예제 #1
0
class BridgeDamage(BaseAnalysis):
    """Computes bridge structural damage for earthquake, tsunami, tornado, and hurricane hazards.

    Args:
        incore_client (IncoreClient): Service authentication.

    """

    def __init__(self, incore_client):
        self.hazardsvc = HazardService(incore_client)
        self.fragilitysvc = FragilityService(incore_client)

        super(BridgeDamage, self).__init__(incore_client)

    def run(self):
        """Executes bridge damage analysis."""
        # Bridge dataset
        bridge_set = self.get_input_dataset("bridges").get_inventory_reader()

        # Get hazard input
        hazard_type = self.get_parameter("hazard_type")
        hazard_dataset_id = self.get_parameter("hazard_id")
        user_defined_cpu = 1

        if not self.get_parameter("num_cpu") is None and self.get_parameter(
                "num_cpu") > 0:
            user_defined_cpu = self.get_parameter("num_cpu")

        num_workers = AnalysisUtil.determine_parallelism_locally(self, len(
            bridge_set), user_defined_cpu)

        avg_bulk_input_size = int(len(bridge_set) / num_workers)
        inventory_args = []
        count = 0
        inventory_list = list(bridge_set)
        while count < len(inventory_list):
            inventory_args.append(
                inventory_list[count:count + avg_bulk_input_size])
            count += avg_bulk_input_size

        results = self.bridge_damage_concurrent_future(
            self.bridge_damage_analysis_bulk_input, num_workers,
            inventory_args, repeat(hazard_type),
            repeat(hazard_dataset_id))

        self.set_result_csv_data("result", results,
                                 name=self.get_parameter("result_name"))

        return True

    def bridge_damage_concurrent_future(self, function_name, num_workers,
                                        *args):
        """Utilizes concurrent.future module.

        Args:
            function_name (function): The function to be parallelized.
            num_workers (int): Maximum number workers in parallelization.
            *args: All the arguments in order to pass into parameter function_name.

        Returns:
            list: A list of ordered dictionaries with bridge damage values and other data/metadata.

        """
        output = []
        with concurrent.futures.ProcessPoolExecutor(
                max_workers=num_workers) as executor:
            for ret in executor.map(function_name, *args):
                output.extend(ret)

        return output

    def bridge_damage_analysis_bulk_input(self, bridges, hazard_type,
                                          hazard_dataset_id):
        """Run analysis for multiple bridges.

        Args:
            bridges (list): Multiple bridges from input inventory set.
            hazard_type (str): Hazard type, either earthquake, tornado, tsunami, or hurricane.
            hazard_dataset_id (str): An id of the hazard exposure.

        Returns:
            list: A list of ordered dictionaries with bridge damage values and other data/metadata.

        """
        # Get Fragility key
        fragility_key = self.get_parameter("fragility_key")
        if fragility_key is None:
            fragility_key = BridgeUtil.DEFAULT_TSUNAMI_HMAX_FRAGILITY_KEY if hazard_type == 'tsunami' else \
                BridgeUtil.DEFAULT_FRAGILITY_KEY
            self.set_parameter("fragility_key", fragility_key)

        # Hazard Uncertainty
        use_hazard_uncertainty = False
        if hazard_type == "earthquake" and self.get_parameter(
                "use_hazard_uncertainty") is not None:
            use_hazard_uncertainty = self.get_parameter(
                "use_hazard_uncertainty")

        # Liquefaction
        use_liquefaction = False
        if hazard_type == "earthquake" and self.get_parameter(
                "use_liquefaction") is not None:
            use_liquefaction = self.get_parameter("use_liquefaction")

        fragility_set = dict()
        fragility_set = self.fragilitysvc.match_inventory(self.get_input_dataset("dfr3_mapping_set"), bridges,
                                                          fragility_key)

        bridge_results = []
        list_bridges = bridges

        # Converting list of bridges into a dictionary for ease of reference
        bridges = dict()
        for br in list_bridges:
            bridges[br["id"]] = br
        list_bridges = None  # Clear as it's not needed anymore

        processed_bridges = []
        grouped_bridges = AnalysisUtil.group_by_demand_type(bridges, fragility_set)

        for demand, grouped_brs in grouped_bridges.items():

            input_demand_type = demand[0]
            input_demand_units = demand[1]

            # For every group of unique demand and demand unit, call the end-point once
            br_chunks = list(AnalysisUtil.chunks(grouped_brs, 50))  # TODO: Move to globals?
            for brs in br_chunks:
                points = []
                for br_id in brs:
                    location = GeoUtil.get_location(bridges[br_id])
                    points.append(str(location.y) + "," + str(location.x))

                if hazard_type == "earthquake":
                    hazard_vals = \
                        self.hazardsvc.get_earthquake_hazard_values(
                            hazard_dataset_id,
                            input_demand_type,
                            input_demand_units,
                            points)
                elif hazard_type == "tsunami":
                    hazard_vals = self.hazardsvc.get_tsunami_hazard_values(
                        hazard_dataset_id, input_demand_type, input_demand_units, points)
                elif hazard_type == "tornado":
                    hazard_vals = self.hazardsvc.get_tornado_hazard_values(
                        hazard_dataset_id, input_demand_units, points)
                elif hazard_type == "hurricane":
                    hazard_vals = self.hazardsvc.get_hurricanewf_values(
                        hazard_dataset_id, input_demand_type, input_demand_units, points)
                else:
                    raise ValueError("We only support Earthquake, Tornado, Tsunami, and Hurricane at the moment!")

                # Parse the batch hazard value results and map them back to the building and fragility.
                # This is a potential pitfall as we are relying on the order of the returned results
                i = 0
                for br_id in brs:
                    bridge_result = collections.OrderedDict()
                    bridge = bridges[br_id]
                    selected_fragility_set = fragility_set[br_id]

                    hazard_val = hazard_vals[i]['hazardValue']

                    hazard_std_dev = 0.0
                    if use_hazard_uncertainty:
                        # TODO Get this from API once implemented
                        raise ValueError("Uncertainty Not Implemented!")

                    adjusted_fragility_set = copy.deepcopy(selected_fragility_set)
                    if use_liquefaction and 'liq' in bridge['properties']:
                        for fragility in adjusted_fragility_set.fragility_curves:
                            fragility.adjust_fragility_for_liquefaction(bridge['properties']['liq'])

                    dmg_probability = adjusted_fragility_set.calculate_limit_state(hazard_val, std_dev=hazard_std_dev)
                    retrofit_cost = BridgeUtil.get_retrofit_cost(fragility_key)
                    retrofit_type = BridgeUtil.get_retrofit_type(fragility_key)

                    dmg_intervals = AnalysisUtil.calculate_damage_interval(dmg_probability)

                    bridge_result['guid'] = bridge['properties']['guid']
                    bridge_result.update(dmg_probability)
                    bridge_result.update(dmg_intervals)
                    bridge_result["retrofit"] = retrofit_type
                    bridge_result["retrocost"] = retrofit_cost
                    bridge_result["demandtype"] = input_demand_type
                    bridge_result["demandunits"] = input_demand_units
                    bridge_result["hazardtype"] = hazard_type
                    bridge_result["hazardval"] = hazard_val

                    # add spans to bridge output so mean damage calculation can use that info
                    if "spans" in bridge["properties"] and bridge["properties"]["spans"] \
                            is not None and bridge["properties"]["spans"].isdigit():
                        bridge_result['spans'] = int(bridge["properties"]["spans"])
                    elif "SPANS" in bridge["properties"] and bridge["properties"]["SPANS"] \
                            is not None and bridge["properties"]["SPANS"].isdigit():
                        bridge_result['spans'] = int(bridge["properties"]["SPANS"])
                    else:
                        bridge_result['spans'] = 1

                    bridge_results.append(bridge_result)
                    processed_bridges.append(br_id)  # remove processed bridges
                    i = i + 1

        unmapped_dmg_probability = {"ls-slight": 0.0, "ls-moderat": 0.0,
                                    "ls-extensi": 0.0, "ls-complet": 0.0}
        unmapped_dmg_intervals = AnalysisUtil.calculate_damage_interval(unmapped_dmg_probability)
        for br_id, br in bridges.items():
            if br_id not in processed_bridges:
                unmapped_br_result = collections.OrderedDict()
                unmapped_br_result['guid'] = br['properties']['guid']
                unmapped_br_result.update(unmapped_dmg_probability)
                unmapped_br_result.update(unmapped_dmg_intervals)
                unmapped_br_result["retrofit"] = "Non-Retrofit"
                unmapped_br_result["retrocost"] = 0.0
                unmapped_br_result["demandtype"] = "None"
                unmapped_br_result['demandunits'] = "None"
                unmapped_br_result["hazardtype"] = "None"
                unmapped_br_result['hazardval'] = 0.0
                bridge_results.append(unmapped_br_result)

        return bridge_results

    def get_spec(self):
        """Get specifications of the bridge damage analysis.

        Returns:
            obj: A JSON object of specifications of the bridge damage analysis.

        """
        return {
            'name': 'bridge-damage',
            'description': 'bridge damage analysis',
            'input_parameters': [
                {
                    'id': 'result_name',
                    'required': True,
                    'description': 'result dataset name',
                    'type': str
                },
                {
                    'id': 'hazard_type',
                    'required': True,
                    'description': 'Hazard Type (e.g. earthquake)',
                    'type': str
                },
                {
                    'id': 'hazard_id',
                    'required': True,
                    'description': 'Hazard ID',
                    'type': str
                },
                {
                    'id': 'fragility_key',
                    'required': False,
                    'description': 'Fragility key to use in mapping dataset',
                    'type': str
                },
                {
                    'id': 'use_liquefaction',
                    'required': False,
                    'description': 'Use liquefaction',
                    'type': bool
                },
                {
                    'id': 'use_hazard_uncertainty',
                    'required': False,
                    'description': 'Use hazard uncertainty',
                    'type': bool
                },
                {
                    'id': 'num_cpu',
                    'required': False,
                    'description': 'If using parallel execution, the number of cpus to request',
                    'type': int
                },
            ],
            'input_datasets': [
                {
                    'id': 'bridges',
                    'required': True,
                    'description': 'Bridge Inventory',
                    'type': ['ergo:bridges'],
                },
                {
                    'id': 'dfr3_mapping_set',
                    'required': True,
                    'description': 'DFR3 Mapping Set Object',
                    'type': ['incore:dfr3MappingSet'],
                }
            ],
            'output_datasets': [
                {
                    'id': 'result',
                    'parent_type': 'bridges',
                    'description': 'CSV file of bridge structural damage',
                    'type': 'ergo:bridgeDamage'
                }
            ]
        }
예제 #2
0
class PipelineDamageRepairRate(BaseAnalysis):
    """Computes pipeline damage for a hazard.

    Args:
        incore_client: Service client with authentication info

    """
    def __init__(self, incore_client):
        self.hazardsvc = HazardService(incore_client)
        self.fragilitysvc = FragilityService(incore_client)

        super(PipelineDamageRepairRate, self).__init__(incore_client)

    def run(self):
        """Execute pipeline damage analysis """
        # Pipeline dataset
        pipeline_dataset = self.get_input_dataset(
            "pipeline").get_inventory_reader()

        # Get hazard type
        hazard_type = self.get_parameter("hazard_type")

        # Get hazard input
        hazard_dataset_id = self.get_parameter("hazard_id")
        user_defined_cpu = 1

        if not self.get_parameter("num_cpu") is None and self.get_parameter(
                "num_cpu") > 0:
            user_defined_cpu = self.get_parameter("num_cpu")

        dataset_size = len(pipeline_dataset)
        num_workers = AnalysisUtil.determine_parallelism_locally(
            self, dataset_size, user_defined_cpu)

        avg_bulk_input_size = int(dataset_size / num_workers)
        inventory_args = []
        count = 0
        inventory_list = list(pipeline_dataset)
        while count < len(inventory_list):
            inventory_args.append(inventory_list[count:count +
                                                 avg_bulk_input_size])
            count += avg_bulk_input_size

        results = self.pipeline_damage_concurrent_future(
            self.pipeline_damage_analysis_bulk_input, num_workers,
            inventory_args, repeat(hazard_type), repeat(hazard_dataset_id))

        self.set_result_csv_data("result",
                                 results,
                                 name=self.get_parameter("result_name"))

        return True

    def pipeline_damage_concurrent_future(self, function_name, num_workers,
                                          *args):
        """Utilizes concurrent.future module.

        Args:
            function_name (function): The function to be parallelized.
            num_workers (int): Maximum number workers in parallelization.
            *args: All the arguments in order to pass into parameter function_name.

        Returns:
            list: A list of ordered dictionaries with building damage values and other data/metadata.

        """
        output = []
        with concurrent.futures.ProcessPoolExecutor(
                max_workers=num_workers) as executor:
            for ret in executor.map(function_name, *args):
                output.extend(ret)

        return output

    def pipeline_damage_analysis_bulk_input(self, pipelines, hazard_type,
                                            hazard_dataset_id):
        """Run pipeline damage analysis for multiple pipelines.

        Args:
            pipelines (list): multiple pipelines from pieline dataset.
            hazard_type (str): Hazard type
            hazard_dataset_id (str): An id of the hazard exposure.

        Returns:
            list: A list of ordered dictionaries with pipeline damage values and other data/metadata.

        """
        result = []

        # Get Fragility key
        fragility_key = self.get_parameter("fragility_key")
        if fragility_key is None:
            fragility_key = PipelineUtil.DEFAULT_TSU_FRAGILITY_KEY if hazard_type == 'tsunami' else \
                PipelineUtil.DEFAULT_EQ_FRAGILITY_KEY
            self.set_parameter("fragility_key", fragility_key)

        # get fragility set
        fragility_sets = self.fragilitysvc.match_inventory(
            self.get_input_dataset("dfr3_mapping_set"), pipelines,
            fragility_key)

        # Get Liquefaction Fragility Key
        liquefaction_fragility_key = self.get_parameter(
            "liquefaction_fragility_key")
        if hazard_type == "earthquake" and liquefaction_fragility_key is None:
            liquefaction_fragility_key = PipelineUtil.LIQ_FRAGILITY_KEY

        # Liquefaction
        use_liquefaction = False
        if hazard_type == "earthquake" and self.get_parameter(
                "use_liquefaction") is not None:
            use_liquefaction = self.get_parameter("use_liquefaction")

        # Get geology dataset id
        geology_dataset_id = self.get_parameter(
            "liquefaction_geology_dataset_id")
        if geology_dataset_id is not None:
            fragility_sets_liq = self.fragilitysvc.match_inventory(
                self.get_input_dataset("dfr3_mapping_set"), pipelines,
                liquefaction_fragility_key)

        for pipeline in pipelines:
            if pipeline["id"] in fragility_sets.keys():
                liq_fragility_set = None
                # Check if mapping contains liquefaction fragility
                if geology_dataset_id is not None and \
                        fragility_sets_liq is not None and \
                        pipeline["id"] in fragility_sets_liq:
                    liq_fragility_set = fragility_sets_liq[pipeline["id"]]

                result.append(
                    self.pipeline_damage_analysis(
                        pipeline, hazard_type, fragility_sets[pipeline["id"]],
                        liq_fragility_set, hazard_dataset_id,
                        geology_dataset_id, use_liquefaction))

        return result

    def pipeline_damage_analysis(self, pipeline, hazard_type, fragility_set,
                                 fragility_set_liq, hazard_dataset_id,
                                 geology_dataset_id, use_liquefaction):
        """Run pipeline damage for a single pipeline.

        Args:
            pipeline (obj): a single pipeline.
            hazard_type (str): hazard type.
            fragility_set (obj): A JSON description of fragility assigned to the building.
            fragility_set_liq (obj): A JSON description of fragility assigned to the building with liqufaction.
            hazard_dataset_id (str): A hazard dataset to use.
            geology_dataset_id (str): A dataset id for geology dataset for liqufaction.
            use_liquefaction (bool): Liquefaction. True for using liquefaction information to modify the damage,
                False otherwise.

        Returns:
            OrderedDict: A dictionary with pipeline damage values and other data/metadata.
        """

        pipeline_results = collections.OrderedDict()
        pgv_repairs = 0.0
        pgd_repairs = 0.0
        liq_hazard_type = ""
        liq_hazard_val = 0.0
        liquefaction_prob = 0.0

        if fragility_set is not None:
            demand_type = fragility_set.demand_type.lower()
            demand_units = fragility_set.demand_units
            location = GeoUtil.get_location(pipeline)
            point = str(location.y) + "," + str(location.x)

            if hazard_type == 'earthquake':
                hazard_resp = self.hazardsvc.get_earthquake_hazard_values(
                    hazard_dataset_id, demand_type, demand_units, [point])
            elif hazard_type == 'tsunami':
                hazard_resp = self.hazardsvc.get_tsunami_hazard_values(
                    hazard_dataset_id, demand_type, demand_units, [point])
            elif hazard_type == 'tornado':
                hazard_resp = self.hazardsvc.get_tornado_hazard_values(
                    hazard_dataset_id, demand_units, [point])
            elif hazard_type == 'hurricane':
                hazard_resp = self.hazardsvc.get_hurricanewf_values(
                    hazard_dataset_id, demand_type, demand_units, [point])
            else:
                raise ValueError("Hazard type are not currently supported.")

            hazard_val = hazard_resp[0]['hazardValue']
            if hazard_val <= 0.0:
                hazard_val = 0.0

            diameter = PipelineUtil.get_pipe_diameter(pipeline)
            fragility_vars = {'x': hazard_val, 'y': diameter}
            fragility_curve = fragility_set.fragility_curves[0]

            # TODO: here assume that custom fragility set only has one limit state
            pgv_repairs = fragility_set.calculate_custom_limit_state(
                fragility_vars)['failure']

            # Convert PGV repairs to SI units
            pgv_repairs = PipelineUtil.convert_result_unit(
                fragility_curve.description, pgv_repairs)

            if use_liquefaction is True and fragility_set_liq is not None and geology_dataset_id is not None:
                liq_fragility_curve = fragility_set_liq.fragility_curves[0]
                liq_hazard_type = fragility_set_liq.demand_type
                pgd_demand_units = fragility_set_liq.demand_units

                # Get PGD hazard value from hazard service
                location_str = str(location.y) + "," + str(location.x)
                liquefaction = self.hazardsvc.get_liquefaction_values(
                    hazard_dataset_id, geology_dataset_id, pgd_demand_units,
                    [location_str])
                liq_hazard_val = liquefaction[0]['pgd']
                liquefaction_prob = liquefaction[0]['liqProbability']

                liq_fragility_vars = {
                    'x': liq_hazard_val,
                    'y': liquefaction_prob
                }
                pgd_repairs = liq_fragility_curve.compute_custom_limit_state_probability(
                    liq_fragility_vars)
                # Convert PGD repairs to SI units
                pgd_repairs = PipelineUtil.convert_result_unit(
                    liq_fragility_curve.description, pgd_repairs)

            total_repair_rate = pgd_repairs + pgv_repairs
            break_rate = 0.2 * pgv_repairs + 0.8 * pgd_repairs
            leak_rate = 0.8 * pgv_repairs + 0.2 * pgd_repairs

            length = PipelineUtil.get_pipe_length(pipeline)

            failure_probability = 1 - math.exp(-1.0 * break_rate * length)
            num_pgd_repairs = pgd_repairs * length
            num_pgv_repairs = pgv_repairs * length
            num_repairs = num_pgd_repairs + num_pgv_repairs

            pipeline_results['guid'] = pipeline['properties']['guid']
            if 'pipetype' in pipeline['properties']:
                pipeline_results['pipeclass'] = pipeline['properties'][
                    'pipetype']
            elif 'pipelinesc' in pipeline['properties']:
                pipeline_results['pipeclass'] = pipeline['properties'][
                    'pipelinesc']
            else:
                pipeline_results['pipeclass'] = ""

            pipeline_results['pgvrepairs'] = pgv_repairs
            pipeline_results['pgdrepairs'] = pgd_repairs
            pipeline_results['repairspkm'] = total_repair_rate
            pipeline_results['breakrate'] = break_rate
            pipeline_results['leakrate'] = leak_rate
            pipeline_results['failprob'] = failure_probability
            pipeline_results['demandtype'] = demand_type
            pipeline_results['hazardtype'] = hazard_type
            pipeline_results['hazardval'] = hazard_val
            pipeline_results['liqhaztype'] = liq_hazard_type
            pipeline_results['liqhazval'] = liq_hazard_val
            pipeline_results['liqprobability'] = liquefaction_prob
            pipeline_results['numpgvrpr'] = num_pgv_repairs
            pipeline_results['numpgdrpr'] = num_pgd_repairs
            pipeline_results['numrepairs'] = num_repairs

        return pipeline_results

    def get_spec(self):
        """Get specifications of the pipeline damage analysis.

        Returns:
            obj: A JSON object of specifications of the pipeline damage analysis.

        """
        return {
            'name':
            'pipeline-damage',
            'description':
            'buried pipeline damage analysis',
            'input_parameters': [{
                'id': 'result_name',
                'required': True,
                'description': 'result dataset name',
                'type': str
            }, {
                'id': 'hazard_type',
                'required': True,
                'description': 'Hazard Type (e.g. earthquake)',
                'type': str
            }, {
                'id': 'hazard_id',
                'required': True,
                'description': 'Hazard ID',
                'type': str
            }, {
                'id': 'fragility_key',
                'required': False,
                'description': 'Fragility key to use in mapping dataset',
                'type': str
            }, {
                'id': 'use_liquefaction',
                'required': False,
                'description': 'Use liquefaction',
                'type': bool
            }, {
                'id': 'liquefaction_fragility_key',
                'required': False,
                'description':
                'Fragility key to use in liquefaction mapping dataset',
                'type': str
            }, {
                'id': 'num_cpu',
                'required': False,
                'description':
                'If using parallel execution, the number of cpus to request',
                'type': int
            }, {
                'id': 'liquefaction_geology_dataset_id',
                'required': False,
                'description': 'Geology dataset id',
                'type': str,
            }],
            'input_datasets': [{
                'id':
                'pipeline',
                'required':
                True,
                'description':
                'Pipeline Inventory',
                'type': ['ergo:buriedPipelineTopology', 'ergo:pipeline'],
            }, {
                'id': 'dfr3_mapping_set',
                'required': True,
                'description': 'DFR3 Mapping Set Object',
                'type': ['incore:dfr3MappingSet'],
            }],
            'output_datasets': [{
                'id': 'result',
                'parent_type': 'pipeline',
                'type': 'ergo:pipelineDamage'
            }]
        }