        hazard_val, building_period)
                    dmg_interval = AnalysisUtil.calculate_damage_interval(
                        dmg_probability)

                    bldg_result['guid'] = building['properties']['guid']
                    bldg_result.update(dmg_probability)
                    bldg_result.update(dmg_interval)
                    bldg_result['demandtype'] = output_demand_type
                    bldg_result['demandunits'] = input_demand_units
                    bldg_result['hazardval'] = hazard_val

                    bldg_results.append(bldg_result)
                    del buildings[bldg_id]
                    i = i + 1

        unmapped_hazard_val = 0.0
        unmapped_output_demand_type = "None"
        unmapped_output_demand_unit = "None"
        for unmapped_bldg_id, unmapped_bldg in buildings.items():
            unmapped_bldg_result = collections.OrderedDict()
            unmapped_bldg_result['guid'] = unmapped_bldg['properties']['guid']
            unmapped_bldg_result['demandtype'] = unmapped_output_demand_type
            unmapped_bldg_result['demandunits'] = unmapped_output_demand_unit
            unmapped_bldg_result['hazardval'] = unmapped_hazard_val
            bldg_results.append(unmapped_bldg_result)

        return bldg_results
예제 #4
0
    def cumulative_building_damage(self, eq_building_damage,
                                   tsunami_building_damage):
        """Run analysis for building damage results.

         Args:
             eq_building_damage (obj): A JSON description of an earthquake building damage.
             tsunami_building_damage (obj): Set of all tsunami building damage results.

         Returns:
             OrderedDict: A dictionary with building damage values and other data/metadata.

        """
        guid = eq_building_damage['guid']

        tsunami_building = tsunami_building_damage.loc[
            tsunami_building_damage['guid'] == guid]

        for idy, tsunami_building in tsunami_building.iterrows():
            eq_limit_states = collections.OrderedDict()
            eq_limit_states['immocc'] = float(eq_building_damage["immocc"])
            eq_limit_states['lifesfty'] = float(eq_building_damage["lifesfty"])
            eq_limit_states['collprev'] = float(eq_building_damage["collprev"])

            tsunami_limit_states = collections.OrderedDict()
            tsunami_limit_states['immocc'] = float(tsunami_building["immocc"])
            tsunami_limit_states['lifesfty'] = float(
                tsunami_building["lifesfty"])
            tsunami_limit_states['collprev'] = float(
                tsunami_building["collprev"])

            limit_states = collections.OrderedDict()

            limit_states["immocc"] = \
                eq_limit_states["immocc"] + tsunami_limit_states["immocc"] - \
                eq_limit_states["immocc"] * tsunami_limit_states["immocc"]

            limit_states["lifesfty"] = \
                eq_limit_states["lifesfty"] + tsunami_limit_states[
                    "lifesfty"] - \
                eq_limit_states["lifesfty"] * tsunami_limit_states[
                    "lifesfty"] + \
                ((eq_limit_states["immocc"] - eq_limit_states["lifesfty"]) *
                 (tsunami_limit_states["immocc"] - tsunami_limit_states[
                     "lifesfty"]))

            limit_states["collprev"] = \
                eq_limit_states["collprev"] + tsunami_limit_states[
                    "collprev"] - \
                eq_limit_states["collprev"] * tsunami_limit_states[
                    "collprev"] + \
                ((eq_limit_states["lifesfty"] - eq_limit_states["collprev"]) *
                 (tsunami_limit_states["lifesfty"] - tsunami_limit_states[
                     "collprev"]))

            damage_state = AnalysisUtil.calculate_damage_interval(limit_states)

            bldg_results = collections.OrderedDict()

            bldg_results["guid"] = guid
            bldg_results.update(limit_states)
            bldg_results.update(damage_state)
            bldg_results["hazard"] = "Earthquake+Tsunami"

            return bldg_results
예제 #5
0
    def waterfacility_damage_analysis(self, facility, fragility, liq_fragility,
                                      hazard_type, hazard_dataset_id,
                                      liq_geology_dataset_id, uncertainty):
        """Computes damage analysis for a single facility

        Args:
            facility (obj): A JSON mapping of a facility based on mapping attributes
            fragility (obj): A JSON description of fragility mapped to the building.
            liq_fragility (obj): A JSON description of liquefaction fragility mapped to the building.
            hazard_type (str): A string that indicates the hazard type
            hazard_dataset_id (str): Hazard id from the hazard service
            liq_geology_dataset_id (str): Geology dataset id from data service to use for liquefaction calculation, if
                applicable
            uncertainty (bool): Whether to use hazard standard deviation values for uncertainty

        Returns:
            OrderedDict: A dictionary with water facility damage values and other data/metadata.
        """
        std_dev = 0
        if uncertainty:
            std_dev = random.random()

        hazard_demand_type = fragility.demand_type
        demand_units = fragility.demand_units
        liq_hazard_type = ""
        liq_hazard_val = 0.0
        liquefaction_prob = 0.0
        location = GeoUtil.get_location(facility)

        point = str(location.y) + "," + str(location.x)

        if hazard_type == "earthquake":
            hazard_val_set = self.hazardsvc.get_earthquake_hazard_values(
                hazard_dataset_id, hazard_demand_type,
                demand_units, [point])
        elif hazard_type == "tsunami":
            hazard_val_set = self.hazardsvc.get_tsunami_hazard_values(
                hazard_dataset_id, hazard_demand_type, demand_units, [point])
        else:
            raise ValueError(
                "Hazard type other than Earthquake and Tsunami are not currently supported.")
        hazard_val = hazard_val_set[0]['hazardValue']
        if hazard_val < 0:
            hazard_val = 0

        limit_states = fragility.calculate_limit_state(hazard_val, std_dev)

        if liq_fragility is not None and liq_geology_dataset_id:
            liq_hazard_type = liq_fragility.demand_type
            pgd_demand_units = liq_fragility.demand_units
            point = str(location.y) + "," + str(location.x)

            liquefaction = self.hazardsvc.get_liquefaction_values(
                hazard_dataset_id, liq_geology_dataset_id,
                pgd_demand_units, [point])
            liq_hazard_val = liquefaction[0][liq_hazard_type]
            liquefaction_prob = liquefaction[0]['liqProbability']
            pgd_limit_states = liq_fragility.calculate_limit_state(liq_hazard_val, std_dev)

            limit_states = AnalysisUtil.adjust_limit_states_for_pgd(
                limit_states, pgd_limit_states)

        dmg_intervals = AnalysisUtil.calculate_damage_interval(limit_states)

        result = collections.OrderedDict()
        result = {**limit_states, **dmg_intervals}  # Needs py 3.5+
        metadata = collections.OrderedDict()
        metadata['guid'] = facility['properties']['guid']
        metadata['hazardtype'] = hazard_type
        metadata['demandtype'] = hazard_demand_type
        metadata['hazardval'] = hazard_val
        metadata['liqhaztype'] = liq_hazard_type
        metadata['liqhazval'] = liq_hazard_val
        metadata['liqprobability'] = liquefaction_prob

        result = {**metadata, **result}
        return result
예제 #6
0
    def building_damage_analysis(self, building, fragility_set_as, fragility_set_ds):
        """Calculates bridge damage results for a single building.

        Args:
            building (obj): A JSON-mapping of a geometric object from the inventory: current building.
            fragility_set_as (obj): A JSON description of acceleration-sensitive (AS) fragility
                assigned to the building.
            fragility_set_ds (obj): A JSON description of drift-sensitive (DS) fragility
                assigned to the building.

        Returns:
            OrderedDict: A dictionary with building damage values and other data/metadata.

        """
        building_results = collections.OrderedDict()
        dmg_probability_as = collections.OrderedDict()
        dmg_probability_ds = collections.OrderedDict()
        hazard_demand_type_as = None
        hazard_demand_type_ds = None
        hazard_val_as = 0.0
        hazard_val_ds = 0.0

        # read static parameters from object self
        hazard_dataset_id = self.get_parameter("hazard_id")
        liq_geology_dataset_id = self.get_parameter("liq_geology_dataset_id")
        use_liquefaction = self.get_parameter("use_liquefaction")
        use_hazard_uncertainty = self.get_parameter("use_hazard_uncertainty")

        # Acceleration-Sensitive Fragility ID Code
        if fragility_set_as is not None:
            hazard_demand_type_as = AnalysisUtil.get_hazard_demand_type(building, fragility_set_as, 'earthquake')
            demand_units_as = fragility_set_as.demand_units
            location = GeoUtil.get_location(building)

            point = str(location.y) + "," + str(location.x)

            hazard_val_as = self.hazardsvc.get_earthquake_hazard_values(
                hazard_dataset_id, hazard_demand_type_as,
                demand_units_as,
                points=[point])[0]['hazardValue']

            dmg_probability_as = fragility_set_as.calculate_limit_state(hazard_val_as)
            # adjust dmg probability for liquefaction
            if use_liquefaction:
                if liq_geology_dataset_id is not None:
                    liqufaction_dmg = self.hazardsvc.get_liquefaction_values(
                        hazard_dataset_id, liq_geology_dataset_id,
                        'in',
                        points=[point])[0][
                        'groundFailureProb']
                else:
                    raise ValueError('Hazard does not support liquefaction! \
                                     Check to make sure you defined the liquefaction\
                                     portion of your scenario earthquake.')
                dmg_probability_as = NonStructBuildingUtil.adjust_damage_for_liquefaction(dmg_probability_as,
                                                                                          liqufaction_dmg)

            # TODO this value needs to come from the hazard service
            # adjust dmg probability for hazard uncertainty
            if use_hazard_uncertainty:
                raise ValueError('Uncertainty has not yet been implemented!')
        else:
            dmg_probability_as['immocc'] = 0.0
            dmg_probability_as['lifesfty'] = 0.0
            dmg_probability_as['collprev'] = 0.0

        dmg_interval_as = AnalysisUtil.calculate_damage_interval(dmg_probability_as)

        # Drift-Sensitive Fragility ID Code
        if fragility_set_ds is not None:
            hazard_demand_type_ds = AnalysisUtil.get_hazard_demand_type(building, fragility_set_ds, 'earthquake')
            demand_units_ds = fragility_set_ds.demand_units
            location = GeoUtil.get_location(building)

            point = str(location.y) + "," + str(location.x)

            hazard_val_ds = self.hazardsvc.get_earthquake_hazard_values(
                hazard_dataset_id, hazard_demand_type_ds,
                demand_units_ds, points=[point])[0]['hazardValue']

            dmg_probability_ds = fragility_set_ds.calculate_limit_state(hazard_val_ds)

            # adjust hazard value for liquefaction
            if use_liquefaction:
                if liq_geology_dataset_id is not None:
                    liqufaction_dmg = self.hazardsvc.get_liquefaction_values(
                        hazard_dataset_id, liq_geology_dataset_id,
                        'in',
                        points=[point])[0][
                        'groundFailureProb']
                else:
                    raise ValueError('Hazard does not support liquefaction! \
                                                 Check to make sure you defined the liquefaction\
                                                 portion of your scenario earthquake.')
                dmg_probability_ds = NonStructBuildingUtil.adjust_damage_for_liquefaction(dmg_probability_ds,
                                                                                          liqufaction_dmg)

            # TODO this value needs to come from the hazard service
            # adjust dmg probability for hazard uncertainty
            if use_hazard_uncertainty:
                raise ValueError('Uncertainty has not yet been implemented!')
        else:
            dmg_probability_ds['immocc'] = 0.0
            dmg_probability_ds['lifesfty'] = 0.0
            dmg_probability_ds['collprev'] = 0.0

        dmg_interval_ds = AnalysisUtil.calculate_damage_interval(dmg_probability_ds)

        # put results in dictionary
        building_results['guid'] = building['properties']['guid']
        building_results['immocc_as'] = dmg_probability_as['immocc']
        building_results['lifsfty_as'] = dmg_probability_as['lifesfty']
        building_results['collpre_as'] = dmg_probability_as['collprev']
        building_results['insig_as'] = dmg_interval_as['insignific']
        building_results['mod_as'] = dmg_interval_as['moderate']
        building_results['heavy_as'] = dmg_interval_as['heavy']
        building_results['comp_as'] = dmg_interval_as['complete']
        building_results['immocc_ds'] = dmg_probability_ds['immocc']
        building_results['lifsfty_ds'] = dmg_probability_ds['lifesfty']
        building_results['collpre_ds'] = dmg_probability_ds['collprev']
        building_results['insig_ds'] = dmg_interval_ds['insignific']
        building_results['mod_ds'] = dmg_interval_ds['moderate']
        building_results['heavy_ds'] = dmg_interval_ds['heavy']
        building_results['comp_ds'] = dmg_interval_ds['complete']
        building_results["hzrdtyp_as"] = hazard_demand_type_as
        building_results["hzrdval_as"] = hazard_val_as
        building_results["hzrdtyp_ds"] = hazard_demand_type_ds
        building_results["hzrdval_ds"] = hazard_val_ds

        return building_results
예제 #7
0
    def road_damage_analysis_bulk_input(self, roads, hazard_type,
                                        hazard_dataset_id,
                                        use_hazard_uncertainty,
                                        geology_dataset_id, fragility_key,
                                        use_liquefaction):
        """Run analysis for multiple roads.

        Args:
            roads (list): Multiple roads from input inventory set.
            hazard_type (str): A hazard type of the hazard exposure (earthquake or tsunami).
            hazard_dataset_id (str): An id of the hazard exposure.
            use_hazard_uncertainty(bool): Flag to indicate use uncertainty or not
            geology_dataset_id (str): An id of the geology for use in liquefaction.
            fragility_key (str): Fragility key describing the type of fragility.
            use_liquefaction (bool): Liquefaction. True for using liquefaction information to modify the damage,
                False otherwise.

        Returns:
            list: A list of ordered dictionaries with road damage values and other data/metadata.

        """
        road_results = []
        fragility_sets = self.fragilitysvc.match_inventory(
            self.get_input_dataset("dfr3_mapping_set"), roads, fragility_key)

        list_roads = roads

        # Converting list of roads into a dictionary for ease of reference
        roads = dict()
        for rd in list_roads:
            roads[rd["id"]] = rd
        del list_roads

        processed_roads = []
        grouped_roads = AnalysisUtil.group_by_demand_type(
            roads, fragility_sets)
        for demand, grouped_road_items in grouped_roads.items():
            input_demand_type = demand[0]
            input_demand_units = demand[1]

            # For every group of unique demand and demand unit, call the end-point once
            road_chunks = list(AnalysisUtil.chunks(grouped_road_items, 50))
            for road_chunk in road_chunks:
                points = []
                for road_id in road_chunk:
                    location = GeoUtil.get_location(roads[road_id])
                    points.append(str(location.y) + "," + str(location.x))

                liquefaction = []
                if hazard_type == 'earthquake':
                    hazard_vals = self.hazardsvc.get_earthquake_hazard_values(
                        hazard_dataset_id, input_demand_type,
                        input_demand_units, points)

                    if input_demand_type.lower(
                    ) == 'pgd' and use_liquefaction and geology_dataset_id is not None:
                        liquefaction = self.hazardsvc.get_liquefaction_values(
                            hazard_dataset_id, geology_dataset_id,
                            input_demand_units, points)
                elif hazard_type == 'tornado':
                    raise ValueError(
                        'Earthquake and tsunamis are the only hazards supported for road damage'
                    )
                elif hazard_type == 'hurricane':
                    raise ValueError(
                        'Earthquake and tsunamis are the only hazards supported for road damage'
                    )
                elif hazard_type == 'tsunami':
                    hazard_vals = self.hazardsvc.get_tsunami_hazard_values(
                        hazard_dataset_id, input_demand_type,
                        input_demand_units, points)
                else:
                    raise ValueError("Missing hazard type.")

                # Parse the batch hazard value results and map them back to the building and fragility.
                # This is a potential pitfall as we are relying on the order of the returned results
                i = 0
                for road_id in road_chunk:
                    road_result = collections.OrderedDict()
                    road = roads[road_id]
                    hazard_val = hazard_vals[i]['hazardValue']

                    # Sometimes the geotiffs give large negative values for out of bounds instead of 0
                    if hazard_val <= 0.0:
                        hazard_val = 0.0

                    std_dev = 0.0
                    if use_hazard_uncertainty:
                        raise ValueError("Uncertainty Not Implemented Yet.")

                    selected_fragility_set = fragility_sets[road_id]
                    dmg_probability = selected_fragility_set.calculate_limit_state(
                        hazard_val, std_dev=std_dev)
                    dmg_interval = AnalysisUtil.calculate_damage_interval(
                        dmg_probability)

                    road_result['guid'] = road['properties']['guid']
                    road_result.update(dmg_probability)
                    road_result.update(dmg_interval)
                    road_result['demandtype'] = input_demand_type
                    road_result['demandunits'] = input_demand_units
                    road_result['hazardtype'] = hazard_type
                    road_result['hazardval'] = hazard_val

                    # if there is liquefaction, overwrite the hazardval with liquefaction value
                    # recalculate dmg_probability and dmg_interval
                    if len(liquefaction) > 0:
                        if input_demand_type in liquefaction[i]:
                            liquefaction_val = liquefaction[i][
                                input_demand_type]
                        elif input_demand_type.lower() in liquefaction[i]:
                            liquefaction_val = liquefaction[i][
                                input_demand_type.lower()]
                        elif input_demand_type.upper() in liquefaction[i]:
                            liquefaction_val = liquefaction[i][
                                input_demand_type.upper]
                        else:
                            liquefaction_val = 0.0
                        dmg_probability = selected_fragility_set.calculate_limit_state(
                            liquefaction_val, std_dev=std_dev)
                        dmg_interval = AnalysisUtil.calculate_damage_interval(
                            dmg_probability)

                        road_result['hazardval'] = liquefaction_val
                        road_result.update(dmg_probability)
                        road_result.update(dmg_interval)

                    road_results.append(road_result)
                    processed_roads.append(road_id)
                    i = i + 1

        unmapped_dmg_probability = {
            "ls-slight": 0.0,
            "ls-moderat": 0.0,
            "ls-extensi": 0.0,
            "ls-complet": 0.0
        }
        unmapped_dmg_intervals = AnalysisUtil.calculate_damage_interval(
            unmapped_dmg_probability)
        for road_id, rd in roads.items():
            if road_id not in processed_roads:
                unmapped_rd_result = collections.OrderedDict()
                unmapped_rd_result['guid'] = rd['properties']['guid']
                unmapped_rd_result.update(unmapped_dmg_probability)
                unmapped_rd_result.update(unmapped_dmg_intervals)
                unmapped_rd_result['demandtype'] = "None"
                unmapped_rd_result['demandunits'] = "None"
                unmapped_rd_result['hazardtype'] = "None"
                unmapped_rd_result['hazardval'] = 0.0
                road_results.append(unmapped_rd_result)

        return road_results