def srcdiff_plot(env, model, **kwargs): obj_index = kwargs.pop('obj_index', 0) src_index = kwargs.pop('src_index', 0) with_colorbar = kwargs.pop('with_colorbar', False) xlabel = kwargs.pop('xlabel', r'arcsec') ylabel = kwargs.pop('ylabel', r'arcsec') obj, data = model['obj,data'][obj_index] S = obj.basis.subdivision R = obj.basis.mapextent g = obj.basis.srcdiff_grid(data)[src_index] vmin = np.log10(np.amin(g[g>0])) g = g.copy() + 1e-10 kw = default_kw(R, kwargs) #, vmin=vmin, vmax=vmin+2) #loglev = logspace(1, log(amax(g)-amin(g)), 20, base=math.e) + amin(g) pl.matshow(np.log10(g), **kw) matplotlib.rcParams['contour.negative_linestyle'] = 'solid' if with_colorbar: glspl.colorbar() # pl.over(contour, g, 50, colors='w', linewidths=1, # extent=[-R,R,-R,R], origin='upper', extend='both') #pl.grid() pl.xlabel(xlabel) pl.ylabel(ylabel)
def showDistMatrix(distMatrix): pylab.matshow(distMatrix) ax = pylab.gca() bottom, top = ax.get_ylim() ax.set_ylim(top, bottom) pylab.colorbar() pylab.show()
def srcdiff_plot(env, model, **kwargs): obj_index = kwargs.pop('obj_index', 0) src_index = kwargs.pop('src_index', 0) with_colorbar = kwargs.pop('with_colorbar', False) xlabel = kwargs.pop('xlabel', r'arcsec') ylabel = kwargs.pop('ylabel', r'arcsec') obj, data = model['obj,data'][obj_index] S = obj.basis.subdivision R = obj.basis.mapextent g = obj.basis.srcdiff_grid(data)[src_index] vmin = np.log10(np.amin(g[g > 0])) g = g.copy() + 1e-10 kw = default_kw(R, kwargs) #, vmin=vmin, vmax=vmin+2) #loglev = logspace(1, log(amax(g)-amin(g)), 20, base=math.e) + amin(g) pl.matshow(np.log10(g), **kw) matplotlib.rcParams['contour.negative_linestyle'] = 'solid' if with_colorbar: glspl.colorbar() # pl.over(contour, g, 50, colors='w', linewidths=1, # extent=[-R,R,-R,R], origin='upper', extend='both') #pl.grid() pl.xlabel(xlabel) pl.ylabel(ylabel)
def transect(x,y,z,x0,y0,x1,y1,plots=0): #convert coord to pixel coord d0=sqrt( (x-x0)**2+ (y-y0)**2 ); i0=d0.argmin(); x0,y0=unravel_index(i0,x.shape); #overwrite x0,y0 d1=plt.np.sqrt( (x-x1)**2+ (y-y1)**2 ); i1=d1.argmin(); x1,y1=unravel_index(i1,x.shape); #overwrite x1,y1 #-- Extract the line... # Make a line with "num" points... length = int(plt.np.hypot(x1-x0, y1-y0)) xi, yi = plt.np.linspace(x0, x1, length), plt.np.linspace(y0, y1, length) # Extract the values along the line #y is the first dimension and x is the second, row,col zi = z[xi.astype(plt.np.int), yi.astype(plt.np.int)] mz=nonaninf(z.ravel()).mean() sz=nonaninf(z.ravel()).std() if plots==1: plt.matshow(z);plt.clim([mz-2*sz,mz+2*sz]);plt.colorbar();plt.title('transect: (' + str(x0) + ',' + str(y0) + ') (' +str(x1) + ',' +str(y1) + ')' ); plt.scatter(yi,xi,5,c='r',edgecolors='none') plt.figure();plt.scatter(sqrt( (xi-xi[0])**2 + (yi-yi[0])**2 ) , zi) #plt.figure();plt.scatter(xi, zi) #plt.figure();plt.scatter(yi, zi) return (xi, yi, zi);
def potential_plot(env, model, obj_index, src_index, with_colorbar=True, with_contours=False): obj, data = model['obj,data'][obj_index] R = obj.basis.mapextent grid = obj.basis.potential_grid(data) levs = obj.basis.potential_contour_levels(data) # pl.matshow(grid, fignum=False, extent=[-R,R,-R,R], interpolation='nearest') pl.matshow(grid, fignum=False, cmap=cm.bone, extent=[-R, R, -R, R], interpolation='nearest') if with_colorbar: glspl.colorbar() # pl.contour(grid, extent=[-R,R,-R,R], origin='upper') #print levs if with_contours: for i, lev in enumerate(levs): pl.over(contour, grid, lev, colors=system_color(i), extent=[-R, R, -R, R], origin='upper', extend='both') pl.xlabel('arcsec') pl.ylabel('arcsec')
def benchmark(clf_class, params, name): print "parameters:", params t0 = time() clf = clf_class(**params).fit(X_train, y_train) print "done in %fs" % (time() - t0) if hasattr(clf, 'coef_'): print "Percentage of non zeros coef: %f" % ( np.mean(clf.coef_ != 0) * 100) print "Predicting the outcomes of the testing set" t0 = time() pred = clf.predict(X_test) print "done in %fs" % (time() - t0) print "Classification report on test set for classifier:" print clf print print classification_report(y_test, pred, target_names=news_test.target_names) cm = confusion_matrix(y_test, pred) print "Confusion matrix:" print cm # Show confusion matrix pl.matshow(cm) pl.title('Confusion matrix of the %s classifier' % name) pl.colorbar()
def gradient_grid_plot(env, model, obj_index): obj, data = model['obj,data'][obj_index] b = obj.basis kappa = data['kappa'] grid = np.zeros_like(kappa) #wght = lambda x: 1.0 / len(x) if len(x) else 0 wght = lambda x: b.cell_size[x]**2 / np.sum(b.cell_size[x]**2) for i, r in enumerate(b.ploc): n, e, s, w = b.nbrs3[i][2] dx = np.sum(kappa[w] * wght(w)) - np.sum(kappa[e] * wght(e)) dy = np.sum(kappa[s] * wght(s)) - np.sum(kappa[n] * wght(n)) dx *= -1 dy *= -1 #print dx, dy dr = np.sqrt(dx**2 + dy**2) grid[i] = dr grid = grid kw = default_kw(b.mapextent, vmin=np.amin(grid), vmax=np.amax(grid)) grid = b._to_grid(grid, b.subdivision) pl.matshow(grid, **kw) glscolorbar()
def benchmark(clf_class, params, name): print("parameters:", params) t0 = time() clf = clf_class(**params).fit(X_train, y_train) print("done in %fs" % (time() - t0)) if hasattr(clf, 'coef_'): print("Percentage of non zeros coef: %f" % (np.mean(clf.coef_ != 0) * 100)) print("Predicting the outcomes of the testing set") t0 = time() pred = clf.predict(X_test) print("done in %fs" % (time() - t0)) print("Classification report on test set for classifier:") print(clf) print() print(classification_report(y_test, pred, target_names=news_test.target_names)) cm = confusion_matrix(y_test, pred) print("Confusion matrix:") print(cm) # Show confusion matrix pl.matshow(cm) pl.title('Confusion matrix of the %s classifier' % name) pl.colorbar()
def grad_kappa_plot(env, model, obj_index, which='x', with_contours=False, only_contours=False, clevels=30, with_colorbar=True): obj, data = model['obj,data'][obj_index] R = obj.basis.mapextent grid = obj.basis.kappa_grid(data) grid = grid.copy() kw = default_kw(R) kw['vmin'] = -1 kw['vmax'] = 2 if not only_contours: print '!!!!!!', grid.shape if which == 'x': grid = np.diff(grid, axis=1) if which == 'y': grid = np.diff(grid, axis=0) print '!!!!!!', grid.shape pl.matshow(grid, **kw) if with_colorbar: glspl.colorbar() if with_contours: kw.pop('cmap') pl.over(contour, grid, clevels, extend='both', colors='k', alpha=0.7, **kw) pl.xlabel('arcsec') pl.ylabel('arcsec')
def plotMatrix(cm): pl.matshow(cm) pl.title('Confusion matrix') pl.colorbar() pl.ylabel('True label') pl.xlabel('Predicted label') pl.show()
def transect(x, y, z, x0, y0, x1, y1, plots=0): #convert coord to pixel coord d0 = sqrt((x - x0)**2 + (y - y0)**2) i0 = d0.argmin() x0, y0 = unravel_index(i0, x.shape) #overwrite x0,y0 d1 = plt.np.sqrt((x - x1)**2 + (y - y1)**2) i1 = d1.argmin() x1, y1 = unravel_index(i1, x.shape) #overwrite x1,y1 #-- Extract the line... # Make a line with "num" points... length = int(plt.np.hypot(x1 - x0, y1 - y0)) xi, yi = plt.np.linspace(x0, x1, length), plt.np.linspace(y0, y1, length) # Extract the values along the line #y is the first dimension and x is the second, row,col zi = z[xi.astype(plt.np.int), yi.astype(plt.np.int)] mz = nonaninf(z.ravel()).mean() sz = nonaninf(z.ravel()).std() if plots == 1: plt.matshow(z) plt.clim([mz - 2 * sz, mz + 2 * sz]) plt.colorbar() plt.title('transect: (' + str(x0) + ',' + str(y0) + ') (' + str(x1) + ',' + str(y1) + ')') plt.scatter(yi, xi, 5, c='r', edgecolors='none') plt.figure() plt.scatter(sqrt((xi - xi[0])**2 + (yi - yi[0])**2), zi) #plt.figure();plt.scatter(xi, zi) #plt.figure();plt.scatter(yi, zi) return (xi, yi, zi)
def matrix_picture(matrix): pl.matshow(matrix) pl.title('Confusion matrix') pl.colorbar() pl.ylabel('True label') pl.xlabel('Predicted label') pl.show()
def draw_astar_graph(obs_map, graph): """Debugging function which will show the current state of the m* graph """ # Draw the obstacles pylab.hold(False) sizex = len(obs_map) sizey = len(obs_map[0]) pylab.plot([-.5, sizex - .5, sizex - .5, -.5, -.5], [-.5, -.5, sizey - .5, sizey - .5, -.5], 'k') pylab.hold(True) pylab.matshow((1 - numpy.array(obs_map)).T, fignum=0) pylab.gray() pylab.clim(-2, 1) # Assemble the quiver X, Y, U, V = [[] for i in xrange(4)] for node in graph.graph.itervalues(): x, y = node.coord u, v = map(lambda w, v: w - v, node.policy, node.coord) X.append(x) Y.append(y) U.append(u) V.append(v) pylab.quiver(X, Y, U, V) pylab.xlim([-.5, sizex - .5]) pylab.ylim([-.5, sizey - .5]) pylab.xticks([]) pylab.yticks([]) pylab.hold(False) pylab.show()
def show_chains(rbm, state, dataset, num_particles=20, num_samples=20, show_every=10, display=True, figname='Gibbs chains', figtitle='Gibbs chains'): samples = gnp.zeros((num_particles, num_samples, state.v.shape[1])) state = state[:num_particles, :, :] for i in range(num_samples): samples[:, i, :] = rbm.vis_expectations(state.h) for j in range(show_every): state = rbm.step(state) npix = dataset.num_rows * dataset.num_cols rows = [vm.hjoin([samples[i, j, :npix].reshape((dataset.num_rows, dataset.num_cols)).as_numpy_array() for j in range(num_samples)], normalize=False) for i in range(num_particles)] grid = vm.vjoin(rows, normalize=False) if display: pylab.figure(figname) pylab.matshow(grid, cmap='gray', fignum=False) pylab.title(figtitle) pylab.gcf().canvas.draw() return grid
def plot_mandelbot(xmin=-2.25, xmax=0.75, xres=3000, ymin=-1.25, ymax=1.25, yres=2500, maxiter=200, horizon=2.0**40): z, n = mandelbrot_set(xmin, xmax, ymin, ymax, xres, yres, maxiter, horizon) # Plot the results... dig the fancy pylab skills! xaxis_res = int(xres / 20) yaxis_res = int(yres / 20) x_axis = np.linspace(xmin, xmax, num=xres) y_axis = np.linspace(ymin, ymax, num=yres) x_labels = [] y_labels = [] for i in range(0, len(x_axis), xaxis_res): x_labels.append(str(round(x_axis[i], 2))) for i in range(0, len(y_axis), yaxis_res): y_labels.append(str(round(y_axis[i], 2))) pylab.matshow(n, cmap=plt.cm.hot, interpolation='nearest') pylab.xticks(np.arange(0, xres, xaxis_res), x_labels) pylab.yticks(np.arange(0, yres, yaxis_res), y_labels) pylab.xticks(rotation=90) pylab.xlim(0, xres) pylab.ylim(yres, 0) pylab.xlabel('x') pylab.ylabel('y') ax = pylab.colorbar() ax.set_label('Iterations till divergence') pylab.draw()
def calcola(X, y): for train_index, test_index in kf.split(X, y): #separa le variabili per l'addestramento da quelle per il test X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] clf.fit(X_train, y_train) pred = clf.predict(X_test) score = accuracy_score(y_test, pred) MCC = matthews_corrcoef(y_test, pred) print("\n\nEtichette Corrette") print("TRAIN:", y_train, "\nTEST:", y_test) print("\nEtichette Predette") print("TEST:", pred) #0 Setosa, 1 Versicolor, 2 Virginica Etichette Predette cm = confusion_matrix(y_test, pred) pl.matshow(cm) pl.title('Matrice di confusione\n') pl.colorbar() pl.show() print(classification_report(y_test, pred)) print("Accuracy:", score) print("Matthew Coefficient:", MCC)
def gradient_grid_plot(env, model, obj_index): obj,data = model['obj,data'][obj_index] b = obj.basis kappa = data['kappa'] grid = np.zeros_like(kappa) #wght = lambda x: 1.0 / len(x) if len(x) else 0 wght = lambda x: b.cell_size[x]**2 / np.sum(b.cell_size[x]**2) for i,r in enumerate(b.ploc): n,e,s,w = b.nbrs3[i][2] dx = np.sum(kappa[w] * wght(w)) - np.sum(kappa[e] * wght(e)) dy = np.sum(kappa[s] * wght(s)) - np.sum(kappa[n] * wght(n)) dx*=-1 dy*=-1 #print dx, dy dr = np.sqrt(dx**2 + dy**2) grid[i] = dr grid = grid kw = default_kw(b.mapextent, vmin=np.amin(grid), vmax=np.amax(grid)) grid = b._to_grid(grid, b.subdivision) pl.matshow(grid, **kw) glscolorbar()
def HarmonicResponseViewer(bw,harmonicResponse,title="",mode="COS_SIN"): # # okay I should make the matrix full of zeros and then set the values # as I go through the harmonicResponse #First we do regular bar charts plot #pprint(harmonicResponse) data=[[a,b,c,d] for (a,b),(c,d) in harmonicResponse] for mval in range(bw+1): HarmonicBarChart(mval,data,mchoiceMinusOne=False) HarmonicBarChart(mval,data,showPrime=True,mchoiceMinusOne=False) #Then the matrix plots mat_cos=zeros((bw,bw)) mat_sin=mat_cos for (x,y),(c,s) in harmonicResponse: mat_cos[y][x]=c mat_sin[y][x]=s pylab.matshow(mat_cos) pylab.title(title+" cos") pylab.xlabel("n") pylab.ylabel("m") pylab.show() pylab.matshow(mat_sin) pylab.title(title+" sin") pylab.xlabel("n") pylab.ylabel("m") pylab.show()
def networkPerformance(RX,test_inputs,labels_test): from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix import pylab as pl expected = labels_test t1 = time.clock() predicted = RX.compute_predictions(test_inputs) t2 = time.clock() print 'Ca nous a pris ', t2-t1, ' secondes pour calculer les predictions sur ', test_inputs.shape[0],' points de test' err = 1.0 - np.mean(labels_test==predicted) print "L'erreur de test est de ", 100.0 * err,"%" np.save('erreurTest_cae_full',100.0 * err) print "Classification report for classifier %s:\n%s\n" % ( RX, classification_report(expected, predicted)) cm=confusion_matrix(expected, predicted) print "Confusion matrix:\n%s" % cm # Show confusion matrix in a separate window pl.matshow(cm) pl.title('Confusion matrix') pl.colorbar() pl.ylabel('True label') pl.xlabel('Predicted label') pl.show() return
def kappa_residual_grid_plot(env, model, base_model, obj_index, with_contours=False, only_contours=False, with_colorbar=True): obj0,data0 = base_model['obj,data'][obj_index] obj1,data1 = model['obj,data'][obj_index] kappa = data1['kappa'] - data0['kappa'] grid = obj1.basis._to_grid(kappa, obj1.basis.subdivision) R = obj1.basis.mapextent kw = {'extent': [-R,R,-R,R], 'interpolation': 'nearest', 'aspect': 'equal', 'origin': 'upper', 'cmap': cm.gist_stern, 'fignum': False} #'vmin': -1, #'vmax': 1} if not only_contours: pl.matshow(grid, **kw) if only_contours or with_contours: kw.update({'colors':'k', 'linewidths':1, 'cmap':None}) pl.contour(grid, **kw) kw.update({'colors':'k', 'linewidths':2, 'cmap':None}) pl.contour(grid, [0], **kw) if with_colorbar: glscolorbar() return
def main(): import pylab # Create the gaussian data Xin, Yin = pylab.mgrid[0:201, 0:201] data = gaussian(3, 100, 100, 20, 40)(Xin, Yin) + np.random.random(Xin.shape) pylab.matshow(data, cmap='gist_rainbow') params = fitgaussian(data) fit = gaussian(*params) pylab.contour(fit(*pylab.indices(data.shape)), cmap='copper') ax = pylab.gca() (height, x, y, width_x, width_y) = params pylab.text(0.95, 0.05, """ x : %.1f y : %.1f width_x : %.1f width_y : %.1f""" %(x, y, width_x, width_y), fontsize=16, horizontalalignment='right', verticalalignment='bottom', transform=ax.transAxes) pylab.show()
def train_model(trainset): word_vector = TfidfVectorizer(analyzer="word", ngram_range=(2,2), binary = False, max_features= 2000,min_df=1,decode_error="ignore") # print word_vector print "works fine" char_vector = TfidfVectorizer(ngram_range=(2,3), analyzer="char", binary = False, min_df = 1, max_features = 2000,decode_error= "ignore") vectorizer =FeatureUnion([ ("chars", char_vector),("words", word_vector) ]) corpus = [] classes = [] for item in trainset: corpus.append(item['text']) classes.append(item['label']) print "Training instances : ", 0.8*len(classes) print "Testing instances : ", 0.2*len(classes) matrix = vectorizer.fit_transform(corpus) print "feature count : ", len(vectorizer.get_feature_names()) print "training model" X = matrix.toarray() y = numpy.asarray(classes) model =LinearSVC() X_train, X_test, y_train, y_test= train_test_split(X,y,train_size=0.8,test_size=.2,random_state=0) y_pred = OneVsRestClassifier(model).fit(X_train, y_train).predict(X_test) #y_prob = OneVsRestClassifier(model).fit(X_train, y_train).decision_function(X_test) #print y_prob #con_matrix = [] #for row in range(len(y_prob)): # temp = [y_pred[row]] # for prob in y_prob[row]: # temp.append(prob) # con_matrix.append(temp) #for row in con_matrix: # output.write(str(row)+"\n") #print y_pred #print y_test res1=[i for i, j in enumerate(y_pred) if j == 'anonEdited'] res2=[i for i, j in enumerate(y_test) if j == 'anonEdited'] reset=[] for r in res1: if y_test[r] != "anonEdited": reset.append(y_test[r]) for r in res2: if y_pred[r] != "anonEdited": reset.append(y_pred[r]) output=open(sys.argv[2],"w") for suspect in reset: output.write(str(suspect)+"\n") cm = confusion_matrix(y_test, y_pred) print(cm) pl.matshow(cm) pl.title('Confusion matrix') pl.colorbar() pl.ylabel('True label') pl.xlabel('Predicted label') pl.show() print accuracy_score(y_pred,y_test)
def visualize(self): import pylab '''Generates visualizationss of the A and E matrices.''' # Construct a matrix that is upper-triangle flux and lower-triangle error fluxAndError = self.A.copy() for i in range(len(self.A)): fluxAndError[i, 0:i] = self.E[i, 0:i] # pylab.clf() pylab.matshow(fluxAndError, cmap=pylab.cm.gray) l = len(self.A) pylab.plot([0, l], [0, l]) pylab.xlim(0, l) pylab.ylim(0, 1) pylab.gray() pylab.xlabel("Flux matrix: A(i,j)") # pylab.ylabel("Error matrix: E(i,j)") # I'm abusing the 'title' attribute here just to get the x2label where I want it pylab.title("Error matrix: E(i,j)") print(self.dates) datelabels = self.mjd2date(self.dates) datelabels.reverse() pylab.yticks(arange(len(self.A), 0, -1), (datelabels)) # pylab.xticks(arange(len(self.A))+0.5,(datelabels), rotation='vertical') # pylab.yticks(arange(len(self.A)),(self.gooddates)) # pylab.xticks(arange(len(self.A)),(self.gooddates)) pylab.show()
def test_plot_dist_matrix(self): """ Can we create and possibly plot a dist_matrix? """ try: comm = create_comm_of_size(12) except InvalidCommSizeError: pass else: try: da = densedistarray.DistArray((10, 10), dist=('c', 'c'), comm=comm) except NullCommError: pass else: if False: if comm.Get_rank() == 0: import pylab pylab.ion() pylab.matshow(a) pylab.colorbar() pylab.draw() pylab.show() comm.Free()
def main(): #from pylab import * import pylab # Create the gaussian data Xin, Yin = pylab.mgrid[0:201, 0:201] data = gaussian(3, 100, 100, 20, 40)(Xin, Yin) + np.random.random( Xin.shape) pylab.matshow(data, cmap='gist_rainbow') params = fitgaussian(data) fit = gaussian(*params) pylab.contour(fit(*pylab.indices(data.shape)), cmap='copper') ax = pylab.gca() (height, x, y, width_x, width_y) = params pylab.text(0.95, 0.05, """ x : %.1f y : %.1f width_x : %.1f width_y : %.1f""" % (x, y, width_x, width_y), fontsize=16, horizontalalignment='right', verticalalignment='bottom', transform=ax.transAxes) pylab.show()
def showConn(self,N,conns): matrix = np.zeros((N,N)) for n in conns: matrix[int(n/N),np.remainder(n,N)]=1.0 plt.matshow(matrix) plt.show()
def visualize_row(g, nvis=196, nhid=20, title=''): ncols = np.sqrt(nvis).astype(int) title = 'vishid' vishid = g[nvis+nhid:].reshape((nvis, nhid)) imgs = [vishid[:, j].reshape((ncols, ncols)) for j in range(nhid)] pylab.matshow(vm.pack(imgs), cmap='gray') pylab.title(title)
def plot_mh_ckk(prefix): k49max=10;k51max=10 ckk = np.load('MMIXDISTR/'+prefix+'_cgrid.npy') plt.matshow(ckk) plt.colorbar() plt.xlabel(r'$k_{51}$') plt.ylabel(r'$k_{49}$') plt.savefig("PLOTS/"+prefix+'_ckk.png')
def showNetCDF(filename): """ matshows the netcdf in filename """ img=readNetCDF(filename,'intensity') pyl.matshow(img)
def plot_dist_matrix(name, mec): mec.execute('_dm = %s.get_dist_matrix()' % name, 0) _dm = mec.zip_pull('_dm', 0) import pylab pylab.ion() pylab.matshow(_dm) pylab.colorbar() pylab.show()
def show_gfx(world): if VISUAL: top=world.max() if top>50.0: cscheme=hot elif top>0.0: cscheme=temp else: cscheme=cold pylab.matshow(world, fignum=1, cmap=cscheme) pylab.draw()
def displayResult(keypoints, currentImage): pl.ion() pl.gray() pl.matshow(currentImage) for feature in keypoints: print feature pl.plot(feature[0], feature[1], 'bo') pl.show()
def plot_mat(mat, title_, xticks_, yticks_, label_x, label_y, xlabel_, ylabel_, min=None, max=None, type_plot="matshow", format_string="%.3f"): def reformat_labels(lab): print "label",lab print "len(lab)",len(lab) # if len(lab)>8: if len(lab)>10: # q = len(lab)/8 + 1 # q = int(mdp.numx.ceil(len(lab)/8.)) # q = int(mdp.numx.floor(len(lab)/8.)) # q = int(mdp.numx.ceil(len(lab)/10.)) q = int(mdp.numx.floor(len(lab)/10.)) # q = int(mdp.numx.ceil(len(lab)/6.)) print "q:",q print "returned:", str([lab[i] for i in range(len(lab)) if i%q==0]) return ([lab[i] for i in range(len(lab)) if i%q==0],q) else: return (lab, 1) if type_plot=="imshow": pl.figure() pl.imshow(mat, interpolation='nearest', vmin=min, vmax=max) else: pl.matshow(mat, vmin=min, vmax=max) pl.title(title_+'\n') pl.xlabel(xlabel_) pl.ylabel(ylabel_) if xticks_ is not None: pl.xticks = xticks_ if yticks_ is not None: pl.yticks = yticks_ a = matplotlib.pyplot.gca() locs, labels = pl.xticks() print "locs, labels",locs, labels ## format values on x and y, so that they can be plotted entirely # if label_x[0] is float: if is_float(label_x[0]): label_x = [format_string % x for x in label_x] if is_float(label_y[0]): label_y = [format_string % x for x in label_y] (label_x_r, qx) = reformat_labels(label_x) (label_y_r, qy) = reformat_labels(label_y) if type_plot=="matshow": # l_tmp = [-99999] # l_tmp.extend(label_x) # l_tmp = label_x # print "l_tmp", l_tmp # a.set_xticklabels(l_tmp, fontdict=None, minor=False) # set values on x ticks pl.xticks( mdp.numx.arange(0.,len(label_x),float(qx)), label_x_r ) # l_tmp = [-99999] # l_tmp.extend(label_y_r) # print "l_tmp", l_tmp # a.set_yticklabels(l_tmp, fontdict=None, minor=False) # set values on y ticks pl.yticks( mdp.numx.arange(0.,len(label_y),float(qy)), label_y_r ) else: a.set_xticklabels(label_x, fontdict=None, minor=False) # set values on x ticks a.set_yticklabels(label_y, fontdict=None, minor=False) # set values on y ticks # a.xaxis.set_tick() # a.xaxis.set_ticklabels() pl.colorbar()
def VisualizeConfusionMatrix(CM): import pylab as pl print(CM) pl.matshow(CM) pl.title('Confusion Matrix') pl.colorbar() pl.ylabel('True Label') pl.xlabel('Predicted Label') pl.show()
def rseed345_basis(info): basis = np.loadtxt("results/basis-RGBODGCN-r%s.txt" % info.rseed) pl.figure(4) pl.matshow(basis.dot(basis.T)) pl.colorbar() pl.title("Similarity matrix.") pl.savefig("results/matshow-RGBODGCN-r%s.pdf" % info.rseed) #exit(1) return basis
def draw_confusion_matrix(self, function, data_set): y_true, y_predict = self.calculate_entire_ds(function, data_set) cm = confusion_matrix(y_true, y_predict) pl.matshow(cm) pl.title('Confusion matrix') pl.colorbar() pl.ylabel('True label') pl.xlabel('Predicted label') pl.show()
def decompPCA(data=None,comp=None): img = data[:,2:].T size = np.sqrt(img.shape[0]) pca = PCA(n_components=20) imgNew = pca.fit_transform(img) pl.matshow(imgNew[:,comp-1].reshape(size,size)) pl.title('The '+str(comp)+' PC') pl.colorbar() return pca.explained_variance_ratio_
def plot_cor(mat, vmax=None, title=None): "Plot correlation matrix" if vmax is None: vmax = np.max(np.abs(diff)) pl.matshow(mat, vmin=-vmax, vmax=vmax, cmap=pl.cm.RdBu_r) pl.xticks(range(len(columns)), columns) pl.yticks(range(len(columns)), columns) if title: pl.title(title)
def show_OneDigit(digits, index=0): if index>=digits.images.shape[0]: print 'index of out of %d' % (images.shape[0]) return import pylab as pl print 'label =', digits.target[index] pl.gray() pl.matshow(digits.images[index]) pl.show()
def showRP(RP): pylab.matshow(- RP) ax = pylab.gca() bottom, top = ax.get_ylim() ax.set_ylim(top, bottom) pylab.axis('tight') pylab.gray() pylab.show()
def showRP(RP): pylab.matshow(-RP) ax = pylab.gca() bottom, top = ax.get_ylim() ax.set_ylim(top, bottom) pylab.axis('tight') pylab.gray() pylab.show()
def confusion_matrik(y_rocni, y_program): cm = confusion_matrix(y_rocni, y_program) print cm pl.matshow(cm) pl.title('Confusion matrix') pl.colorbar() pl.ylabel('True label') pl.xlabel('Predicted label') pl.show()
def forwardTest(): spikeTimes = spt = [26, 50, 84, 128, 199, 247, 355] P = setupSimData(spt = spikeTimes ) S = smc.forward(P.V, P) pylab.figure() pylab.plot(P.V.F) pylab.title('Simulated Fluorescence') cbar = numpy.zeros(P.V.T) nbar = numpy.zeros(P.V.T) for t in xrange(P.V.T): for i in xrange(P.V.Nparticles): weight = S.w_f[i,t] cbar[t] += weight * S.C[i,t] nbar[t] += weight * S.n[i,t] #cbar /= P.V.Nparticles #nbar /= P.V.Nparticles pylab.figure() pylab.hold(True) pylab.title('expected Ca vs arbitrary particles') pylab.plot(S.C[3,:], label='particle 3') pylab.plot(S.C[10,:], label='particle 10') pylab.plot(S.C[20,:], label='particle 20') pylab.plot(cbar, label='E[C]') pylab.plot(spikeTimes, 6+numpy.ones(len(spikeTimes)), 'k.', label='simulated spike times') pylab.legend() #print(nbar.shape) pylab.figure() pylab.hold(True) pylab.plot(nbar, label='expected spikes') pylab.plot(spikeTimes, 0.5*numpy.ones(len(spikeTimes)), 'k.', label='simulated spike times') pylab.legend() pylab.title('spike detection') #pylab.figure() pylab.matshow(S.w_f) pylab.title('min s.w_f %f , max s.w_f: %f'%(numpy.min(S.w_f), numpy.max(S.w_f))) pylab.figure() pylab.hold(True) pylab.plot(S.w_f[3,:], label='particle 3') pylab.plot(S.w_f[10,:], label='particle 10') pylab.plot(S.w_f[20,:], label='particle 20') pylab.legend() pylab.title('individual particle weights') pylab.show()
def curve_densities(_data, bins=40): bins_mult = bins / _data.max() density_matrix = S.zeros((bins + 1, _data.shape[1])) for row in _data: for j in range(len(row)): density_matrix[S.floor(row[j] * bins_mult), j] += 1.0 density_matrix[density_matrix == 0.0] = float("-inf") density_figure = pylab.figure() pylab.matshow(density_matrix[::-1])
def heatmap(self, N=None, standardize=True, log=False): if standardize: data_df = self.standardize_df(self.data_df, log=log) else: data_df = self.data_df if N is not None: plt.matshow(data_df[0:N]) else: plt.matshow(data_df) plt.colorbar()
def test_plot_dist_matrix(self): """Can we create and possibly plot a dist_matrix?""" la = da.LocalArray((10,10), dist=('c','c'), comm=self.comm) if self.comm.Get_rank() == 0: import pylab pylab.ion() pylab.matshow(la) pylab.colorbar() pylab.draw() pylab.show()
def get_crop_config_show(vid,fignum=1): '''given a video, display crop keyframe and return empty cropdict''' fr = vidtools.extract_keyframe(vid) pylab.close(fignum) pylab.matshow(fr,fignum=fignum) these_inds = re.split('[-_](\d)[-_]',os.path.basename(os.path.dirname(vid))) print >> sys.stderr, '\nZoom on antfarms and store crops, e.g.' for af,ind in zip(these_inds[1::2],these_inds[2::2]): print >> sys.stderr, "antfarm %s: cropsdict['%s'] = viz_vidtools.current_view_crop(%s,fr.shape)" % (af,ind,fignum) return {},fr
def visualize_components(self, title=None): """Visualize the learned components. Each of the images shows the Bernoulli parameters (probability of the pixel being 1) for one of the mixture components.""" pylab.figure('Mixture components') pylab.matshow(util.arrange(self.params.theta.reshape((-1, IMAGE_DIM, IMAGE_DIM))), fignum=False, cmap='gray') if title is None: title = 'Mixture components' pylab.title(title) pylab.draw()
def plotsolution(post): import pylab X = np.unique(post[0]) Y = np.unique(post[1]) Z = np.zeros((len(X), len(Y))) sparseZ = dict(zip(map(tuple, post[:2].T), post[2])) for x in range(len(X)): for y in range(len(Y)): if (X[x], Y[y]) in sparseZ.keys(): Z[x, y] = sparseZ[(X[x], Y[y])] pylab.matshow(Z)
def test_results(y, y_res, lbl, algo = ''): cm = confusion_matrix(y, y_res, labels=lbl) cm = cm / cm.astype(np.float).sum(axis=1) print classification_report(y, y_res, labels=lbl) # Show confusion matrix in a separate window pl.matshow(cm) pl.title('Confusion matrix') pl.colorbar() pl.ylabel('True label') pl.xlabel('Predicted label') pl.savefig('/home/rolf/Desktop/Assignment 6/plots/matching/%s.pdf' % algo)