def colorbar_index(ncolors, cmap, orientation="vertical"): cmap = cmap_discretize(cmap, ncolors) mappable = cm.ScalarMappable(cmap=cmap) mappable.set_array([]) mappable.set_clim(-0.5, ncolors+0.5) colorbar = plt.colorbar(mappable, orientation=orientation) colorbar.set_ticks(np.linspace(0, ncolors, ncolors)) colorbar.set_ticklabels(range(ncolors)) return colorbar
def generate_table(table_data, rows, columns): df = DataFrame(table_data, index=rows, columns=columns) base = 0 colorings = [] #colorings.append([base]*(len(rows)+1)) for column in columns: vals = df[column].values normal = normalize(vals.min() - 1, vals.max() + 1) m = cm.ScalarMappable( norm=matplotlib.colors.Normalize(vmin=vals.min(), vmax=vals.max())) m.set_cmap("YlGn") col_colors = m.to_rgba(vals) print col_colors colorings.append(col_colors) #colorings.append(list(np.transpose(cm.hot(normal(vals)))[1])) colorings = np.transpose(colorings, (1, 0, 2)) print colorings.shape fig = figure(figsize=(15, 8)) ax = fig.add_subplot(111, frameon=True, xticks=[], yticks=[]) #print colorings vals = df.values the_table = table(cellText=vals, rowLabels=df.index, colLabels=df.columns, colWidths=[0.13] * vals.shape[1], loc='center', cellColours=colorings, fontsize=15) #nrows, ncols = len(rows)+1, len(columns)+1 #hcell, wcell = 1, 1 #hpad, wpad = .5, 0 #fig = figure(figsize=(ncols*wcell+wpad, nrows*hcell+hpad)) #fig = figure() #ax = fig.add_subplot(111) #ax.axis('off') #ax.table(cellText=table_data, # rowLabels=rows, # colLabels=columns, # loc='center') show() close()
def plot_spikes(df, sample_type, ax=None, mi=None, mx=None): if ax is None: fig, ax = plt.subplots() else: fig = None x = df[df['Sample Type'] == sample_type]['x'] y = df[df['Sample Type'] == sample_type]['z'] s = df[df['Sample Type'] == sample_type]['volume'] if mi is None: mi = min(s) mx = max(s) norm = np.array([((i - mi) / (mx - mi)) * 100 for i in s]) colors_to_use = cm.rainbow(norm / max(norm)) colmap = cm.ScalarMappable(cmap=cm.rainbow) colmap.set_array(colors_to_use) t = ax.scatter(x, y, c=colors_to_use, s=norm, marker='o') ax.set_xlim(150, 400) if fig is not None: fig.colorbar(colmap) return (fig, ax) return colmap
def plot_spike(df, spikename, ax=None, mi=None, mx=None): if ax is None: fig, ax = plt.subplots() x = df[df['Sample name'] == spikename]['x'] y = df[df['Sample name'] == spikename]['z'] s = df[df['Sample name'] == spikename]['volume'] if mi is None: mi = min(s) mx = max(s) norm = np.array([((i - mi) / (mx - mi)) * 75 for i in s]) colors_to_use = cm.rainbow(norm / max(norm)) colmap = cm.ScalarMappable(cmap=cm.rainbow) colmap.set_array(colors_to_use) ax.scatter(x, y, c=colors_to_use, s=norm, marker='o') ax.set_xlim(0, 512) fid = list(df[df['Sample name'] == spikename]['folderid'])[0] ax.set_title('{0}\n{1}'.format(spikename, fid)) # if fig: # fig.colorbar(colmap) # return (fig, ax) return colmap
def get_param_param_scores(param1, param2, param3=None, dataPath=os.getcwd(), score=0, model=None): param1_vals = [] param2_vals = [] param3_vals = [] score_vals = [] eachPoint = {} # dict of list as point coordinate : score list model_pattern = re.compile("LG14modelID.*:\ *(\d+).") param1Val_pattern = re.compile(str(param1) + ".*:\ *(\d+[\.\d*]*).*") param2Val_pattern = re.compile(str(param2) + ".*:\ *(\d+[\.\d*]*).*") param3Val_pattern = re.compile(str(param3) + ".*:\ *(\d+[\.\d*]*).*") for fName in os.listdir(dataPath): dirPath = os.path.join(dataPath, fName) if os.path.isdir(dirPath) and fName.startswith("2017"): try: with open(os.path.join(dirPath, "score.txt"), "r") as scoreFile: obt_score = float(scoreFile.readline().rstrip()) except Exception: continue if obt_score < float(score): continue # If the score is ok # lets check the model nb by getting the modelParams with open(dirPath + "/modelParams.py", 'r') as paramsFile: Paramsdata = paramsFile.readlines() # only getting the results of the expected model if (not model is None): mod = int( model_pattern.findall( filter(lambda x: model_pattern.search(x), Paramsdata)[0])[0]) if (mod != model): continue # get values point = [] try: val1 = float( param1Val_pattern.findall( filter(lambda x: param1Val_pattern.search(x), Paramsdata)[0])[0]) param1_vals.append(val1) point.append(val1) except IndexError: # if there were no result : the variable name is wrong reason = "------------- ERROR : Wrong variable name [" + str( param1) + "]" print reason return plot_print_wrong(axis, reason) try: val2 = float( param2Val_pattern.findall( filter(lambda x: param2Val_pattern.search(x), Paramsdata)[0])[0]) param2_vals.append(val2) point.append(val2) except IndexError: # if there were no result : the variable name is wrong reason = "------------- ERROR : Wrong variable name [" + str( param2) + "]" print reason return plot_print_wrong(axis, reason) if not param3 is None: try: val3 = float( param3Val_pattern.findall( filter(lambda x: param3Val_pattern.search(x), Paramsdata)[0])[0]) param3_vals.append(val3) point.append(val3) except IndexError: # if there were no result : the variable name is wrong reason = "------------- ERROR : Wrong variable name [" + str( param3) + "]" print reason return plot_print_wrong(axis, reason) # saving every score for each point point = tuple(point) if eachPoint.has_key(point): eachPoint[point].append(obt_score) else: eachPoint[point] = [obt_score] score_vals.append(obt_score) # end for score_vals = np.array(score_vals) colmap = cm.ScalarMappable(cmap=cm.hsv) colmap.set_array(score_vals) return param1_vals, param2_vals, param3_vals, eachPoint, score_vals, colmap
def fig2_b(df_orig, ax=None, mi=None, mx=None, use_fig=False, fig=None): df = df_orig.copy(deep=True) mono_names = list( filter(lambda n: True if 'wild' not in n else False, einkorn['Sample name'].unique()))[:13] mono_names.extend( list( filter(lambda n: True if 'wild' in n else False, einkorn['Sample name'].unique()))) df = df[df['Sample name'].isin(mono_names)] df.ix[df['Sample Type'] == 'T. monococcum', 'x'] = df[df['Sample Type'] == 'T. monococcum']['x'] + 512 if ax is None: fig, ax = plt.subplots() x = df['x'] y = df['z'] s = df['volume'] if mi is None: mi = min(s) mx = max(s) norm = np.array([((i - mi) / (mx - mi)) * 100 for i in s]) colors_to_use = cm.rainbow(norm / max(norm)) colmap = cm.ScalarMappable(cmap=cm.rainbow) colmap.set_array(colors_to_use) t = ax.scatter(x, y, c=colors_to_use, s=norm, marker='o') if not use_fig: colbar = fig.colorbar(colmap, ticks=[0, 0.5, 1]) colbar.ax.set_yticklabels([ r'{0:3.2f}mm$^3$'.format(mi), r'{0:3.2f}mm$^3$'.format(df['volume'].mean()), r'{0:3.2f}mm$^3$'.format(mx) ]) x1 = [300, 800] squad = ['T. beoticum', 'T. monococcum'] ax.set_xticks(x1) ax.set_xticklabels(squad, minor=False) return (fig, ax) else: colbar = fig.colorbar(colmap, ticks=[0, 0.5, 1], ax=ax) colbar.ax.set_yticklabels([ r'{0:3.2f}mm$^3$'.format(mi), r'{0:3.2f}mm$^3$'.format(df['volume'].mean()), r'{0:3.2f}mm$^3$'.format(mx) ]) x1 = [300, 800] squad = ['T. beoticum', 'T. monococcum'] ax.set_xticks(x1) ax.set_xticklabels(squad, minor=False) return colmap
sns.distplot(initLoss) plt.savefig(os.path.join(foldername, 'costs-dist.jpg')) x = np.arange(len(initLoss)) sns.jointplot(x=x, y=initLoss) plt.savefig(os.path.join(foldername, 'costs-seq.jpg')) arr = np.array(list_ball[:len(initLoss)]) x = arr[:, 0] y = arr[:, 1] z = arr[:, 2] fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot(111, projection='3d') n = 100 cmap = cm.RdGy colors = cmap(initLoss / max(initLoss)) colmap = cm.ScalarMappable(cmap=cmap) colmap.set_array(initLoss) yg = ax.scatter(x, y, z, c=colors, marker='o') cb = fig.colorbar(colmap) plt.savefig(os.path.join(foldername, 'viz_errors.jpg')) plt.show() np.set_printoptions(suppress=True, formatter={'float_kind': '{:.20f},'.format}, linewidth=100) # Try to print 4 numbers on one line # ---------------------------------------------------------------------------- # STEP1: Optimize R # ---------------------------------------------------------------------------- if args.step == 1: print(
print "size of X is: ", X.shape print "size of Y is: ", Y.shape Z=[[-58,-59.5,-65,-71,-76,-80,-84], [-65,-67,-71,-75.5,-80,-83,-85.5],[-72,-73,-75,-79,-82,-84,-87],[-75,-77,-80,-81,-84,-85.5,-90]] '''Z=[] Z.append([-58,-61,-66,-83,-69,-63,-58]) Z.append([-66, -69, -74, -86, -74, -69.5, -66.5]) Z.append([-75, -76, -81, -90, -85, -75.5, -72]) Z.append([-76, -80, -84, -91, -88, -83, -78])''' print Z #ax.plot_surface(X, Y, Z,cmap=cm.RdBu,vmin=-100, vmax=-50) A = np.arange(-90, -50, 2) ax.plot_trisurf(X.flatten(), Y.flatten(), np.array(Z).flatten(), color="Red", cmap='winter', shade=True, linewidth="0.7") ax.set_xlabel('X coordinate') ax.set_ylabel('Y coordinate') ax.set_zlabel('Power') m = cm.ScalarMappable(cmap=cm.winter) m.set_array(A) plt.colorbar(m) # Plotting Power vs x,y,z in the case of single antenna """fig2 = plt.figure() ax2 = fig2.add_subplot(111, projection='3d') Z2 = [] Z2.append([-58,-59.5,-65,-71,-76,-80,-84]) Z2.append([-65,-67,-71,-75.5,-80,-83,-85.5]) Z2.append([-72,-73,-75,-79,-82,-84,-87]) Z2.append([-75,-77,-80,-81,-84,-85.5,-90]) ax2.plot_trisurf(X.flatten(), Y.flatten(), np.array(Z2).flatten(), color="Red", cmap='hot', shade=True, linewidth="0.7")
root = int(sqrt(num_concepts)) if root * root >= num_concepts: columns = root rows = root elif root * (root + 1) >= num_concepts: columns = root + 1 rows = root else: columns = root + 1 rows = root # for each concept, create a colored scatter plot of all unlabeled data points counter = 1 for label, memberships in validation_memberships.items(): colors = cm.jet(memberships) colmap = cm.ScalarMappable(cmap=cm.jet) colmap.set_array(memberships) ax = fig.add_subplot(rows, columns, counter) if ltn.default_type == "cuboid": # also plot the actual box import matplotlib.patches as patches import shapely.geometry from matplotlib.path import Path def _path_for_core(cuboids, d1, d2): """Creates the 2d path for a complete core.""" polygon = None for cuboid in cuboids: p_min = cuboid[0]