def configure_ermlp_training_pipeline(model_name: str): """Configure ERMLP from pipeline. :param model_name: name of the model :rtype: OrderedDict :return: configuration dictionary """ config = get_config_dict(model_name) # Step 1: Query embedding dimension print_training_embedding_dimension_message() print_embedding_dimension_info_message() embedding_dimension = select_integer_value( print_msg=EMBEDDING_DIMENSION_PRINT_MSG, prompt_msg=EMBEDDING_DIMENSION_PROMPT_MSG, error_msg=EMBEDDING_DIMENSION_ERROR_MSG) config[EMBEDDING_DIM] = embedding_dimension print_section_divider() # Step 2: Query margin loss print_training_margin_loss_message() magin_loss = select_float_value(print_msg=MARGIN_LOSS_PRINT_MSG, prompt_msg=MARGIN_LOSS_PROMPT_MSG, error_msg=MARGIN_LOSS_ERROR_MSG) config[MARGIN_LOSS] = magin_loss print_section_divider() # Step 3: Query learning rate print_learning_rate_message() learning_rate = select_float_value(print_msg=LEARNING_RATE_PRINT_MSG, prompt_msg=LEARNING_RATE_PROMPT_MSG, error_msg=LEARNING_RATE_ERROR_MSG) config[LEARNING_RATE] = learning_rate print_section_divider() # Step 4: Query batch size print_batch_size_message() batch_size = select_integer_value(print_msg=BATCH_SIZE_PRINT_MSG, prompt_msg=BATCH_SIZE_PROMPT_MSG, error_msg=BATCH_SIZE_ERROR_MSG) config[BATCH_SIZE] = batch_size print_section_divider() # Step 5: Query number of epochs print_number_epochs_message() number_epochs = select_integer_value(print_msg=EPOCH_PRINT_MSG, prompt_msg=EPOCH_PROMPT_MSG, error_msg=EPOCH_ERROR_MSG) config[NUM_EPOCHS] = number_epochs print_section_divider() return config
def prompt_random_seed(config) -> None: """Query random seed.""" print_random_seed_message() config[SEED] = select_integer_value( print_msg=SEED_PRINT_MSG, prompt_msg=SEED_PROMPT_MSG, error_msg=SEED_ERROR_MSG, default=0, )
def prompt_execution_parameters(config: Dict, model_name: str) -> None: """Prompt the user for execution mode parameters.""" pykeen_exec_mode = config[EXECUTION_MODE] if pykeen_exec_mode == TRAINING_MODE: config.update(_configure_training_pipeline(model_name)) elif pykeen_exec_mode == HPO_MODE: config.update(_configure_hpo_pipeline(model_name)) # Query number of HPO iterations hpo_iter = select_integer_value( print_msg=HPO_ITERS_PRINT_MSG, prompt_msg=HPO_ITERS_PROMPT_MSG, error_msg=HPO_ITERS_ERROR_MSG, ) config[NUM_OF_HPO_ITERS] = hpo_iter print_section_divider()
def configure_um_training_pipeline(model_name: str): config = OrderedDict() config[KG_EMBEDDING_MODEL_NAME] = model_name # Step 1: Query embedding dimension print_training_embedding_dimension_message() print_embedding_dimension_info_message() embedding_dimension = select_integer_value(print_msg=EMBEDDING_DIMENSION_PRINT_MSG, prompt_msg=EMBEDDING_DIMENSION_PROMPT_MSG, error_msg=EMBEDDING_DIMENSION_ERROR_MSG) config[EMBEDDING_DIM] = embedding_dimension print_section_divider() # Step 2: Query margin loss print_training_margin_loss_message() magin_loss = select_float_value(print_msg=MARGIN_LOSS_PRINT_MSG, prompt_msg=MARGIN_LOSS_PROMPT_MSG, error_msg=MARGIN_LOSS_ERROR_MSG) config[MARGIN_LOSS] = magin_loss print_section_divider() # Step 3: Query L_p norm as scoring function print_scoring_fct_message() scoring_fct_norm = select_integer_value(print_msg=NORM_SCORING_FUNCTION_PRINT_MSG, prompt_msg=NORM_SCORING_FUNCTION_PROMPT_MSG, error_msg=NORM_SCORING_FUNCTION_ERROR_MSG) config[SCORING_FUNCTION_NORM] = scoring_fct_norm print_section_divider() # Step 4: Query L_p norm for normalizing the entities print_entity_normalization_message() entity_normalization_norm = select_integer_value(print_msg=ENTITIES_NORMALIZATION_PRINT_MSG, prompt_msg=ENTITIES_NORMALIZATION_PROMPT_MSG, error_msg=ENTITIES_NORMALIZATION_ERROR_MSG) config[NORM_FOR_NORMALIZATION_OF_ENTITIES] = entity_normalization_norm print_section_divider() # Step 5: Query learning rate print_learning_rate_message() learning_rate = select_float_value(print_msg=LEARNING_RATE_PRINT_MSG, prompt_msg=LEARNING_RATE_PROMPT_MSG, error_msg=LEARNING_RATE_ERROR_MSG) config[LEARNING_RATE] = learning_rate print_section_divider() # Step 6: Query batch size print_batch_size_message() batch_size = select_integer_value(print_msg=BATCH_SIZE_PRINT_MSG, prompt_msg=BATCH_SIZE_PROMPT_MSG, error_msg=BATCH_SIZE_ERROR_MSG) config[BATCH_SIZE] = batch_size print_section_divider() # Step 7: Query number of epochs print_number_epochs_message() number_epochs = select_integer_value(print_msg=EPOCH_PRINT_MSG, prompt_msg=EPOCH_PROMPT_MSG, error_msg=EPOCH_ERROR_MSG) config[NUM_EPOCHS] = number_epochs print_section_divider() return config
def configure_trans_d_training_pipeline(model_name: str): """Configure Trans D from pipeline. :param model_name: name of the model :return: configuration dictionary """ config = get_config_dict(model_name) # Step 1: Query embedding dimension for entities print_entities_embedding_dimension_message() embedding_dimension = select_integer_value( print_msg=ENTITIES_EMBEDDING_DIMENSION_PRINT_MSG, prompt_msg=ENTITIES_EMBEDDING_DIMENSION_PROMPT_MSG, error_msg=ENTITIES_EMBEDDING_DIMENSION_ERROR_MSG, ) config[EMBEDDING_DIM] = embedding_dimension print_section_divider() # Step 2: Query embedding dimension for relations print_relations_embedding_dimension_message() relation_embedding_dimension = select_integer_value( print_msg=RELATION_EMBEDDING_DIMENSION_PRINT_MSG, prompt_msg=RELATION_EMBEDDING_DIMENSION_PROMPT_MSG, error_msg=RELATION_EMBEDDING_DIMENSION_ERROR_MSG, ) config[RELATION_EMBEDDING_DIM] = relation_embedding_dimension print_section_divider() # Step 2: Query margin loss print_training_margin_loss_message() magin_loss = select_float_value(print_msg=MARGIN_LOSS_PRINT_MSG, prompt_msg=MARGIN_LOSS_PROMPT_MSG, error_msg=MARGIN_LOSS_ERROR_MSG) config[MARGIN_LOSS] = magin_loss print_section_divider() # Step 3: Query L_p norm as scoring function print_scoring_fct_message() scoring_fct_norm = select_integer_value( print_msg=NORM_SCORING_FUNCTION_PRINT_MSG, prompt_msg=NORM_SCORING_FUNCTION_PROMPT_MSG, error_msg=NORM_SCORING_FUNCTION_ERROR_MSG) config[SCORING_FUNCTION_NORM] = scoring_fct_norm print_section_divider() # Step 5: Query learning rate print_learning_rate_message() learning_rate = select_float_value(print_msg=LEARNING_RATE_PRINT_MSG, prompt_msg=LEARNING_RATE_PROMPT_MSG, error_msg=LEARNING_RATE_ERROR_MSG) config[LEARNING_RATE] = learning_rate print_section_divider() # Step 6: Query batch size print_batch_size_message() batch_size = select_integer_value(print_msg=BATCH_SIZE_PRINT_MSG, prompt_msg=BATCH_SIZE_PROMPT_MSG, error_msg=BATCH_SIZE_ERROR_MSG) config[BATCH_SIZE] = batch_size print_section_divider() # Step 7: Query number of epochs print_number_epochs_message() number_epochs = select_integer_value(print_msg=EPOCH_PRINT_MSG, prompt_msg=EPOCH_PROMPT_MSG, error_msg=EPOCH_ERROR_MSG) config[NUM_EPOCHS] = number_epochs print_section_divider() return config
def configure_trans_h_training_pipeline(model_name: str) -> Dict: """Prompt the user to configure Trans H from pipeline.""" config = get_config_dict(model_name) # Step 1: Query embedding dimension print_training_embedding_dimension_message() print_embedding_dimension_info_message() embedding_dimension = select_integer_value( print_msg=EMBEDDING_DIMENSION_PRINT_MSG, prompt_msg=EMBEDDING_DIMENSION_PROMPT_MSG, error_msg=EMBEDDING_DIMENSION_ERROR_MSG, ) config[EMBEDDING_DIM] = embedding_dimension print_section_divider() # Step 2: Query margin loss print_training_margin_loss_message() magin_loss = select_float_value( print_msg=MARGIN_LOSS_PRINT_MSG, prompt_msg=MARGIN_LOSS_PROMPT_MSG, error_msg=MARGIN_LOSS_ERROR_MSG, ) config[MARGIN_LOSS] = magin_loss print_section_divider() # Step 3: Query L_p norm as scoring function print_scoring_fct_message() scoring_fct_norm = select_integer_value( print_msg=NORM_SCORING_FUNCTION_PRINT_MSG, prompt_msg=NORM_SCORING_FUNCTION_PROMPT_MSG, error_msg=NORM_SCORING_FUNCTION_ERROR_MSG ) config[SCORING_FUNCTION_NORM] = scoring_fct_norm print_section_divider() # Step 4: Query weight for the soft constraints print_trans_h_soft_constraints_weight_message() soft_constraints_weight = select_float_value( print_msg=WEIGHTS_SOFT_CONSTRAINT_TRANS_H_PRINT_MSG, prompt_msg=WEIGHTS_SOFT_CONSTRAINT_TRANS_H_PROMPT_MSG, error_msg=WEIGHTS_SOFT_CONSTRAINT_TRANS_H_ERROR_MSG, ) config[WEIGHT_SOFT_CONSTRAINT_TRANS_H] = soft_constraints_weight print_section_divider() # Step 5: Query learning rate print_learning_rate_message() learning_rate = select_float_value( print_msg=LEARNING_RATE_PRINT_MSG, prompt_msg=LEARNING_RATE_PROMPT_MSG, error_msg=LEARNING_RATE_ERROR_MSG, ) config[LEARNING_RATE] = learning_rate print_section_divider() # Step 6: Query batch size print_batch_size_message() batch_size = select_integer_value( print_msg=BATCH_SIZE_PRINT_MSG, prompt_msg=BATCH_SIZE_PROMPT_MSG, error_msg=BATCH_SIZE_ERROR_MSG, ) config[BATCH_SIZE] = batch_size print_section_divider() # Step 7: Query number of epochs print_number_epochs_message() number_epochs = select_integer_value( print_msg=EPOCH_PRINT_MSG, prompt_msg=EPOCH_PROMPT_MSG, error_msg=EPOCH_ERROR_MSG, ) config[NUM_EPOCHS] = number_epochs print_section_divider() return config
def configure_conv_e_training_pipeline(model_name: str): """Configure ConvE. :param str model_name: name of the model :return: configuration dictionary """ config = get_config_dict(model_name) # Step 1: Query embedding dimension print_training_embedding_dimension_message() print_embedding_dimension_info_message() embedding_dimension = select_integer_value( print_msg=EMBEDDING_DIMENSION_PRINT_MSG, prompt_msg=EMBEDDING_DIMENSION_PROMPT_MSG, error_msg=EMBEDDING_DIMENSION_ERROR_MSG, ) config[EMBEDDING_DIM] = embedding_dimension print_section_divider() # Step 2: Query height and width print_conv_e_width_height_message() height, width = query_height_and_width_for_conv_e(embedding_dimension) config[CONV_E_HEIGHT] = height config[CONV_E_WIDTH] = width print_section_divider() # Step 3: Query number of input channels print_conv_input_channels_message() num_input_channels = select_integer_value( CONV_E_INPUT_CHANNEL_PRINT_MSG, CONV_E_INPUT_CHANNEL_PROMPT_MSG, CONV_E_INPUT_CHANNEL_ERROR_MSG, ) config[CONV_E_INPUT_CHANNELS] = num_input_channels print_section_divider() # Step 4: Query number of output channels print_conv_e_output_channels_message() num_output_channels = select_integer_value( CONV_E_OUT_CHANNEL_PRINT_MSG, CONV_E_OUT_CHANNEL_PROMPT_MSG, CONV_E_OUT_CHANNEL_ERROR_MSG, ) config[CONV_E_OUTPUT_CHANNELS] = num_output_channels print_section_divider() # Step 4: Query kernel height print_conv_kernel_height_message() kernel_height = query_kernel_param( depending_param=height, print_msg=CONV_E_KERNEL_HEIGHT_PRINT_MSG, prompt_msg=CONV_E_KERNEL_HEIGHT_PROMPT_MSG, error_msg=CONV_E_KERNEL_HEIGHT_ERROR_MSG, ) config[CONV_E_KERNEL_HEIGHT] = kernel_height print_section_divider() # Step 5: Query kernel width print_conv_kernel_width_message() kernel_width = query_kernel_param( depending_param=width, print_msg=CONV_E_KERNEL_WIDTH_PRINT_MSG, prompt_msg=CONV_E_KERNEL_WIDTH_PROMPT_MSG, error_msg=CONV_E_KERNEL_WIDTH_ERROR_MSG, ) config[CONV_E_KERNEL_WIDTH] = kernel_width print_section_divider() # Step 6: Query dropout for input layer print_hpo_input_dropout_message() input_dropout = select_zero_one_float_value( print_msg=CONV_E_INPUT_DROPOUT_PRINT_MSG, prompt_msg=CONV_E_INPUT_DROPOUT_PROMPT_MSG, error_msg=CONV_E_INPUT_DROPOUT_ERROR_MSG, ) config[CONV_E_INPUT_DROPOUT] = input_dropout print_section_divider() # Step 7: Query dropout for output layer print_output_dropout_message() output_dropout = select_zero_one_float_value( print_msg=CONV_E_OUTPUT_DROPOUT_PRINT_MSG, prompt_msg=CONV_E_OUTPUT_DROPOUT_PROMPT_MSG, error_msg=CONV_E_OUTPUT_DROPOUT_ERROR_MSG, ) config[CONV_E_OUTPUT_DROPOUT] = output_dropout print_section_divider() # Step 8: Query feature map dropout for output layer print_feature_map_dropout_message() feature_map_dropout = select_zero_one_float_value( print_msg=CONV_E_FEATURE_MAP_DROPOUT_PRINT_MSG, prompt_msg=CONV_E__FEATURE_MAP_DROPOUT_PROMPT_MSG, error_msg=CONV_E_FEATURE_MAP_DROPOUT_ERROR_MSG, ) config[CONV_E_FEATURE_MAP_DROPOUT] = feature_map_dropout print_section_divider() # Step 5: Query learning rate print_learning_rate_message() learning_rate = select_float_value(print_msg=LEARNING_RATE_PRINT_MSG, prompt_msg=LEARNING_RATE_PROMPT_MSG, error_msg=LEARNING_RATE_ERROR_MSG) config[LEARNING_RATE] = learning_rate print_section_divider() # Step 6: Query batch size print_batch_size_message() batch_size = select_integer_value(print_msg=BATCH_SIZE_PRINT_MSG, prompt_msg=BATCH_SIZE_PROMPT_MSG, error_msg=BATCH_SIZE_ERROR_MSG) config[BATCH_SIZE] = batch_size print_section_divider() # Step 7: Query number of epochs print_number_epochs_message() number_epochs = select_integer_value(print_msg=EPOCH_PRINT_MSG, prompt_msg=EPOCH_PROMPT_MSG, error_msg=EPOCH_ERROR_MSG) config[NUM_EPOCHS] = number_epochs print_section_divider() return config