def _compute_dvs(self, x: List[float]) -> Tuple[ float, # DVlaunch List[float], # DVs float, # DVarrival, List[Any], # Lambert legs float, #DVlaunch_tot List[float], # T List[Tuple[List[float], List[float]]], # ballistic legs List[float], # epochs of ballistic legs ]: # 1 - we 'decode' the times of flights and compute epochs (mjd2000) T: List[float] = self._decode_tofs(x) # [T1, T2 ...] ep = np.insert(T, 0, x[0]) # [t0, T1, T2 ...] ep = np.cumsum(ep) # [t0, t1, t2, ...] # 2 - we compute the ephemerides r = [0] * len(self.seq) v = [0] * len(self.seq) for i in range(len(self.seq)): r[i], v[i] = self.seq[i].eph(float(ep[i])) l = list() ballistic_legs: List[Tuple[List[float], List[float]]] = [] ballistic_ep: List[float] = [] # 3 - we solve the lambert problems vi = v[0] for i in range(self._n_legs): lp = lambert_problem_multirev( vi, lambert_problem(r[i], r[i + 1], T[i] * DAY2SEC, self._common_mu, False, self.max_revs)) l.append(lp) vi = lp.get_v2()[0] ballistic_legs.append((r[i], lp.get_v1()[0])) ballistic_ep.append(ep[i]) # 4 - we compute the various dVs needed at fly-bys to match incoming # and outcoming DVfb = list() for i in range(len(l) - 1): vin = [a - b for a, b in zip(l[i].get_v2()[0], v[i + 1])] vout = [a - b for a, b in zip(l[i + 1].get_v1()[0], v[i + 1])] DVfb.append(fb_vel(vin, vout, self.seq[i + 1])) # 5 - we add the departure and arrival dVs DVlaunch_tot = np.linalg.norm( [a - b for a, b in zip(v[0], l[0].get_v1()[0])]) DVlaunch = max(0, DVlaunch_tot - self.vinf) DVarrival = np.linalg.norm( [a - b for a, b in zip(v[-1], l[-1].get_v2()[0])]) if self.orbit_insertion: # In this case we compute the insertion DV as a single pericenter # burn DVper = np.sqrt(DVarrival * DVarrival + 2 * self.seq[-1].mu_self / self.rp_target) DVper2 = np.sqrt(2 * self.seq[-1].mu_self / self.rp_target - self.seq[-1].mu_self / self.rp_target * (1. - self.e_target)) DVarrival = np.abs(DVper - DVper2) return (DVlaunch, DVfb, DVarrival, l, DVlaunch_tot, T, ballistic_legs, ballistic_ep)
def pretty(self, x): """ prob.plot(x) - x: encoded trajectory Prints human readable information on the trajectory represented by the decision vector x Example:: print(prob.pretty(x)) """ # 1 - we 'decode' the chromosome recording the various times of flight # (days) in the list T and the cartesian components of vinf T, Vinfx, Vinfy, Vinfz = self._decode_times_and_vinf(x) # 2 - We compute the epochs and ephemerides of the planetary encounters t_P = list([None] * (self.n_legs + 1)) r_P = list([None] * (self.n_legs + 1)) v_P = list([None] * (self.n_legs + 1)) DV = list([0.0] * (self.n_legs + 1)) for i in range(len(self._seq)): t_P[i] = epoch(x[0] + sum(T[0:i])) r_P[i], v_P[i] = self._seq[i].eph(t_P[i]) # 3 - We start with the first leg print("First Leg: " + self._seq[0].name + " to " + self._seq[1].name) print("Departure: " + str(t_P[0]) + " (" + str(t_P[0].mjd2000) + " mjd2000) ") print("Duration: " + str(T[0]) + "days") print("VINF: " + str(x[3] / 1000) + " km/sec") v0 = [a + b for a, b in zip(v_P[0], [Vinfx, Vinfy, Vinfz])] r, v = propagate_lagrangian(r_P[0], v0, x[4] * T[0] * DAY2SEC, self.common_mu) print("DSM after " + str(x[4] * T[0]) + " days") # Lambert arc to reach seq[1] dt = (1 - x[4]) * T[0] * DAY2SEC l = lambert_problem_multirev( v, lambert_problem(r, r_P[1], dt, self.common_mu, cw=False, max_revs=self.max_revs)) v_end_l = l.get_v2()[0] v_beg_l = l.get_v1()[0] # First DSM occuring at time nu1*T1 DV[0] = norm([a - b for a, b in zip(v_beg_l, v)]) print("DSM magnitude: " + str(DV[0]) + "m/s") # 4 - And we proceed with each successive leg for i in range(1, self.n_legs): print("\nleg no. " + str(i + 1) + ": " + self._seq[i].name + " to " + self._seq[i + 1].name) print("Duration: " + str(T[i]) + "days") # Fly-by v_out = fb_prop(v_end_l, v_P[i], x[7 + (i - 1) * 4] * self._seq[i].radius, x[6 + (i - 1) * 4], self._seq[i].mu_self) print("Fly-by epoch: " + str(t_P[i]) + " (" + str(t_P[i].mjd2000) + " mjd2000) ") print("Fly-by radius: " + str(x[7 + (i - 1) * 4]) + " planetary radii") # s/c propagation before the DSM r, v = propagate_lagrangian(r_P[i], v_out, x[8 + (i - 1) * 4] * T[i] * DAY2SEC, self.common_mu) print("DSM after " + str(x[8 + (i - 1) * 4] * T[i]) + " days") # Lambert arc to reach Earth during (1-nu2)*T2 (second segment) dt = (1 - x[8 + (i - 1) * 4]) * T[i] * DAY2SEC l = lambert_problem_multirev( v, lambert_problem(r, r_P[i + 1], dt, self.common_mu, cw=False, max_revs=self.max_revs)) v_end_l = l.get_v2()[0] v_beg_l = l.get_v1()[0] # DSM occuring at time nu2*T2 DV[i] = norm([a - b for a, b in zip(v_beg_l, v)]) print("DSM magnitude: " + str(DV[i]) + "m/s") # Last Delta-v print("\nArrival at " + self._seq[-1].name) DV[-1] = norm([a - b for a, b in zip(v_end_l, v_P[-1])]) print("Arrival epoch: " + str(t_P[-1]) + " (" + str(t_P[-1].mjd2000) + " mjd2000) ") print("Arrival Vinf: " + str(DV[-1]) + "m/s") if self._orbit_insertion: # In this case we compute the insertion DV as a single pericenter # burn DVper = np.sqrt(DV[-1] * DV[-1] + 2 * self._seq[-1].mu_self / self._rp_target) DVper2 = np.sqrt(2 * self._seq[-1].mu_self / self._rp_target - self._seq[-1].mu_self / self._rp_target * (1. - self._e_target)) DVinsertion = np.abs(DVper - DVper2) print("Insertion DV: " + str(DVinsertion) + "m/s") print("Total mission time: " + str(sum(T) / 365.25) + " years (" + str(sum(T)) + " days)")
def plot(self, x, ax=None): """ ax = prob.plot(x, ax=None) - x: encoded trajectory - ax: matplotlib axis where to plot. If None figure and axis will be created - [out] ax: matplotlib axis where to plot Plots the trajectory represented by a decision vector x on the 3d axis ax Example:: ax = prob.plot(x) """ import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from pykep.orbit_plots import plot_planet, plot_lambert, plot_kepler if ax is None: mpl.rcParams['legend.fontsize'] = 10 fig = plt.figure() axis = fig.gca(projection='3d') else: axis = ax axis.scatter(0, 0, 0, color='y') # 1 - we 'decode' the chromosome recording the various times of flight # (days) in the list T and the cartesian components of vinf T, Vinfx, Vinfy, Vinfz = self._decode_times_and_vinf(x) # 2 - We compute the epochs and ephemerides of the planetary encounters t_P = list([None] * (self.n_legs + 1)) r_P = list([None] * (self.n_legs + 1)) v_P = list([None] * (self.n_legs + 1)) DV = list([None] * (self.n_legs + 1)) for i, planet in enumerate(self._seq): t_P[i] = epoch(x[0] + sum(T[0:i])) r_P[i], v_P[i] = planet.eph(t_P[i]) plot_planet(planet, t0=t_P[i], color=(0.8, 0.6, 0.8), legend=True, units=AU, axes=axis, N=150) # 3 - We start with the first leg v0 = [a + b for a, b in zip(v_P[0], [Vinfx, Vinfy, Vinfz])] r, v = propagate_lagrangian(r_P[0], v0, x[4] * T[0] * DAY2SEC, self.common_mu) plot_kepler(r_P[0], v0, x[4] * T[0] * DAY2SEC, self.common_mu, N=100, color='b', units=AU, axes=axis) # Lambert arc to reach seq[1] dt = (1 - x[4]) * T[0] * DAY2SEC l = lambert_problem_multirev( v, lambert_problem(r, r_P[1], dt, self.common_mu, cw=False, max_revs=self.max_revs)) plot_lambert(l, sol=0, color='r', units=AU, axes=axis) v_end_l = l.get_v2()[0] v_beg_l = l.get_v1()[0] # First DSM occuring at time nu1*T1 DV[0] = norm([a - b for a, b in zip(v_beg_l, v)]) # 4 - And we proceed with each successive leg for i in range(1, self.n_legs): # Fly-by v_out = fb_prop(v_end_l, v_P[i], x[7 + (i - 1) * 4] * self._seq[i].radius, x[6 + (i - 1) * 4], self._seq[i].mu_self) # s/c propagation before the DSM r, v = propagate_lagrangian(r_P[i], v_out, x[8 + (i - 1) * 4] * T[i] * DAY2SEC, self.common_mu) plot_kepler(r_P[i], v_out, x[8 + (i - 1) * 4] * T[i] * DAY2SEC, self.common_mu, N=100, color='b', units=AU, axes=axis) # Lambert arc to reach Earth during (1-nu2)*T2 (second segment) dt = (1 - x[8 + (i - 1) * 4]) * T[i] * DAY2SEC l = lambert_problem_multirev( v, lambert_problem(r, r_P[i + 1], dt, self.common_mu, cw=False, max_revs=self.max_revs)) plot_lambert(l, sol=0, color='r', legend=False, units=AU, N=1000, axes=axis) v_end_l = l.get_v2()[0] v_beg_l = l.get_v1()[0] # DSM occuring at time nu2*T2 DV[i] = norm([a - b for a, b in zip(v_beg_l, v)]) plt.show() return axis
def fitness(self, x): # 1 - we 'decode' the chromosome recording the various times of flight # (days) in the list T and the cartesian components of vinf T, Vinfx, Vinfy, Vinfz = self._decode_times_and_vinf(x) # 2 - We compute the epochs and ephemerides of the planetary encounters t_P = list([None] * (self.n_legs + 1)) r_P = list([None] * (self.n_legs + 1)) v_P = list([None] * (self.n_legs + 1)) DV = list([0.0] * (self.n_legs + 1)) for i in range(len(self._seq)): t_P[i] = epoch(x[0] + sum(T[0:i])) r_P[i], v_P[i] = self._seq[i].eph(t_P[i]) # 3 - We start with the first leg v0 = [a + b for a, b in zip(v_P[0], [Vinfx, Vinfy, Vinfz])] r, v = propagate_lagrangian(r_P[0], v0, x[4] * T[0] * DAY2SEC, self.common_mu) # Lambert arc to reach seq[1] dt = (1 - x[4]) * T[0] * DAY2SEC l = lambert_problem_multirev( v, lambert_problem(r, r_P[1], dt, self.common_mu, cw=False, max_revs=self.max_revs)) v_end_l = l.get_v2()[0] v_beg_l = l.get_v1()[0] # First DSM occuring at time nu1*T1 DV[0] = norm([a - b for a, b in zip(v_beg_l, v)]) # 4 - And we proceed with each successive leg for i in range(1, self.n_legs): # Fly-by v_out = fb_prop(v_end_l, v_P[i], x[7 + (i - 1) * 4] * self._seq[i].radius, x[6 + (i - 1) * 4], self._seq[i].mu_self) # s/c propagation before the DSM r, v = propagate_lagrangian(r_P[i], v_out, x[8 + (i - 1) * 4] * T[i] * DAY2SEC, self.common_mu) # Lambert arc to reach Earth during (1-nu2)*T2 (second segment) dt = (1 - x[8 + (i - 1) * 4]) * T[i] * DAY2SEC l = lambert_problem_multirev( v, lambert_problem(r, r_P[i + 1], dt, self.common_mu, cw=False, max_revs=self.max_revs)) v_end_l = l.get_v2()[0] v_beg_l = l.get_v1()[0] # DSM occuring at time nu2*T2 DV[i] = norm([a - b for a, b in zip(v_beg_l, v)]) # Last Delta-v if self._add_vinf_arr: DV[-1] = norm([a - b for a, b in zip(v_end_l, v_P[-1])]) if self._orbit_insertion: # In this case we compute the insertion DV as a single pericenter # burn DVper = np.sqrt(DV[-1] * DV[-1] + 2 * self._seq[-1].mu_self / self._rp_target) DVper2 = np.sqrt(2 * self._seq[-1].mu_self / self._rp_target - self._seq[-1].mu_self / self._rp_target * (1. - self._e_target)) DV[-1] = np.abs(DVper - DVper2) if self._add_vinf_dep: DV[0] += x[3] if not self._multi_objective: return (sum(DV), ) else: return (sum(DV), sum(T))