예제 #1
0
 def _saveOneDExtractedData(self, result):
         """ Generic function to save 1D spectrum data"""
         stamps=result[0]
         dat=result[1]
         nbpts=dat[0].shape[0]
         # Preparation of filenames
         i=self.filename.rfind('.')
         racine=self.filename[:i]
         # Analysis of data
         OneD_data=[]
         for i in range(len(dat)):
                 if len(dat[i].shape)==2:
                         OneD_data.append(i)
         # Treatment of spectrum (1D) data
         if self.__verbose__ and len(OneD_data)==0:
                 print(_BLUE+"\t. No Spectrum (1D) data to save"+_RESET)
         if self.__verbose__ and len(OneD_data)>0:
                 print(_BLUE+"\t. Spectrum (1D) data :"+_RESET)
         for i in OneD_data:
                 if stamps[i][1]==None:
                         stamp=stamps[i][0]
                 else:
                         stamp=stamps[i][1]
                 filename=racine+'_'+stamp.replace( '/', '_')+'.mat'
                 try:
                         P.savetxt(filename, N.array(dat[i]))
                         if self.__verbose__:
                                 print("\t\t-> %s Spectrum (1D) data saved in %s"%(stamp, filename))
                 except:
                         print(_RED+'Unable to save Spectrum (1D) data '+stamp)
                         raise
예제 #2
0
	def PercusYevick(self,dr=0.0005,plot=True,filename="g_of_r.txt", npoints =1024*5):
		# number density
		rho=6./pi*self.eta
		# getting the direct correlation function c(r) from the analytic Percus-Yevick solution

		# space discretization dr

		r=pl.arange(1,npoints+1,1 )*dr
		# reciprocal space discretization (highest available frequency)
		dk=1/r[-1]
		k=pl.arange(1,npoints+1,1 )*dk
		# direct correlation function c(r)
		c_direct=self.cc(r)
		# getting the Fourier transform
		ft_c_direct=spherical_FT(c_direct, k,r,dr)
		# using the Ornstein-Zernike equation, getting the structure factor
		ft_h=ft_c_direct/(1.-rho*ft_c_direct)
		# inverse Fourier transform
		h=inverse_spherical_FT(ft_h, k,r,dk)
		# print h
		# # radial distribution function
		gg=h+1.0
		# clean the r<1 region
		g=pl.zeros(len(gg))
		g[r>=1]=gg[r>=1]
		# save the cleaned version
		# print (g)
		pl.savetxt(filename, column_stack((r,g)))
		# plots
		if plot:
			pl.plot(r,g, label='Percus Yevick Equation', color='k', linewidth=2, alpha=0.8)
			pl.ylabel("$g(r)$", fontsize=16)
			pl.xlabel("$r / \sigma$", fontsize=16)
		return r,g
 def save(self):
     if self.running == False:
         filename = QtGui.QFileDialog.getSaveFileName(self, "Save file", self.file_path, "*.txt")
         self.file_path = dirname(str(filename))
         self.buff.extend([0 for i in range(len(self.v_step) - len(self.buff))])
         with open(str(filename),'wb') as f:
             pl.savetxt(f, pl.array([self.v_step, self.buff]).transpose(), fmt="%10.5f", delimiter=",")
def meanOfMeans():
    initialExperiment = 25
    finalExperiment = 35
    suffix = "piConc"
    experimentFolder = "170"

    rootDir = os.path.join("/", "home", "rafaelbeirigo", "ql", "experiments", experimentFolder)

    means = []
    meanFileName = "W_avg_list_mean.out"
    for experiment in range(initialExperiment, finalExperiment + 1):
        meanFilePath = os.path.join(rootDir, str(experiment), "PRQL", meanFileName)
        # open experiment the file that contains the "individual" mean
        # into a list
        mean = pl.loadtxt(meanFilePath)

        # this must be done because the function meanError.meanMultiDim()
        # needs each item in the mean list to be a list itself.
        mean = [[item] for item in mean]

        # append it to the list of means
        means.append(mean)

    # obtain the global mean considering the list of individual means
    globalMean = meanError.meanMultiDim(means)
    ## print globalMean

    # means2spreadsheet([globalMean])

    pl.savetxt(os.path.join(rootDir, "W_avg_list_mean." + suffix + ".out"), globalMean, fmt="%1.6f")

    return globalMean
예제 #5
0
def meanOfMeans():
    initialExperiment = 25
    finalExperiment   = 35
    suffix            = 'piConc'
    experimentFolder  = '170'

    rootDir = os.path.join('/', 'home', 'rafaelbeirigo', 'ql', 'experiments',
                           experimentFolder)

    means = []
    meanFileName = 'W_avg_list_mean.out'
    for experiment in range(initialExperiment, finalExperiment + 1):
        meanFilePath = os.path.join(rootDir, str(experiment), 'PRQL', meanFileName)
        # open experiment the file that contains the "individual" mean
        # into a list
        mean = pl.loadtxt(meanFilePath)

        # this must be done because the function meanError.meanMultiDim()
        # needs each item in the mean list to be a list itself.
        mean = [[item] for item in mean]

        # append it to the list of means
        means.append(mean)

    # obtain the global mean considering the list of individual means
    globalMean = meanError.meanMultiDim(means)
    ## print globalMean

    #means2spreadsheet([globalMean])
    
    pl.savetxt(os.path.join(rootDir, 'W_avg_list_mean.' + suffix + '.out'),
               globalMean, fmt='%1.6f')

    return globalMean
예제 #6
0
 def saveBackground_Callback(self):
     filename = QtGui.QFileDialog.getSaveFileName(None,'Select background file',self.lastBackgroundDir)
     filename = str(filename)
     if filename:
         # save background data
         pylab.savetxt(filename,self.backgroundData)
         self.backgroundPath = filename
         self.lastBackgroundDir =  os.path.split(filename)[0]
예제 #7
0
 def save_to_txt(self, file_name, array=None, flatten=True):
     if array is None:
         array = self.counts
     if flatten:
         pl.savetxt(file_name, np.array(array).flatten().transpose())
     else:
         pl.savetxt(file_name, array)
     print("\nPower as volts saved in file.")
 def save(self):
     if self.running == False:
         filename = QtGui.QFileDialog.getSaveFileName(
             self, "Save file", self.file_path, "*.txt")
         self.file_path = dirname(filename)
         py.savetxt(filename, [self.v_step, self.buff],
                    fmt="%10.5f",
                    delimiter=",")
예제 #9
0
 def save(self):
     if self.running == False:
         filename = QtGui.QFileDialog.getSaveFileName(
             self, "Save file", self.file_path, "*.txt")
         self.file_path = dirname(str(filename))
         pl.savetxt(str(filename),
                    pl.array([self.t_step, self.buff0,
                              self.buff1]).transpose(),
                    fmt="%10.5f",
                    delimiter=",")
예제 #10
0
def normalize_all(path_input, path_output):

    for file in path_input.iterdir():
        if 'MAT_RAW_realisation' not in file.stem:
            continue
        mat = loadtxt(file)
        norm = normalize_dense(mat)
        savetxt(path_output/file.name, norm)
        print(file)

    return None
예제 #11
0
    def save_to_txt(self, file_name, array=None, flatten=True):
        if array is None:
            array = self.detector_readout_0

        if not (file_name.endswith('.txt')):
            file_name = file_name + '.txt'

        if flatten:
            pl.savetxt(file_name, np.array(array).flatten().transpose())
        else:
            pl.savetxt(file_name, array)
        print("\nPower as volts saved in file.")
예제 #12
0
 def exportData(self):
     if bool(self.unit):
         self.dir=QFileDialog.getExistingDirectory(self,'Select a directory to save data')
         if self.dir!='':
             for pv in self.unit.keys():
                 fheader='Data saved on %s\n'%(time.asctime())
                 fheader+='col_names=["time[secs]","pv[%s]"]'%self.unit[pv]
                 fname=pv+'_%s.txt'%(time.strftime('%Y%m%d'))
                 fname=os.path.join(self.dir,fname.replace(':','_'))
                 pl.savetxt(fname,self.datafull[pv],header=fheader,comments='#')
     else:
         QMessageBox.warning(self,'Data Error','No data fetched to save',QMessageBox.Ok)
예제 #13
0
 def save_rsj_params(self):
     mat = pl.vstack((pl.array(self.idx), pl.transpose(self.c),\
       self.icarr, self.rnarr, self.ioarr, self.voarr,\
       self.ic_err_arr, self.rn_err_arr, self.io_err_arr, self.vo_err_arr))
     
     header_c = ''
     for n in range(self.cdim):
         header_c = header_c + 'Control%d '%(n+1)
     header_ = 'Index ' + header_c + \
       'Ic Rn Io Vo Ic_err Rn_err Io_err Vo_err'
     pl.savetxt(self.get_fullpath(self.fn_rsjparams), pl.transpose(mat),\
       header=header_)
예제 #14
0
 def save_Callback(self):
     """
     Save acquired data
     """
     filepath = os.path.join(self.lastSaveDir, self.lastSaveFile)
     filename = QtGui.QFileDialog.getSaveFileName(None, 'Select log file',
                                                  filepath)
     filename = str(filename)
     if filename:
         data = pylab.concatenate((self.t, self.data), axis=1)
         pylab.savetxt(filename, data)
         self.lastSaveDir = os.path.split(filename)[0]
         self.lastSaveFile = os.path.split(filename)[1]
예제 #15
0
def detide(gaugeno):

    fname = '%s.txt' % gaugeno
    if gaugeno == 21401:
        t1fit = -12.*3600.
        t2fit = 36.*3600.
        t1out = 0.
        t2out = 12.*3600.
        degree = 15
    else:
        t1fit = -12.*3600.
        t2fit = 36.*3600.
        t1out = 0.
        t2out = 12.*3600.
        degree = 15

    fname_notide = os.path.splitext(fname)[0] + '_notide.txt'
    t,t_sec,eta = dart.plotdart(fname, t_quake)

    c,t_notide,eta_notide = dart.fit_tide_poly(t_sec,eta,degree,\
                               t1fit,t2fit, t1out,t2out)


    # fix bad data value:
    if gaugeno==21418:
        print "Bad data: ",eta_notide[121:124]
        eta_notide[122] = -0.075
        print "Fix data: ",eta_notide[121:124]
        print "Bad data: ",eta_notide[152:155]
        eta_notide[153] = -0.07
        print "Fix data: ",eta_notide[152:155]

    d = np.vstack([t_notide,eta_notide]).T
    pylab.savetxt(fname_notide,d)
    print "Created file ",fname_notide

    dart.plot_post_quake(t_notide,eta_notide,gaugeno)


    pylab.figure(70)
    pylab.subplot(211)
    pylab.title('DART %s' % gaugeno)

    if 0:
        pylab.figure(75)
        pylab.plot(t_notide,eta_notide,'k')
        pylab.xlim(0,3.*3600)
        pylab.ylim(-1,2)

    return t_notide, eta_notide
예제 #16
0
파일: MyDialogs.py 프로젝트: apryet/ipht3d
 def OnExport(self,evt):
     arr = self.lignes[0].points[:,:1]
     for i in range(len(self.lignes)):
         arr=c_[arr,self.lignes[i].points[:,1:2]]
     pPath,pName = self.gui.model.getProject();
     fname=pPath+sep+pName+self.title+'.txt'
     dlg = wx.FileDialog(self.gui,"Sauvegarder","",fname,"*.txt",wx.SAVE)
     if dlg.ShowModal() == wx.ID_OK:            
         fname = dlg.GetDirectory()+sep+dlg.GetFilename()
         f1 = open(fname,'w')
         f1.write(self.Xtitle)
         for n in self.legd: f1.write(' '+n)
         f1.write('\n')
         savetxt(f1,arr)
         f1.close()
예제 #17
0
 def OnExport(self,evt):
     arr = self.lignes[0].points[:,:1]
     for i in range(len(self.lignes)):
         arr=c_[arr,self.lignes[i].points[:,1:2]]
     c=self.gui.core
     fname = c.fileDir+os.sep+c.fileName+self.title+'.txt'
     dlg = wx.FileDialog(self.gui,"Save","",fname,"*.txt",wx.SAVE)
     if dlg.ShowModal() == wx.ID_OK:            
         fname = dlg.GetDirectory()+os.sep+dlg.GetFilename()
         f1 = open(fname,'w')
         f1.write(self.Xtitle)
         for n in self.legd: f1.write(' '+n)
         f1.write('\n')
         savetxt(f1,arr)
         f1.close()
예제 #18
0
def detide(gaugeno):

    fname = '%s.txt' % gaugeno
    if gaugeno == 21401:
        t1fit = -12. * 3600.
        t2fit = 36. * 3600.
        t1out = 0.
        t2out = 12. * 3600.
        degree = 15
    else:
        t1fit = -12. * 3600.
        t2fit = 36. * 3600.
        t1out = 0.
        t2out = 12. * 3600.
        degree = 15

    fname_notide = os.path.splitext(fname)[0] + '_notide.txt'
    t, t_sec, eta = dart.plotdart(fname, t_quake)

    c,t_notide,eta_notide = dart.fit_tide_poly(t_sec,eta,degree,\
                               t1fit,t2fit, t1out,t2out)

    # fix bad data value:
    if gaugeno == 21418:
        print "Bad data: ", eta_notide[121:124]
        eta_notide[122] = -0.075
        print "Fix data: ", eta_notide[121:124]
        print "Bad data: ", eta_notide[152:155]
        eta_notide[153] = -0.07
        print "Fix data: ", eta_notide[152:155]

    d = np.vstack([t_notide, eta_notide]).T
    pylab.savetxt(fname_notide, d)
    print "Created file ", fname_notide

    dart.plot_post_quake(t_notide, eta_notide, gaugeno)

    pylab.figure(70)
    pylab.subplot(211)
    pylab.title('DART %s' % gaugeno)

    if 0:
        pylab.figure(75)
        pylab.plot(t_notide, eta_notide, 'k')
        pylab.xlim(0, 3. * 3600)
        pylab.ylim(-1, 2)

    return t_notide, eta_notide
예제 #19
0
def img_binaryzation(img_filename):
    import os
    import numpy as np
    from PIL import Image
    import pylab

    # 修改图片的路径
    img_filename = os.path.join(os.path.dirname(os.path.dirname(__file__)),
                                img_filename)

    # 调整图片的大小为 32*32px
    img = Image.open(img_filename)
    out = img.resize((32, 32), Image.ANTIALIAS)
    out.save(img_filename)

    # RGB 转为二值化图
    img = Image.open(img_filename)
    lim = img.convert('1')
    lim.save(img_filename)

    img = Image.open(img_filename)

    # 将图像转化为数组并将像素转换到0-1之间
    img_ndarray = np.asarray(img, dtype='float64') / 256

    # 将图像的矩阵形式转化成一位数组保存到 data 中
    data = np.ndarray.flatten(img_ndarray)

    # 将一维数组转化成矩阵
    a_matrix = np.array(data).reshape(32, 32)

    # 将矩阵保存到 txt 文件中转化为二进制0,1存储
    img_filename_list = img_filename.split('.')  # type:list
    img_filename_list[-1] = 'jpg'
    txt_filename = '.'.join(img_filename_list)
    pylab.savetxt(txt_filename, a_matrix, fmt="%.0f", delimiter='')

    # 把 .txt 文件中的0和1调换
    with open(txt_filename, 'r') as fr:
        data = fr.read()
        data = data.replace('1', '2')
        data = data.replace('0', '1')
        data = data.replace('2', '0')

        with open(txt_filename, 'w') as fw:
            fw.write(data)

    return txt_filename
예제 #20
0
 def OnExport(self, evt):
     arr = self.lignes[0].points[:, :1]
     for i in range(len(self.lignes)):
         arr = c_[arr, self.lignes[i].points[:, 1:2]]
     pPath, pName = self.gui.model.getProject()
     fname = pPath + sep + pName + self.title + '.txt'
     dlg = wx.FileDialog(self.gui, "Sauvegarder", "", fname, "*.txt",
                         wx.SAVE)
     if dlg.ShowModal() == wx.ID_OK:
         fname = dlg.GetDirectory() + sep + dlg.GetFilename()
         f1 = open(fname, 'w')
         f1.write(self.Xtitle)
         for n in self.legd:
             f1.write(' ' + n)
         f1.write('\n')
         savetxt(f1, arr)
         f1.close()
예제 #21
0
    def save_ah_params(self, n):
        n += 1
        mat = pl.vstack((pl.array(self.idx)[:n], pl.transpose(self.c[:n]),\
          self.icarr[:n], self.rnarr[:n], self.ioarr[:n], self.voarr[:n],\
          self.tnarr[:n],\
          self.ic_err_arr[:n], self.rn_err_arr[:n], self.io_err_arr[:n],\
          self.vo_err_arr[:n], self.tn_err_arr[:n]))
        n -= 1
        
        header_c = ''
        for m in range(self.cdim):
            header_c = header_c + 'Control%d '%(m+1)
        header_ = 'Index ' + header_c + \
          'Ic Rn Io Vo Tn Ic_err Rn_err Io_err Vo_err Tn_err'

        pl.savetxt(self.get_fullpath(self.fn_ahparams), pl.transpose(mat),\
          header=header_)
예제 #22
0
    def saveResults(self,filename=None):
        #save the results to a file        
        H_theory=self.H_theory(self.H.getfreqs(),[self.n[:,1].real,self.n[:,1].imag],self.l_opt)        
        #built the variable that should be saved:        
        savetofile=py.column_stack((
        self.H.getfreqs(), #frequencies
        self.n[:,1].real,-self.n[:,1].imag, #the real and imaginary part of n
        self.n[:,2].real,-self.n[:,2].imag, #the real and imaginary part of the smoothed n
        self.H.getFReal(),self.H.getFImag(),#H_measured
        self.H.getFRealUnc(),self.H.getFImagUnc(),#uncertainties
        self.H.getFAbs(),self.H.getFPh(),#absH,ph H measured    
        H_theory.real,H_theory.imag, #theoretic H
        ))

        headerstr=('freq, ' 
        'ref_ind_real, ref_ind_imag, '
        'ref_ind_sreal, ref_ind_simag, '
        'H_measured_real, H_measured_imag, '
        'Hunc_real, Hunc_imag, '
        'abs(H_measured), angle(H_measured), '
        'H_theory_real, H_theory_imag')
        if filename==None:
            fname=self.getFilenameSuggestion()
        else:
            fname=filename+"_"
        fname+='analyzed_' + 'D=' + str(self.l_opt/1e-6) +'.txt'
        py.savetxt(fname,savetofile,delimiter=',',header=headerstr)
        
        # Save in a separate file the results of the simplified calculation of n, k, alpha end epsilon along with their unc
        headerstr=('freq, ' 
        'ref_ind_real, ref_ind_imag, '
        'u(ref_ind_real), u(ref_ind_imag), '
        'std(l)_n, std(Esam)_n, std(Eref)_n, f(Theta)_n, f(k<<<)_n, f(FP)_n, f(n0)_n, '
        'std(l)_k, std(Esam)_k, std(Eref)_k, f(Theta)_k, f(k<<<)_k, f(FP)_k, f(n0)_k, '
        'Epsilon_1, Epsilon_2, '
        'u(Epsilon_1), u(Epsilon_2), '
        'alpha, u(alpha), alpha_max, ')
        
        if filename==None:
            fname=self.getFilenameSuggestion()
        else:
            fname=filename+"_"
            
        fname+='SimplifiedAnalysis_' + 'D=' + str(self.l_opt/1e-6) +'.txt'
        py.savetxt(fname,self.n_with_unc,delimiter=',',header=headerstr)
예제 #23
0
    def __init__(self, filename, start_index=0, export=None, autoexport=False):
        """Object used to read SPE files, plot them and export them to a text file
        
        Args:
            filename (str): path to the SPE file
            start_index (int, optional): index of the frame you want to export or the plot to start.
            export (str, optional): path to the exported text file. If None, will plot the spectra, if not None, will export.
            autoexport (bool, optional): if True, will export with an automated 'filename + frame number' named text file.
        """
        self.data = self.open_spe(filename)

        self.curr_pos = start_index

        if export is None:
            self.init_plot(start_index)
        else:
            save_array = pl.array([self.data.wavelength, self.data.data[start_index][0]]).transpose()
            pl.savetxt(export, save_array)
예제 #24
0
 def _saveSingleTwoDExtractedData(self, dir, stamp, num, mat):
         """ Generic function to save a single 2D image data
              Input :    dir : directory where image have to be stored
                         stamp : sensor attached to the image
                         num : point (image) number
                         mat : the matrix of the image itself
         """
         # Preparation of filenames
         i=self.filename.rfind('.')
         racine=self.filename[self.filename.rfind('/')+1:self.filename.rfind('.')]
         filename=dir+racine+'_'+stamp.replace('/', '_')
         try:
             sys.stdout.write('save  image %d    \r'%(num))
             sys.stdout.flush()
             P.savetxt(filename+'_'+str(num)+'.imag', mat)
             sys.stdout.write('               \r')
             sys.stdout.flush()
         except:
                 print(_RED+'Unable to save image (2D) data '+stamp)
                 raise
예제 #25
0
파일: problem.py 프로젝트: vahidzrad/git_hf
    def post_processing(self):
        """
        Post-processing at the end of each time iteration
        """
        pp = self.parameters.post_processing

        # Plot or save fields
        if pp.plot_u and self.comm_size == 1:
            plot(self.u, mode="displacement")

        if pp.plot_alpha and self.comm_size == 1:
            plot(self.alpha, mode="color")

        if pp.save_u:
            #self.file_u.write(self.u, self.t)
            self.file_u << (self.u, self.t)

        if pp.save_alpha:
            #self.file_alpha.write(self.alpha, self.t)
            self.file_alpha << (self.alpha, self.t)

        if pp.save_V:
            self.file_V.write(self.V, self.t)

        if pp.save_Beta:
            self.file_Beta.write(self.Beta, self.t)

        # Calculate energies
        if pp.save_energies:
            self.elastic_energy_value = assemble(self.elastic_energy)
            self.dissipated_energy_value = assemble(self.dissipated_energy)
            if self.comm_rank == 0:
                self.energies.append([
                    self.t, self.elastic_energy_value,
                    self.dissipated_energy_value
                ])
                pl.savetxt(self.save_dir + pp.file_energies,
                           pl.array(self.energies), "%.5e")

        # User post-processing
        self.set_user_post_processing()
예제 #26
0
 def proc_shot(self):
     shot.sweeps_average = 10
     initial_sweep = 0
     last_sweep = len(shot.points)
     initial_time = 58
     last_time = 95
     initial_sweep = shot.time2sweep(initial_time)
     last_sweep = shot.time2sweep(last_time)
     #'all_shot' set to 1 avoids printing unnecessary information.
     shot.reference_gd(all_shot=1)
     print("time for reading files: {0} s".format(time.time() - time0))
     time1 = time.time()
     for sweep in p.arange(initial_sweep, last_sweep, sweeps_average):
         # print sweep
         shot.plasma_gd(sweep, sweeps_average, all_shot=1)
         shot.overlap_gd()
         shot.init_gd()
         # choose poly fit order
         shot.profile_poly(order=7, all_shot=1)
         # save profile in file with time in microsseconds
         p.savetxt(
             path.join(prof_folder,
                       "%06d.dat" % (shot.sweep2time(sweep) * 1e3)), shot.r)
     # separate density in other file, to save space.
     p.savetxt(path.join(prof_folder, "ne.dat"), shot.ne_poly)
     # save info file with parameters used to evaluate profiles.
     p.savetxt(path.join(prof_folder, "prof_info.dat"),
               [sweeps_average, initial_time, last_time])
     print("time for Processing: {0} s".format(time.time() - time1))
예제 #27
0
 def proc_shot(self):
     shot.sweeps_average = 10
     initial_sweep = 0
     last_sweep = len(shot.points)
     initial_time = 58
     last_time = 95
     initial_sweep = shot.time2sweep(initial_time)
     last_sweep = shot.time2sweep(last_time)
     #'all_shot' set to 1 avoids printing unnecessary information.
     shot.reference_gd(all_shot=1)
     print("time for reading files: {0} s".format(time.time() - time0))
     time1 = time.time()
     for sweep in p.arange(initial_sweep, last_sweep, sweeps_average):
         # print sweep
         shot.plasma_gd(sweep, sweeps_average, all_shot=1)
         shot.overlap_gd()
         shot.init_gd()
         # choose poly fit order
         shot.profile_poly(order=7, all_shot=1)
         # save profile in file with time in microsseconds
         p.savetxt(path.join(prof_folder, "%06d.dat" % (shot.sweep2time(sweep) * 1e3)), shot.r)
     # separate density in other file, to save space.
     p.savetxt(path.join(prof_folder, "ne.dat"), shot.ne_poly)
     # save info file with parameters used to evaluate profiles.
     p.savetxt(path.join(prof_folder, "prof_info.dat"), [sweeps_average, initial_time, last_time])
     print("time for Processing: {0} s".format(time.time() - time1))
def PercusYevickHS(phi,plot=True,filename="g_of_r.txt",x=pl.arange(0,5,0.05)):
    # number density
    rho=6./pi*phi
    # getting the direct correlation function c(r) from the analytic Percus-Yevick solution
    # vectorizing the function
    c=pl.vectorize(cc)
    # space discretization
    dr=0.005
    r=pl.arange(1,1024*2+1,1 )*dr
    # reciprocal space discretization (highest available frequency)
    dk=1/r[-1]
    k=pl.arange(1,1024*2+1,1 )*dk
    # direct correlation function c(r)
    c_direct=c(r,phi)
    # getting the Fourier transform
    ft_c_direct=spherical_FT(c_direct, k,r,dr)
    # using the Ornstein-Zernike equation, getting the structure factor
    ft_h=ft_c_direct/(1.-rho*ft_c_direct)
    # inverse Fourier transform
    h=inverse_spherical_FT(ft_h, k,r,dk)
    # print h
    # # radial distribution function
    gg=h+1
    # clean the r<1 region
    g=pl.zeros(len(gg))
    g[r>=1]=gg[r>=1]
    # save the cleaned version
    pl.savetxt(filename, zip(r,g))
    from scipy.interpolate import InterpolatedUnivariateSpline
    spl=InterpolatedUnivariateSpline(r, g)
    # plots
    if plot:
        pl.plot(r,abs((g-1)*r))
        # pl.plot(r,g-1)
        pl.ylabel("|(g(r)-1)r|")
        pl.xlabel("r")


    # return abs((spl(x)-1)*x)
    return spl(x)
예제 #29
0
 def _saveFileXY(self, savePathStr, x, y):
     try:
         if self.times:
             pl.savetxt(savePathStr, pl.array([x, y, self.times]).transpose(), fmt="%10.5f", delimiter=",")
         else:
             pl.savetxt(savePathStr, pl.array([x, y]).transpose(), fmt="%10.5f", delimiter=",")
         pl.savetxt(savePathStr, pl.array([x, y]).transpose(), fmt="%10.5f", delimiter=",")
     except IOError:
         self.updateStatusFileField('The file could not be saved. Is the path and name valid?')
예제 #30
0
    def store_state(self, result_dir, index=None):
        """ Stores all generated plots in the given directory *result_dir* """
        if self.store:
            node_dir = os.path.join(result_dir, self.__class__.__name__)
            if not index == None:
                node_dir += "_%d" % int(index)

            create_directory(node_dir)

            if (self.ts_plot != None):
                name = 'timeseries_sp%s.pdf' % self.current_split
                self.ts_plot.savefig(os.path.join(node_dir, name),
                                     bbox_inches="tight")

            if (self.histo_plot != None):
                name = 'histo_sp%s.pdf' % self.current_split
                self.histo_plot.savefig(os.path.join(node_dir, name),
                                        bbox_inches="tight")

            for label in self.labeled_corr_matrix.keys():
                name = 'Feature_Correlation_%s_sp%s.txt' % (label,
                                                            self.current_split)
                pylab.savetxt(os.path.join(node_dir, name),
                              self.labeled_corr_matrix[label],
                              fmt='%s',
                              delimiter='  ')
                name = 'Feature_Development_%s_sp%s.pdf' % (label,
                                                            self.current_split)
                self.feature_development_plot[label].savefig(
                    os.path.join(node_dir, name))

            for label in self.corr_plot.keys():
                name = 'Feature_Correlation_%s_sp%s.pdf' % (label,
                                                            self.current_split)
                self.corr_plot[label].savefig(os.path.join(node_dir, name))

            pylab.close("all")
예제 #31
0
    def store_state(self, result_dir, index=None):
        """ Stores all generated plots in the given directory *result_dir* """
        if self.store:
            node_dir = os.path.join(result_dir, self.__class__.__name__)
            if not index == None:
                node_dir += "_%d" % int(index)

            create_directory(node_dir)
            
            if (self.ts_plot != None):
                name = 'timeseries_sp%s.pdf' % self.current_split
                self.ts_plot.savefig(os.path.join(node_dir, name),
                                     bbox_inches="tight")
            
            if (self.histo_plot != None):
                name = 'histo_sp%s.pdf' % self.current_split
                self.histo_plot.savefig(os.path.join(node_dir, name),
                                        bbox_inches="tight")
            
            for label in self.labeled_corr_matrix.keys():
                name = 'Feature_Correlation_%s_sp%s.txt' % (label,
                                                           self.current_split)
                pylab.savetxt(os.path.join(node_dir, name),
                              self.labeled_corr_matrix[label], fmt='%s',
                              delimiter='  ')
                name = 'Feature_Development_%s_sp%s.pdf' % (label,
                                                           self.current_split)
                self.feature_development_plot[label].savefig(
                    os.path.join(node_dir, name))
            
            for label in self.corr_plot.keys():
                name = 'Feature_Correlation_%s_sp%s.pdf' % (label,
                                                            self.current_split)
                self.corr_plot[label].savefig(os.path.join(node_dir, name))
            
            pylab.close("all")
예제 #32
0
 def _saveTwoDExtractedData(self, result):
         """ Generic function to save 2D image data"""
         stamps=result[0]
         dat=result[1]
         nbpts=dat[0].shape[0]
         # Preparation of filenames
         i=self.filename.rfind('.')
         racine=self.filename[:i]
         # Analysis of data
         TwoD_data=[]
         for i in range(len(dat)):
                 if len(dat[i].shape)==3:
                         TwoD_data.append(i)
         # Treatment of image (2D) data
         if self.__verbose__ and len(TwoD_data)==0:
                 print(_BLUE+"\t. No Image (2D) data to save"+_RESET)
         for i in TwoD_data:
                 if self.__verbose__:
                         print(_BLUE+"\t. Images (2D) data :"+_RESET)
                 if stamps[i][1]==None:
                         stamp=stamps[i][0]
                 else:
                         stamp=stamps[i][1]
                 filename=racine+'_'+stamp.replace('/', '_')
                 try:
                         for num in range(nbpts):
                                 sys.stdout.write('image %d/%d    \r'%(num, nbpts))
                                 sys.stdout.flush()
                                 P.savetxt(filename+'.'+str(num)+'.imag', dat[i][num, :,:])
                         sys.stdout.write('               \r')
                         sys.stdout.flush()
                         if self.__verbose__:
                                 print("\t\t-> %s Images (2D) data saved in %s from 0 to %d"%(stamps, filename+""".##.imag""", nbpts-1))
                 except:
                         print(_RED+'Unable to save image (2D) data '+stamps)
                         raise
    outside_temperature = temperatures[i]
    
    # Leak heat from the house (if it is indeed colder outside than inside) 
    # Also allow sunlight to shine in and heat the house
    house.exchange_heat_with_outside(outside_temperature, np.mean(solar_heat))
        
    # Calculate the demand
    current_heat_demand = house.get_heat_demand()
    
    if current_heat_demand > 0.0:
        heat_demand_profile.append(current_heat_demand)
    else:
        heat_demand_profile.append(0.0)

    i += 1
    
# scale the demand_profile
demand_profile = np.array(heat_demand_profile)
          
mini = 0 * 4 * 24
maxi = int(7 * 4 * 24)
plt.plot(demand_profile[mini:maxi])
plt.xlabel('time (15 minutes)')
plt.ylabel('Heat demand (kW)')
plt.show()

print "../output_data/hp_space_heating_" + str(floor_area) + "m2"
plt.savetxt("../output_data/space_heating_demand_" + str(floor_area) + "m2.csv", demand_profile, fmt='%.3f', delimiter=',') 

예제 #34
0
os.path.walk(os.getcwd(), LoadGenomeMeanSize, GrandMeansData)
GrandMeansData = sorted(GrandMeansData, key=lambda data_sort: data_sort[2])

#  ---- loading and cheking data ---
TheMeans = p.zeros((len(GrandMeansData), 3))
i = 0
for item in GrandMeansData:
    TheMeans[i, 0] = item[0]
    TheMeans[i, 1] = item[1]
    TheMeans[i, 2] = item[2]
    i += 1

print TheMeans
TheMeans = TheMeans[~p.isnan(TheMeans).any(1)]  # removing NaN from the output

p.savetxt("GenomeSizes.dat", TheMeans, fmt='%1.6f')
p.figure(10, figsize=(10, 6))
#p.get_current_fig_manager().window.wm_geometry("1000x600+200+110")
p.plot(TheMeans[:, 2], TheMeans[:, 0], 'ko-')
#p.plot(TheMeans[:,2],TheMeans[:,0]-TheMeans[:,1], 'k--' )
#p.plot(TheMeans[:,2],TheMeans[:,0]+TheMeans[:,1], 'k--' )
#p.errorbar(TheMeans[:,2],TheMeans[:,0], yerr=TheMeans[:,1], fmt='o-', ecolor='k')
p.fill_between(TheMeans[:, 2],
               TheMeans[:, 0] + TheMeans[:, 1],
               TheMeans[:, 0] - TheMeans[:, 1],
               color=(0.75, 0.75, 0.75, 0.75))
#p.axis([0, 0.5, 2, 20])
p.xlabel('turbulence level ($ T $)', fontsize=16)
p.ylabel('number of genes', fontsize=16)
p.grid(True)
p.show()
예제 #35
0
data = np.load(filename)

# pl.plot(data['favgs'], data['rchan'])
# pl.show()

x = data['favgs']
y = data['rchan']
yerr = np.sqrt(data['xchanerr']**2 + data['ychanerr']**2)
p0t = [-113, 0.01, -64, 0.01, 0, 0.05, 82, 0.09, 1, 1, 1, 0.001]

# # yh = tw.multipletripple(p0t, x)

# # pl.subplot(211)
# # pl.plot(x, y, '.')
# # pl.plot(x, yh, '-')

# # pl.subplot(212)
# # pl.plot(x, y-yh, '.')

yh, outthree = tw.completefit(tw.multipletripple, x, y, p0t, filename, 'tripple', toplot=True, tosave=True)

pl.subplot(211)
pl.plot(x, y, '.')
pl.plot(x, yh, '-')

pl.subplot(212)
pl.plot(x, y-yh, '.')

pl.savetxt(filename+".csv", zip(x, y, yerr, yh), delimiter=',')
pl.show()
예제 #36
0
		sys.exit(1)
	F = [];
	F.append(watch_procs(proc, totaltime=options.totaltime));
	
	for child in get_children(proc):
		F.append(watch_procs(child, totaltime=options.totaltime));
	
	for f in F:
		f.start()
	
	for f in F:
		f.join()
		time.sleep(1)
	
	if options.saveas.upper()=='TXT':
		header = "time cputimes cpu ram"
		print f.name
		for f in F:
			x, cpu, ram, z = f.get_result()
			pl.savetxt(proc.name+'.'+f.proc.name+'.'+str(f.proc.pid)+'.txt', zip(x, z, cpu, ram), header=header, fmt='%10.10f');
	else:
		for f in F:
			x, cpu, ram, z = f.get_result()
			pl.step(x-pl.amin(x), cpu, label=f.proc.name)
			pl.step(x-pl.amin(x), ram);
		
		pl.legend(loc=2)
		pl.xlabel('Wall Clock (s)');
		pl.ylabel('% Usage')
		pl.savefig(options.proc+'.eps');
예제 #37
0
#!/usr/bin/python

import glob, pylab

eta = 0.3

data = pylab.loadtxt("figs/mc/a1/wallsMC-a1-pair-%02.1f-%05.3f.dat" %(eta,2.005))
z = data[:,0]
dadz = pylab.zeros_like(z)
dr = 0.01
rmax = 5
for r in pylab.arange(2.005, rmax, dr):
    data = pylab.loadtxt("figs/mc/a1/wallsMC-a1-pair-%02.1f-%05.3f.dat" %(eta,r))
    rmax = r + dr/2
    rmin = r - dr/2
    dadz += data[:,1]*dr/r**6 # *4*pylab.pi/3*(rmax**3 - rmin**2)

data[:,1] = dadz # /(4*pylab.pi*rsquare_well**3/3 - 4*pylab.pi*2.0**3/3)
pylab.savetxt("figs/mc/a1/inverse-sixth-%.1f-rmax-%g.dat" % (eta, rmax), data, fmt='%.3g')
GrandMeansData = []
os.path.walk(os.getcwd(), LoadEnvCond, GrandMeansData)
GrandMeansData = sorted(GrandMeansData, key=lambda data_sort: data_sort[2])

TheMeans = p.zeros((len(GrandMeansData), 4))
i = 0
for item in GrandMeansData:
    TheMeans[i,0] = item[0]
    TheMeans[i,1] = item[1]
    TheMeans[i,2] = item[2]
    TheMeans[i,3] = item[4]
    i += 1
xx = '# %(num)1.6f'%{"num":GrandMeansData[0][3]}
TheMeans = TheMeans[~p.isnan(TheMeans).any(1)] # removing NaN's from the output
p.savetxt("VarianceOfEnvEtAl.dat", TheMeans, fmt='%1.6f')
doc = open('VarianceOfEnvEtAl.dat', 'a')
doc.write(xx)

print TheMeans

p.figure(9, figsize=(1000,600))
p.plot(TheMeans[:, 2], TheMeans[:, 0], 'ko--')
p.fill_between(TheMeans[:, 2], TheMeans[:, 0] + TheMeans[:, 1],
               TheMeans[:, 0] - TheMeans[:, 1], color=(0.75, 0.75, 0.75, 0.75))
p.plot(TheMeans[:, 2], TheMeans[:, 3], 'ko-')
p.xlabel('turbulence level ($ T $)', fontsize=LabelFontSize)
p.ylabel("variance of the env conditions",
         fontsize=LabelFontSize)
p.ylim(ymin=0)
p.xticks(size=TickSize)
예제 #39
0
    chgcarfiles=sys.argv[1].split(",")
    bondLengths=map(float,sys.argv[2].split(","))
    normalize=False
    if len(sys.argv)>3:
        if sys.argv[3][0] in ["n","N"]:
            normalize=True
    verbose=True

    Ninterps=[50,50]
    if len(sys.argv)>4:
        Ninterps=map(int,sys.argv[5].split(","))

    for chgcarfile in chgcarfiles:

        avgGrids,grids,bondCounts=chgcarBondAnalysis(chgcarfile,bondLengths,normalize,verbose,Ninterps=Ninterps,loc="center")
        chgcar=open(chgcarfile,"r").readlines()
        poscardata,gridSize,chg = chgcarIO.read(chgcar)
        
        """
        for avgGrid,bondCount,cutoff in zip(avgGrids,bondCounts,bondLengths):
            #vtkfname=chgcarfile+"_cut%2.2f_NBond%d.vtk"%(cutoff,bondCount)
            #chgcar.writeVTK(vtkfname,poscardata,avgGrid.shape,avgGrid)
            pl.imshow(avgGrid[0])
            pl.show()
        """
        for i,grid in enumerate(grids):
            pl.savetxt("grid%d_%s.data"%(i,chgcarfile),grid)
            pl.imshow(grid)
            pl.show()
예제 #40
0
import mypy
import pylab as pl


res = mypy.sps.read_res('filters.res')


pl.savetxt('./data/HST/WFC/F435W.txt', res[1-1].data)
pl.savetxt('./data/HST/WFC/F475W.txt', res[2-1].data)
pl.savetxt('./data/HST/WFC/F555W.txt', res[3-1].data)
pl.savetxt('./data/HST/WFC/F606W.txt', res[4-1].data)
pl.savetxt('./data/HST/WFC/F775W.txt', res[5-1].data)
pl.savetxt('./data/HST/WFC/F814W.txt', res[6-1].data)
pl.savetxt('./data/HST/WFC/F850LP.txt', res[7-1].data)

pl.savetxt('./data/HST/WFPC2/F300W.txt', res[10-1].data)
pl.savetxt('./data/HST/WFPC2/F336W.txt', res[11-1].data)
pl.savetxt('./data/HST/WFPC2/F450W.txt', res[12-1].data)
pl.savetxt('./data/HST/WFPC2/F555W.txt', res[13-1].data)
pl.savetxt('./data/HST/WFPC2/F606W.txt', res[14-1].data)
pl.savetxt('./data/HST/WFPC2/F702W.txt', res[15-1].data)
pl.savetxt('./data/HST/WFPC2/F814W.txt', res[16-1].data)
pl.savetxt('./data/HST/WFPC2/F850LP.txt', res[17-1].data)

pl.savetxt('./data/HST/WFC3/F098M.txt', res[201-1].data)
pl.savetxt('./data/HST/WFC3/F105W.txt', res[202-1].data)
pl.savetxt('./data/HST/WFC3/F125W.txt', res[203-1].data)
pl.savetxt('./data/HST/WFC3/F140W.txt', res[204-1].data)
pl.savetxt('./data/HST/WFC3/F160W.txt', res[205-1].data)
예제 #41
0
    ##################################################REGRIDDING & PLOTTING

    xi, yi, zi = toRegGrid(sol, nx=50, ny=50)
    pl.matplotlib.pyplot.autumn()
    pl.contourf(xi, yi, zi, 10)
    pl.xlabel("Horizontal Displacement (m)")
    pl.ylabel("Depth (m)")
    pl.savefig(os.path.join(save_path, "Ucontour.png"))
    print("Solution has been plotted  ...")

    cut = int(len(xi) // 2)

    pl.clf()

    r = np.linspace(
        0.0000001, mx / 2, 100
    )  # starting point would be 0 but that would cause division by zero later
    m = 2 * pl.pi * 10 * 10 * 200 * -G / (r * r)

    pl.plot(xi, zi[:, cut])
    #pl.plot(r+2500,m)
    pl.title("Potential Profile")
    pl.xlabel("Horizontal Displacement (m)")
    pl.ylabel("Potential")
    pl.savefig(os.path.join(save_path, "Upot00.png"))

    out = np.array([xi, zi[:, cut]])
    pl.savetxt('profile1.asc', out.transpose())
    pl.clf()
예제 #42
0
    ####################################################ITERATION VARIABLES
    n = 0  # iteration counter
    t = 0  # time counter
    ##############################################################ITERATION
    while t < tend:
        g = grad(u)
        pres = csq * g  # get current pressure
        mypde.setValue(X=-pres)  # set values in pde
        accel = mypde.getSolution()  # get new acceleration
        u_p1 = (2.0 * u - u_m1) + h * h * accel  # calculate the displacement for the next time step
        u_m1 = u
        u = u_p1  # shift values back one time step for next iteration
        # save current displacement, acceleration and pressure
        if t >= rtime:
            saveVTK(
                os.path.join(savepath, "ex07b.%i.vtu" % n),
                displacement=length(u),
                acceleration=length(accel),
                tensor=pres,
            )
            rtime = rtime + rtime_inc  # increment data save time
        u_rec0.append(rec.getValue(u))  # location specific recording
        # increment loop values
        t = t + h
        n = n + 1
        print("time step %d, t=%s" % (n, t))

    # save location specific recording to file
    pl.savetxt(os.path.join(savepath, "u_rec.asc"), u_rec0)
예제 #43
0
파일: icapp.py 프로젝트: braingram/icapp
def process():
    options, inFilenames = parse_options()
    options.port = bool(options.psort)
    # open files
    if options.psort == 1:
        inFilenames = psorted(inFilenames)
    afs = [al.Sndfile(f) for f in inFilenames]
    if (options.mixingmatrix.strip() == "") and \
            (options.unmixingmatrix.strip() == ""):

        # subsample
        if options.method == 'simple':
            if len(options.subsample) == 0:
                args = [44100, ]  # set defaults
            elif len(options.subsample) == 1:
                try:
                    args = [int(options.subsample[0]), ]
                except ValueError:
                    raise ValueError("Could not convert subsample argument "
                    "to int[%s]" % options.subsample[0])
            else:
                raise ValueError("Wrong number of subsample arguments, "
                "expected 1: %s" % str(options.subsample))
            data = subsample(afs, *tuple(args))
        elif options.method == 'random':
            if len(options.subsample) == 0:
                args = [44100, ]
            elif len(options.subsample) == 1:
                try:
                    args = [int(options.subsample[0]), ]
                except ValueError:
                    raise ValueError("Could not convert subsample argument "
                            "to int[%s]" % options.subsample[0])
            else:
                raise ValueError("Wrong number of subsample arguments, "
                "expected 1: %s" % str(options.subsample))
            data = random_subsample(afs, *tuple(args))
        elif options.method == 'range':
            # only accept two arguments, a start and stop
            if len(options.subsample) == 2:
                try:
                    args = [int(options.subsample[0]), \
                            int(options.subsample[1])]
                except ValueError:
                    raise ValueError("Could not convert subsample arguments "
                    "to int[%s,%s]" % tuple(options.subsample))
            else:
                raise ValueError("Wrong number of subsample arguments, "
                "expected 2: %s" % str(options.subsample))
            data = range_subsample(afs, *tuple(args))
        elif options.method == 'multi':
            if (len(options.subsample) % 2) or (len(options.subsample) == 0):
                raise ValueError("Wrong number of subsample arguments, "
                "expected at least or multiples of 2: %s" % \
                        str(options.subsample))
            else:
                ranges = []
                for (s, e) in zip(options.subsample[::2], \
                        options.subsample[1::2]):
                    ranges.append((s, e))
            data = multi_range_subsample(afs, ranges)
        else:
            raise ValueError("Unknown subsample method: %s" % options.method)

        # ica
        ica = run_ica(data, options.ncomponents)

        # clean
        MM = clean_ica(ica, options.threshold, options.count)
        UM = pl.matrix(ica.unmixing_matrix_)
        # save M
        mmfilename = '%s/mixingmatrix' % options.output
        pl.savetxt(mmfilename, MM)
        umfilename = '%s/unmixingmatrix' % options.output
        pl.savetxt(umfilename, UM)
        # add meta info
        for fn in [mmfilename, umfilename]:
            with open(fn, 'a') as f:
                f.write('# method: %s\n' % options.method)
                f.write('# subsample: %s\n' % str(options.subsample))
                f.write('# threshold: %s\n' % str(options.threshold))
                f.write('# count: %i\n' % options.count)
                for (i, ifn) in enumerate(inFilenames):
                    f.write('# %i %s\n' % (i, ifn))
    else:
        logging.debug("Loading matrix from file: %s" % options.mixingmatrix)
        MM = pl.matrix(pl.loadtxt(options.mixingmatrix))
        logging.debug("Loading matrix from file: %s" % options.unmixingmatrix)
        UM = pl.matrix(pl.loadtxt(options.unmixingmatrix))

    if not options.short:
        ofs = make_output_files(inFilenames, options.output, \
                afs[0].format, afs[0].samplerate)
        #clean_files(afs, ofs, ica, MM, options.chunksize)
        clean_files(afs, ofs, UM, MM, options.chunksize)
        # close
        logging.debug("Closing files")
        [ofile.close() for ofile in ofs]

    if options.plot:
        pl.figure()
        #pl.imshow(ica.get_mixing_matrix(), interpolation='none')
        pl.imshow(MM, interpolation='none')
        pl.colorbar()
        pl.suptitle("Mixing matrix (pre-cleaning)")
        pl.figure()
        pl.imshow(MM, interpolation='none')
        pl.colorbar()
        pl.suptitle("Mixing matrix (post-cleaning)")
        # plot components?
        pl.show()
    return UM, MM
def switch_function(threshold_temperature, temp_array):
    
    return [1 if x < threshold_temperature else 0 for x in temp_array]
    
# Importing the data
file_name = "../input_data/temperatures_de Bilt_2013_fifteen_minutes.csv"
temperature_file = open(file_name)

# Data for temperature (15 minutes)
data = genfromtxt(temperature_file, delimiter=",")

# Applying the function
threshold = 4.0
switch_profile = switch_function(threshold, data)

plt.savetxt("../output_data/hhp_switch_according_to_" + file_name.split('/')[-1], switch_profile, fmt='%.3f')

min_x = 0
max_x = 5000

plt.figure(figsize=[10,7])
plt.plot(([threshold]*35040)[min_x: max_x],'r--')
plt.plot(data[min_x: max_x],'k', label='Temperature')
plt.plot(10*np.array(switch_profile[min_x: max_x]), label='HP/Gas')

plt.xlabel('time (15 minutes)')
plt.ylabel('Temperature, HP/Gas')
plt.legend()

plt.show()
plt.close()
예제 #45
0
def main():

    # assign variables, define constants
    args = parseCMD()
    T,H,N = float(args.temp), float(args.field), int(args.nodes)
    J, s = float(args.exchange), int(args.sweeps)
    k_B = 1     # = 1.3806503 * pow(10,-23)
    upColor = 'Fuchsia'
    downColor = 'Black'
    
    if args.evolve:
        findMencoder()

    if args.align:
        print 'Chose to start all spins in up position'

    K = 3
    m = 5
    # http://networkx.github.com/documentation/latest/tutorial/
    #   tutorial.html#adding-attributes-to-graphs-nodes-and-edges
    #G = nx.complete_graph(N)
    #G = nx.karate_club_graph()
    #z=[K for i in range(N)]
    #G=nx.expected_degree_graph(z)
    G = nx.barabasi_albert_graph(N, m, seed=None)

    # keep track of spins of nodes
    spinUp, spinDown = [], []

    # assign each node a spin (\pm 1)
    for node in G:
        if args.align:
            r = 1.0
        else:
            r = 2.0*random.randint(0,1)-1.0
        if r == 1.0:
            spinUp.append(node)
        else:
            spinDown.append(node)
        for neighbor in range(len(G)):
            if neighbor in G[node]:
                G[neighbor][node] = r
            else:
                pass
    
    # compute initial quantities
    totSpin = len(spinUp) - len(spinDown)
    spinSum = 0.0
    for i in range(len(G)):
        if i in spinUp:
            tempSpin = 1.0
        else:
            tempSpin = -1.0
        for j in G[i]:
            spinSum += tempSpin*G[i][j] 
    E = - 0.5 * J * spinSum     # divide by two because of double counting
    M = 1.0*totSpin/(1.0*N)
    
    # define arrays for mcSteps, Energies, Magnetism
    mcSteps, Es, Ms = pl.arange(s), pl.array([E]), pl.array([M])
    E2 = pl.array([E*E]) 

    # keep track of acceptance
    a = 0       # accepted moves
    r = 0       # rejected moves
    if args.showHist:
        pl.ion()
        fig = pl.figure(1)
        ax = fig.add_subplot(111)
        position = nx.circular_layout(G)

    for step in mcSteps:
        # randomly choose a node to try to flip the spin
        R = random.randint(0,len(G)-1)
        
        # compute change in energy from flipping that spin
        delE = EnergyChange(spinUp, G, J, R)

        # calculate Boltzmann factor
        Boltz = pl.exp(-1.0*delE/(k_B*T))

        if (delE <= 0):
            reject = False
            E += delE
            spinUp, spinDown, totSpin = swapSpin(spinUp,
                    spinDown, R, totSpin) 
        else:
            n = random.random()
            if (n <= Boltz):
                E += delE
                reject = False
                spinUp, spinDown, totSpin = swapSpin(spinUp,
                        spinDown, R, totSpin) 
            else:
                reject = True

        if reject==True:
            r += 1
        else:
            a += 1
        
        # calculate magnetism (not absolute value)
        M = 1.0*totSpin/(1.0*N)

        # store observables in array
        Es = pl.append(Es, E)
        Ms = pl.append(Ms, M)
        E2 = pl.append(E2, E*E)

        if args.showHist:
            updatePlot(G, position, spinUp, spinDown, upColor, downColor, ax,
                    args.evolve, step)       

    if args.showHist:
        pl.close()
        pl.ioff()

    if args.evolve:
        os.chdir('./data/animate/')
        # set up bash commands to run mencoder
        command = ('mencoder', 'mf://*.png', '-mf', 'type=png:w=800:h=600:fps=25',
               '-ovc', 'lavc', '-lavcopts', 'vcodec=mpeg4', '-oac', 'copy',
               '-o', 'fightingNodes.avi')

        print "\n\nabout to execute:\n%s\n\n" % ' '.join(command)
        subprocess.check_call(command)
        print os.getcwd()
        for image in glob.glob('*png*'):
            os.remove(image)
        os.chdir('../..')

        print "\n The movie was written to 'fightingNodes.avi'"

    print 'acceptance ratio: ', 1.0*a/(r+a)

    if os.path.exists('./data/'):
        os.chdir('./data/')
    else:
        os.mkdir('./data/')
        os.chdir('./data/')

    filename = 'ising2D_L%s_s%s_Temp%s.dat'%(int(N), s, T)
    fid = open(filename, 'w')
    fid.write('# temp:  %s\n'%T)
    fid.write('# nodes:  %s\n'%N)
    fid.write('# field:  %s\n'%H)
    fid.write('# %15s\t%15s\t%15s\t%15s\n'%('mcSteps','Energies',
        'Magnetism','Energy^2'))
    zipped = zip(mcSteps, Es, Ms, E2)
    pl.savetxt(fid, zipped, fmt='%5.9f\t%5.9f\t%5.9f\t%5.9f')
    fid.close()
    print 'Data has been saved to: ',filename
예제 #46
0
        No_overlaps=Data[picked]

if(mode==2):
    print "- Cutting out particles with at least two overlaps at distance <", cutoff,"..."
    picked=[]
    for p in range(N):
        # removing only double overlaps
        if(pl.sum(test[p][p:])>1):
            pass
        else:
            picked.append(p)
    No_double_overlaps=Data[picked]
    # Do it again, now for the single overlaps
    dists=squareform(pdist(No_double_overlaps))
    # exclude the case of self-distance
    pl.fill_diagonal(dists, pl.inf)
    print "- Cutting out particles with overlaps at distance <", cutoff,"..."
    test= (dists<cutoff)
    picked_again=[]
    for p in range(No_double_overlaps.shape[0]):
        if(pl.any(test[p][p:])):
            pass
        else:
            picked_again.append(p)
    No_overlaps=No_double_overlaps[picked_again]

print "Saving file "+F.CYAN+"Trimmed_"+filename+F.RESET
pl.savetxt("Trimmed_"+filename,No_overlaps, fmt="%g")
print "\n====> Removed"+F.GREEN,N-No_overlaps.shape[0],F.RESET+"of the initial", N,"particles. "+F.RED,No_overlaps.shape[0],F.RESET+"remaining."

예제 #47
0
tmp = cities[0]
cities[0] = cities[21]
cities[21] = tmp

tmpname = citynames[0]
citynames[0] = citynames[21]
citynames[21] = tmpname

print "Starting point: %s" % (citynames[0])

print "Building the distances table"

dist_table = hm.salesman.build_distance_table(cities, type="geographic")

pylab.savetxt("DMAT.txt", dist_table)

print "Solving..."

tstart = time.time()

result = hm.salesman.solve_ga(
    dist_table, ncities, pop_size=500, kill_percent=0.4, mutation_prob=0.01, crossover_prob=0.75, max_gen=1000
)

tend = time.time()

print "Done in %g seconds" % (tend - tstart)

best_routes, best_dists, dists = result
예제 #48
0
dists=squareform(pdist(Positions))
# exclude the case of self-distance
pl.fill_diagonal(dists, pl.inf)
# first in, first served
test= (dists<cutoff)
print "- Cutting overlaps"

picked=[]
for p in range(N):
    if pl.any(test[p,:]):
        test[:,p]=False
        test[p,:]=False
    else:
        picked.append(p)

No_overlaps=Positions[picked]

print "\n====> Detected"+F.GREEN,No_overlaps.shape[0],F.RESET+"particles.\n"

# ======================== SAVING THE RESULT ===================== 
# reorder the columns
z,y,x=No_overlaps[:,0],No_overlaps[:,1],No_overlaps[:,2]

outfile="Detected_"+filename.split('_')[0][-3:]+".txt"
pl.savetxt(outfile,zip(x,y,z), fmt="%g")
print "Saved the output in ", outfile

print "Total execution time:", time.time()-start

	for i in range(num_stages):
		if i < 1250:
			t = ((score_1250 -  score_0)*i/1250) + score_0
		else:
			t = ((score_2000 -  score_1250)*(i - 1250)/(2000 - 1250)) + score_1250
		thresholds[i] = t
else:
	# 2012 cascade (ECCV workshop submission time) 
	from scipy.interpolate import interp1d as interpolate_1d
	curve_samples_x = [0, 6, 11, 45, 60, 
						180, 370, 500, 1000, 1350, 1500, 1750, 2000]
	curve_samples_y = [-0.002, -0.0078, -0.007, -0.011, -0.013, 
						-0.018, -0.02, -0.023, -0.0227, -0.0215, -0.0245, -0.0145, -0.006]
	spline_order = 1
	curve = interpolate_1d(curve_samples_x, curve_samples_y, kind=spline_order)
	for i in range(num_stages):
		thresholds[i] = curve(i)

data = [thresholds] * num_cascades
data = pylab.array(data)

filename = "synthetic_cascades_thresholds.txt"
pylab.savetxt(filename, data)

print "Created", filename





예제 #50
0
def main():
    import optparse
    from numpy import sum

    # Parse command line
    parser = optparse.OptionParser(usage=USAGE)
    parser.add_option("-p",
                      "--plot",
                      action="store_true",
                      help="Generate pdf with IR-spectrum")
    parser.add_option("-i",
                      "--info",
                      action="store_true",
                      help="Set up/ Calculate vibrations & quit")
    parser.add_option("-s",
                      "--suffix",
                      action="store",
                      help="Call suffix for binary e.g. 'mpirun -n 4 '",
                      default='')
    parser.add_option("-r",
                      "--run",
                      action="store",
                      help="path to FHI-aims binary",
                      default='')
    parser.add_option("-x",
                      "--relax",
                      action="store_true",
                      help="Relax initial geometry")
    parser.add_option("-m",
                      "--molden",
                      action="store_true",
                      help="Output in molden format")
    parser.add_option("-w",
                      "--distort",
                      action="store_true",
                      help="Output geometry distorted along imaginary modes")
    parser.add_option("-t",
                      "--submit",
                      action="store",
                      help="""\
Path to submission script, string <jobname>
will be replaced by name + counter, string 
                            <outfile> will be replaced by filename""")
    parser.add_option("-d",
                      "--delta",
                      action="store",
                      type="float",
                      help="Displacement",
                      default=0.0025)

    options, args = parser.parse_args()
    if options.info:
        print __doc__
        sys.exit(0)
    if len(args) != 2:
        parser.error("Need exactly two arguments")

    AIMS_CALL = options.suffix + ' ' + options.run
    hessian_thresh = -1
    name = args[0]
    mode = args[1]
    delta = options.delta

    run_aims = False
    if options.run != '': run_aims = True

    submit_script = options.submit is not None

    if options.plot:
        import matplotlib as mpl
        mpl.use('Agg')
        from pylab import figure

    if options.plot or mode == '1':
        from pylab import savetxt, transpose, eig, argsort, sort,\
            sign, pi, dot, sum, linspace, argmin, r_, convolve

    # Constant from scipy.constants
    bohr = constants.value('Bohr radius') * 1.e10
    hartree = constants.value('Hartree energy in eV')
    at_u = constants.value('atomic mass unit-kilogram relationship')
    eV = constants.value('electron volt-joule relationship')
    c = constants.value('speed of light in vacuum')
    Ang = 1.0e-10
    hbar = constants.value('Planck constant over 2 pi')
    Avo = constants.value('Avogadro constant')
    kb = constants.value('Boltzmann constant in eV/K')
    hessian_factor = eV / (at_u * Ang * Ang)
    grad_dipole_factor = (eV / (1. / (10 * c))) / Ang  #(eV/Ang -> D/Ang)
    ir_factor = 1

    # Asign all filenames
    inputgeomerty = 'geometry.in.' + name
    inputcontrol = 'control.in.' + name
    atomicmasses = 'masses.' + name + '.dat'
    xyzfile = name + '.xyz'
    moldenname = name + '.molden'
    hessianname = 'hessian.' + name + '.dat'
    graddipolename = 'grad_dipole.' + name + '.dat'
    irname = 'ir.' + name + '.dat'
    deltas = array([-delta, delta])
    coeff = array([-1, 1])
    c_zero = -1. / (2. * delta)

    f = open('control.in', 'r')  # read control.in template
    template_control = f.read()
    f.close

    if submit_script:
        f = open(options.submit, 'r')  # read submission script template
        template_job = f.read()
        f.close

    folder = ''  # Dummy
    ########### Central Point ##################################################
    if options.relax and mode == '0':
        # First relax input geometry
        filename = name + '.out'
        folder = name + '_relaxation'
        if not os.path.exists(folder): os.mkdir(folder)  # Create folder
        shutil.copy('geometry.in', folder + '/geometry.in')  # Copy geometry
        new_control = open(folder + '/control.in', 'w')
        new_control.write(template_control +
                          'relax_geometry trm 1E-3\n')  # Relax!
        new_control.close()
        os.chdir(folder)  # Change directoy
        print 'Central Point'
        if run_aims:
            os.system(AIMS_CALL + ' > ' +
                      filename)  # Run aims and pipe the output

#  into a file named 'filename'
        if submit_script: replace_submission(template_job, name, 0, filename)
        os.chdir('..')

    ############################################################################
    # Check for relaxed geometry
    if os.path.exists(folder + '/geometry.in.next_step'):
        geometry = open(folder + '/geometry.in.next_step', 'r')
    else:
        geometry = open('geometry.in', 'r')

    # Read input geometry
    n_line = 0
    struc = structure()
    lines = geometry.readlines()

    for line in lines:
        n_line = n_line + 1
        if line.rfind('set_vacuum_level') != -1:  # Vacuum Level
            struc.vacuum_level = float(split_line(line)[-1])
        if line.rfind('lattice_vector') != -1:  # Lattice vectors and periodic
            lat = split_line(line)[1:]
            struc.lattic_vector = append(struc.lattic_vector,
                                         float64(array(lat))[newaxis, :],
                                         axis=0)
            struc.periodic = True
        if line.rfind('atom') != -1:  # Set atoms
            line_vals = split_line(line)
            at = Atom(line_vals[-1], line_vals[1:-1])
            if n_line < len(lines):
                nextline = lines[n_line]
                if nextline.rfind(
                        'constrain_relaxation') != -1:  # constrained?
                    at = Atom(line_vals[-1], line_vals[1:-1], True)
                else:
                    at = Atom(line_vals[-1], line_vals[1:-1])
            struc.join(at)
    geometry.close()
    n_atoms = struc.n()
    n_constrained = n_atoms - sum(struc.constrained)

    # Atomic mass file
    mass_file = open(atomicmasses, 'w')
    mass_vector = zeros([0])
    for at_unconstrained in struc.atoms[struc.constrained == False]:
        mass_vector = append(mass_vector,
                             ones(3) * 1. / sqrt(at_unconstrained.mass()))
        line = '{0:10.5f}'.format(at_unconstrained.mass())
        for i in range(3):
            line = line + '{0:11.4f}'.format(at_unconstrained.coord[i])
        line = line + '{0:}\n'.format(at_unconstrained.kind)
        mass_file.writelines(line)
    mass_file.close()

    # Init
    dip = zeros([n_constrained * 3, 3])
    hessian = zeros([n_constrained * 3, n_constrained * 3])
    index = 0
    counter = 1

    # Set up / Read folders for displaced atoms
    for atom in arange(n_atoms)[struc.constrained == False]:
        for coord in arange(3):
            for delta in deltas:
                filename=name+'.i_atom_'+str(atom)+'.i_coord_'+str(coord)+'.displ_'+\
                 str(delta)+'.out'
                folder=name+'.i_atom_'+str(atom)+'.i_coord_'+str(coord)+'.displ_'+\
                 str(delta)
                if mode == '0':  # Put new geometry and control.in into folder
                    struc_new = copy.deepcopy(struc)
                    struc_new.atoms[atom].coord[coord]=\
                                                struc_new.atoms[atom].coord[coord]+delta
                    geoname='geometry.i_atom_'+str(atom)+'.i_coord_'+str(coord)+\
                            '.displ_'+str(delta)+'.in'
                    if not os.path.exists(folder): os.mkdir(folder)
                    new_geo = open(folder + '/geometry.in', 'w')
                    newline='#\n# temporary structure-file for finite-difference '+\
                     'calculation of forces\n'
                    newline=newline+'# displacement {0:8.4f} of \# atom '.format(delta)+\
                      '{0:5} direction {1:5}\n#\n'.format(atom,coord)
                    new_geo.writelines(newline + struc_new.to_str())
                    new_geo.close()
                    new_control = open(folder + '/control.in', 'w')
                    template_control = template_control.replace(
                        'relax_geometry', '#relax_geometry')
                    new_control.write(template_control+'compute_forces .true. \n'+\
                        'final_forces_cleaned '+\
                        '.true. \noutput dipole \n')
                    new_control.close()
                    os.chdir(folder)  # Change directoy
                    print 'Processing atom: '+str(atom+1)+'/'+str(n_atoms)+', coord.: '+\
                      str(coord+1)+'/'+str(3)+', delta: '+str(delta)
                    if run_aims:
                        os.system(AIMS_CALL + ' > ' +
                                  filename)  # Run aims and pipe the output
                #  into a file named 'filename'
                    if submit_script:
                        replace_submission(template_job, name, counter,
                                           filename)
                    # os.system('qsub job.sh') # Mind the environment variables
                    os.chdir('..')

                if mode == '1':  # Read output
                    forces_reached = False
                    atom_count = 0
                    data = open(folder + '/' + filename)
                    for line in data.readlines():
                        if line.rfind(
                                'Dipole correction potential jump') != -1:
                            dip_jump = float(split_line(line)[-2])  # Periodic
                        if line.rfind('| Total dipole moment [eAng]') != -1:
                            dip_jump = float64(
                                split_line(line)[-3:])  # Cluster
                        if forces_reached and atom_count < n_atoms:  # Read Forces
                            struc.atoms[atom_count].force = float64(
                                split_line(line)[2:])
                            atom_count = atom_count + 1
                            if atom_count == n_atoms:
                                forces_reached = False
                        if line.rfind('Total atomic forces') != -1:
                            forces_reached = True
                    data.close()
                    if struc.periodic:
                        dip[index, 2] = dip[
                            index,
                            2] + dip_jump * coeff[deltas == delta] * c_zero
                    else:
                        dip[index, :] = dip[index, :] + dip_jump * coeff[
                            deltas == delta] * c_zero
                    forces = array([])
                    for at_unconstrained in struc.atoms[struc.constrained ==
                                                        False]:
                        forces = append(
                            forces,
                            coeff[deltas == delta] * at_unconstrained.force)
                    hessian[index, :] = hessian[index, :] + forces * c_zero
                counter = counter + 1
            index = index + 1
    if mode == '1':  # Calculate vibrations
        print 'Entering hessian diagonalization'
        print 'Number of atoms                = ' + str(n_atoms)
        print 'Name of Hessian input file     = ' + hessianname
        print 'Name of grad dipole input file = ' + graddipolename
        print 'Name of Masses  input file     = ' + atomicmasses
        print 'Name of XYZ output file        = ' + xyzfile
        print 'Threshold for Matrix elements  = ' + str(hessian_thresh)
        if (hessian_thresh < 0.0):            print '     All matrix elements are taken'+\
' into account by default\n'
        savetxt(hessianname, hessian)
        savetxt(graddipolename, dip)

        mass_mat = mass_vector[:, newaxis] * mass_vector[newaxis, :]
        hessian[abs(hessian) < hessian_thresh] = 0.0
        hessian = hessian * mass_mat * hessian_factor
        hessian = (hessian + transpose(hessian)) / 2.
        # Diagonalize hessian (scipy)
        print 'Solving eigenvalue system for Hessian Matrix'
        freq, eig_vec = eig(hessian)
        print 'Done ... '
        eig_vec = eig_vec[:, argsort(freq)]
        freq = sort(sign(freq) * sqrt(abs(freq)))
        ZPE = hbar * (freq) / (2.0 * eV)
        freq = (freq) / (200. * pi * c)

        grad_dipole = dip * grad_dipole_factor
        eig_vec = eig_vec * mass_vector[:, newaxis] * ones(
            len(mass_vector))[newaxis, :]
        infrared_intensity = sum(dot(transpose(grad_dipole),eig_vec)**2,axis=0)*\
                             ir_factor
        reduced_mass = sum(eig_vec**2, axis=0)
        norm = sqrt(reduced_mass)
        eig_vec = eig_vec / norm

        # The rest is output, xyz, IR,...
        print 'Results\n'
        print 'List of all frequencies found:'
        print 'Mode number      Frequency [cm^(-1)]   Zero point energy [eV]   '+\
              'IR-intensity [D^2/Ang^2]'
        for i in range(len(freq)):
            print '{0:11}{1:25.8f}{2:25.8f}{3:25.8f}'.format(
                i + 1, freq[i], ZPE[i], infrared_intensity[i])
        print '\n'
        print 'Summary of zero point energy for entire system:'
        print '| Cumulative ZPE               = {0:15.8f} eV'.format(sum(ZPE))
        print '| without first six eigenmodes = {0:15.8f} eV\n'.format(
            sum(ZPE) - sum(ZPE[:6]))
        print 'Stability checking - eigenvalues should all be positive for a '+\
               'stable structure. '
        print 'The six smallest frequencies should be (almost) zero:'
        string = ''
        for zz in ZPE[:6]:
            string = string + '{0:25.8f}'.format(zz)
        print string
        print 'Compare this with the largest eigenvalue, '
        print '{0:25.8f}'.format(freq[-1])

        nums = arange(n_atoms)[struc.constrained == False]
        nums2 = arange(n_atoms)[struc.constrained]
        newline = ''
        newline_ir = '[INT]\n'
        if options.molden:
            newline_molden = '[Molden Format]\n[GEOMETRIES] XYZ\n'
            newline_molden = newline_molden + '{0:6}\n'.format(n_atoms) + '\n'
            for i_atoms in range(n_constrained):
                newline_molden = newline_molden + '{0:6}'.format(
                    struc.atoms[nums[i_atoms]].kind)
                for i_coord in range(3):
                    newline_molden = newline_molden + '{0:10.4f}'.format(
                        struc.atoms[nums[i_atoms]].coord[i_coord])
                newline_molden = newline_molden + '\n'
            newline_molden = newline_molden + '[FREQ]\n'
            for i in range(len(freq)):
                newline_molden = newline_molden + '{0:10.3f}\n'.format(freq[i])
            newline_molden = newline_molden + '[INT]\n'
            for i in range(len(freq)):
                newline_molden = newline_molden + '{0:17.6e}\n'.format(
                    infrared_intensity[i])
            newline_molden = newline_molden + '[FR-COORD]\n'
            newline_molden = newline_molden + '{0:6}\n'.format(n_atoms) + '\n'
            for i_atoms in range(n_constrained):
                newline_molden = newline_molden + '{0:6}'.format(
                    struc.atoms[nums[i_atoms]].kind)
                for i_coord in range(3):
                    newline_molden = newline_molden + '{0:10.4f}'.format(
                        struc.atoms[nums[i_atoms]].coord[i_coord] / bohr)
                newline_molden = newline_molden + '\n'
            newline_molden = newline_molden + '[FR-NORM-COORD]\n'

        for i in range(len(freq)):
            newline = newline + '{0:6}\n'.format(n_atoms)
            if freq[i] > 0:
                newline = newline + 'stable frequency at '
            elif freq[i] < 0:
                newline = newline + 'unstable frequency at '
                if options.distort and freq[i] < -50:
                    struc_new = copy.deepcopy(struc)
                    for i_atoms in range(n_constrained):
                        for i_coord in range(3):
                            struc_new.atoms[i_atoms].coord[i_coord]=\
                            struc_new.atoms[i_atoms].coord[i_coord]+\
                           eig_vec[(i_atoms)*3+i_coord,i]
                    geoname = name + '.distorted.vibration_' + str(
                        i + 1) + '.geometry.in'
                    new_geo = open(geoname, 'w')
                    newline_geo = '#\n# distorted structure-file for based on eigenmodes\n'
                    newline_geo=newline_geo+\
                            '# vibration {0:5} :{1:10.3f} 1/cm\n#\n'.format(i+1,freq[i])
                    new_geo.writelines(newline_geo + struc_new.to_str())
                    new_geo.close()
            elif freq[i] == 0:
                newline = newline + 'translation or rotation '
            newline = newline + '{0:10.3f} 1/cm IR int. is '.format(freq[i])
            newline = newline + '{0:10.4e} D^2/Ang^2; red. mass is '.format(
                infrared_intensity[i])
            newline = newline + '{0:5.3f} a.m.u.; force const. is '.format(
                1.0 / reduced_mass[i])
            newline = newline + '{0:5.3f} mDyne/Ang.\n'.format(
                ((freq[i] *
                  (200 * pi * c))**2) * (1.0 / reduced_mass[i]) * at_u * 1.e-2)
            if options.molden:                newline_molden=newline_molden+\
                                      'vibration {0:6}\n'.format(i+1)
            for i_atoms in range(n_constrained):
                newline = newline + '{0:6}'.format(
                    struc.atoms[nums[i_atoms]].kind)
                for i_coord in range(3):
                    newline = newline + '{0:10.4f}'.format(
                        struc.atoms[nums[i_atoms]].coord[i_coord])
                for i_coord in range(3):
                    newline = newline + '{0:10.4f}'.format(
                        eig_vec[(i_atoms) * 3 + i_coord, i])
                    if options.molden:
                        newline_molden = newline_molden + '{0:10.4f}'.format(
                            eig_vec[(i_atoms) * 3 + i_coord, i] / bohr)
                newline = newline + '\n'
                if options.molden: newline_molden = newline_molden + '\n'
            for i_atoms in range(n_atoms - n_constrained):
                newline = newline + '{0:6}'.format(
                    struc.atoms[nums2[i_atoms]].kind)
                for i_coord in range(3):
                    newline = newline + '{0:10.4f}'.format(
                        struc.atoms[nums2[i_atoms]].coord[i_coord])
                for i_coord in range(3):
                    newline = newline + '{0:10.4f}'.format(0.0)
                newline = newline + '\n'
            newline_ir = newline_ir + '{0:10.4e}\n'.format(
                infrared_intensity[i])
        xyz = open(xyzfile, 'w')
        xyz.writelines(newline)
        xyz.close()
        ir = open(irname, 'w')
        ir.writelines(newline_ir)
        ir.close()
        if options.molden:
            molden = open(moldenname, 'w')
            molden.writelines(newline_molden)
            molden.close()

        if mode == '1' and options.plot:
            x = linspace(freq.min() - 500, freq.max() + 500, 1000)
            z = zeros(len(x))
            for i in range(len(freq)):
                z[argmin(abs(x - freq[i]))] = infrared_intensity[i]
            window_len = 150
            gauss = signal.gaussian(window_len, 10)
            s = r_[z[window_len - 1:0:-1], z, z[-1:-window_len:-1]]
            z_convolve = convolve(gauss / gauss.sum(), s,
                                  mode='same')[window_len - 1:-window_len + 1]
            fig = figure(0)
            ax = fig.add_subplot(111)
            ax.plot(x, z_convolve, 'r', lw=2)
            ax.set_xlim([freq.min() - 500, freq.max() + 500])
            ax.set_ylim([-0.01, ax.get_ylim()[1]])
            ax.set_yticks([])
            ax.set_xlabel('Frequency [1/cm]', size=20)
            ax.set_ylabel('Intensity [a.u.]', size=20)
            fig.savefig(name + '_IR_spectrum.pdf')

        print '\n Done. '
예제 #51
0
			N += 1;
			if f.proc.is_running()==False:
				pname = str(proc.pid);
				fname = str(proc.pid);
				fid = proc.pid;
			else:
				pname = proc.name;
				fname = f.proc.name;
				fid = f.proc.pid;

			x, cpu, ram, z, i0, i1, i2, i3 = f.get_result()
			if options.tag!=None:
				outname = options.tag+'.'+pname+'.'+fname+'.'+str(fid)+str(N)+'.dat';
			else:
				outname = pname+'.'+fname+'.'+str(fid)+str(N)+'.dat';
			pl.savetxt(outname, zip(x, z, cpu, ram, i0, i1, i2, i3), fmt='%10.10f');
	else:
		for f in F:
			x, cpu, ram, z = f.get_result()
			pl.step(x-pl.amin(x), cpu, label=f.proc.name)
			pl.step(x-pl.amin(x), ram);
		
		pl.legend(loc=2)
		pl.xlabel('Wall Clock (s)');
		pl.ylabel('% Usage')
		pl.savefig(proc+'.eps');
		
	if fout!=None:
		fout.close()
		os.system('mv temp.txt '+pname+'.stdout.txt')
예제 #52
0
        def key(self, event):
            '''
            #  x = identify line
            #  i = skip to next line
            #  z = zoom in
            #  a = zoom out
            #  r = reset
            '''
            k = event.key
            x = event.xdata
            y = event.ydata
            sp = event.inaxes

            if k == 'x' and sp.get_subplotspec() == self.sp1.get_subplotspec():
                self.sp1.axvline(x, color='r', lw=1)
                self.show_lines[self.counter][0].set_ls('-')
                self.counter += 1
                if self.counter == len(self.ref_lines):
                    self.sp1.text(0.35, 0.35, "\n  Complete: close  \n     this window \n",
                                  transform=self.sp1.transAxes, size=22, bbox=dict(fc='w'))
                    self.sp2.text(0.35, 0.35, "\n  Complete: close  \n     this window \n",
                                  transform=self.sp2.transAxes, size=22, bbox=dict(fc='w'))
                    pl.savetxt('initial_lambda_soln.dat', self.soln_data)
                else:
                    self.soln_data.append([self.ref_lines[self.counter], x])
                    self.show_lines.append([self.sp2.axvline(self.ref_lines[self.counter],
                                                             color='r', lw=1, ls='--'),
                                            self.sp2.annotate(str(int(self.ref_lines[self.counter]+0.5)),
                                                              (self.ref_lines[self.counter], self.ytext),
                                                              rotation='vertical', size=11)])

            if k == 'i':
                self.show_lines[self.counter][0].set_lw(0)
                self.show_lines[self.counter][1].set_visible(False)
                self.counter += 1
                if self.counter == len(self.ref_lines):
                    self.sp1.text(0.35, 0.35, "\n  Complete: close  \n     this window \n",
                                  transform=self.sp1.transAxes, size=22, bbox=dict(fc='w'))
                    self.sp2.text(0.35, 0.35, "\n  Complete: close  \n     this window \n",
                                  transform=self.sp2.transAxes, size=22, bbox=dict(fc='w'))
                    pl.savetxt('initial_lambda_soln.dat', self.soln_data)
                else:
                    self.show_lines.append([self.sp2.axvline(self.ref_lines[self.counter],
                                                             color='r', lw=1, ls='--'),
                                            self.sp2.annotate(str(int(self.ref_lines[self.counter]+0.5)),
                                                              (self.ref_lines[self.counter], self.ytext),
                                                              rotation='vertical', size=11)])

            if k == 'z':
                self.zooms.append([self.sp1.axis()[:2], self.sp2.axis()[:2]])
                axis = sp.axis()
                dx = (axis[1] - axis[0])/10.
                sp.set_xlim(x-dx, x+dx)

            if k == 'a':
                if len(self.zooms):
                    self.sp1.set_xlim(self.zooms[-1][0])
                    self.sp2.set_xlim(self.zooms[-1][1])
                    self.zooms.pop(-1)

            if k == 'r':
                self.fig.clf()
                self.soln_data = []
                self.counter = 0

                self.sp1 = self.fig.add_subplot(211)
                self.sp2 = self.fig.add_subplot(212)
                self.zooms = []

                self.sp1.plot(self.xaxis, self.flux/max(self.flux))
                self.sp1.set_ylim(-0.03, 1.2)
                self.sp1.set_title('ArcLamp Spectrum: x = identify line,  i = skip line,  z/a = zoom in/out,  r = reset')
                self.sp1.set_xlabel('Pixel')

                self.sp2.plot(self.ref_spec[:,0], self.ref_spec[:,1]/max(self.ref_spec[:,1]))
                self.sp2.set_ylim(-0.03, 1.2)
                x0, x1, y0, y1 = self.sp2.axis()
                self.ytext = y0 + (y1-y0)*0.85
                self.show_lines = [[self.sp2.axvline(self.ref_lines[0], color='r', lw=1, ls='--'),
                                    self.sp2.annotate(str(int(self.ref_lines[0]+0.5)),
                                                      (self.ref_lines[0], self.ytext),
                                                      rotation='vertical', size=11)]]
                self.sp2.set_title('Reference Spectrum')
                self.sp2.set_xlabel('Wavelength (Angstroms)')

            pl.draw()
maxi = int(7 * 4 * 24)
plt.plot(demand_profile[mini:maxi])
plt.plot(availability_profile[mini:maxi])
plt.xlabel("time (15 minutes)")
plt.ylabel("Fraction of buffer extracted")
plt.show()

print "../output_data/hp_space_heating_" + str(heat_output_capacity_in_kW) + "kW_" + str(floor_area) + "m2_" + str(
    liters
) + "liter"
plt.savetxt(
    "../output_data/hp_space_heating_"
    + str(heat_output_capacity_in_kW)
    + "kW_"
    + str(floor_area)
    + "m2_"
    + str(liters)
    + "liter_use.csv",
    demand_profile,
    fmt="%.3f",
    delimiter=",",
)
plt.savetxt(
    "../output_data/hp_space_heating_"
    + str(heat_output_capacity_in_kW)
    + "kW_"
    + str(floor_area)
    + "m2_"
    + str(liters)
    + "liter_availability.csv",
    availability_profile,
    fmt="%.3f",
    bath = 'bath_'

profile = individual_DHW_profile(n, b, i)
use_filename = '../output_data/DHW_demand_profile_' + str(n) + 'p_' + bath + str(i) + '.csv'

# aggregated profiles

# # average number of people per household
# n = 2.2
# profile = aggregated_DHW_profile(n)

# use_filename = '../output_data/DHW_demand_profile_aggregated.csv'

print use_filename

plt.savetxt(use_filename, profile, fmt='%.3e', delimiter=',')

plt.plot(profile)  
plt.show()

# # Appendix: plot probability curves for documentation

# # probability throughout the day

# plt.figure(1)

# plt.plot(prob_day_AB / sum(prob_day_AB), label="types A and B")
# plt.plot(prob_day_C / sum(prob_day_C), label="type C")
# plt.plot(prob_day_D / sum(prob_day_D), label="type D")

# plt.xlim(0, 96)
예제 #55
0
t1fit = 16500.
t2fit = 18000.
t1out = 16800
t2out = 17500.
degree = 15

fname_notide = os.path.splitext(fname)[0] + '_notide.txt'
t,eta = dart.plotdart(fname)    
t = pylab.flipud(t)
eta = pylab.flipud(eta)

c,t_notide,eta_notide = dart.fit_tide_poly(t,eta,degree,t1fit,t2fit, t1out,t2out)

# Time of quake:  05:48:15 UTC on March 12, 2011
# Convert to minutes after start of March:
t_quake = 11*24*60 + 5*60 + 48 + 15/60.  
#print "Time of quake = %7.2f minutes after start of March" % t_quake

t_sec = (t_notide-t_quake)*60.
d = pylab.vstack([t_sec,eta_notide]).T
pylab.savetxt(fname_notide,d)
print "Created file ",fname_notide

#dart.plot_postquake(t_notide,eta_notide,t_quake,gaugeno)


pylab.figure(70)
pylab.subplot(211)
pylab.title('DART %s' % gaugeno)

예제 #56
0
    currentTime = data[0][0]
    currentIndex = 0
       
    while currentIndex < columns:
        while currentIndex < columns and (currentTime > data[currentIndex][0]):
            currentIndex += 1
        
        if currentIndex < columns-1:
            aTime = data[currentIndex][0]
            bTime = data[currentIndex+1][0]
            pTime = (currentTime - aTime) / (bTime - aTime)
            row = [currentTime]
            for i in range(1, rows):
                currentValue = data[currentIndex][i]
                nextValue = data[currentIndex+1][i]
                interp = currentValue + (nextValue-currentValue)*pTime
                row.append( interp )
            r.append( row )
        currentTime += samplingPeriod
        
    return r


sensorFile = raw_input('data file ')
resampleRate = int(raw_input('sampling rate '))
sensorFile = os.path.realpath(sensorFile)

data = pylab.loadtxt(sensorFile)
data = resampleUniform(data, resampleRate)
pylab.savetxt(sensorFile + ".txt", data,'%d')
예제 #57
0
y1, y2 = extent[0], extent[1]
z1, z2 = extent[5]+0.1, -1*extent[4]
mesh = fatiando.mesh.prism_mesh(x1=x1, x2=x2, y1=y1, y2=y2, z1=z1, z2=z2, 
                                nx=100, ny=50, nz=10)

# Set the seeds and save them for later use
log.info("Getting seeds from mesh:")
spoints1 = []
sdens1 = []
dx, dy = 5000, 3000
for x in numpy.arange(15000 + dx, 85000, dx):
    for y in numpy.arange(15000 + dy, 35000, dy):
        spoints1.append((x, y, 500))
        sdens1.append(300)
        
pylab.savetxt("seeds1.txt", numpy.array(spoints1))

spoints2 = []
sdens2 = []
dx = 3000
for x in numpy.arange(25000 + dx, 55000, dx):
    spoints2.append((x, 39500, 500))
    sdens2.append(400)

pylab.savetxt("seeds2.txt", numpy.array(spoints2))

spoints = []
spoints.extend(spoints1)
spoints.extend(spoints2)
sdens = []
sdens.extend(sdens1)
예제 #58
0
            grav_pot=sol,g_field=g_field,g_fieldz=g_fieldz,gz=gz)

    ##################################################REGRIDDING & PLOTTING


    xi, yi, zi = toRegGrid(sol, nx=50, ny=50)
    pl.matplotlib.pyplot.autumn()
    pl.contourf(xi,yi,zi,10)
    pl.xlabel("Horizontal Displacement (m)")
    pl.ylabel("Depth (m)")
    pl.savefig(os.path.join(save_path,"Ucontour.png"))
    print("Solution has been plotted  ...")

    cut=int(len(xi)//2)

    pl.clf()

    r=np.linspace(0.0000001,mx/2,100)   # starting point would be 0 but that would cause division by zero later
    m=2*pl.pi*10*10*200*-G/(r*r)

    pl.plot(xi,zi[:,cut])
    #pl.plot(r+2500,m)
    pl.title("Potential Profile")
    pl.xlabel("Horizontal Displacement (m)")
    pl.ylabel("Potential")
    pl.savefig(os.path.join(save_path,"Upot00.png"))

    out=np.array([xi,zi[:,cut]])
    pl.savetxt('profile1.asc',out.transpose())
    pl.clf()
예제 #59
0
def main():
  import optparse
  from numpy import sum

  # Parse command line
  parser = optparse.OptionParser(usage=USAGE)
  parser.add_option("-p", "--plot", action="store_true",
                    help="Generate pdf with IR-spectrum, broadened with Lorentzian")
  parser.add_option("-i", "--info", action="store_true",
                      help="Set up/ Calculate vibrations & quit")
  parser.add_option("-s", "--suffix", action="store",
                    help="Call suffix for binary e.g. 'mpirun -n 4 '",
                    default='')
  parser.add_option("-r", "--run", action="store",
                    help="path to FHI-aims binary",default='')
  parser.add_option("-x", "--relax", action="store_true",
                    help="Relax initial geometry")
  parser.add_option("-m", "--molden", action="store_true",
                    help="Output in molden format")
  parser.add_option("-w", "--distort", action="store_true",
                    help="Output geometry distorted along imaginary modes")
  parser.add_option("-t", "--submit", action="store",
                    help="""\
Path to submission script, string <jobname>
will be replaced by name + counter, string 
                            <outfile> will be replaced by filename""")
  parser.add_option("-d", "--delta", action="store", type="float",
                    help="Displacement", default=0.0025)
  parser.add_option("-b", "--broadening", action="store", type="float",
                    help="Broadening for IR-spectrum in cm^{-1}", default=5)

  options, args = parser.parse_args()
  if options.info:
      print __doc__
      sys.exit(0)
  if len(args) != 2:
      parser.error("Need exactly two arguments")
  
  AIMS_CALL=options.suffix+' '+options.run
  hessian_thresh = -1
  name=args[0]
  mode=args[1] 
  delta=options.delta
  broadening=options.broadening

  run_aims=False
  if options.run!='': run_aims=True
  
  submit_script = options.submit is not None
  
  if options.plot:
    import matplotlib as mpl
    mpl.use('Agg') 
    from pylab import figure

  if options.plot or mode=='1' or mode=='2':
    from pylab import savetxt, transpose, eig, argsort, sort,\
		      sign, pi, dot, sum, linspace, argmin, r_, convolve
		 
  # Constant from scipy.constants
  bohr=constants.value('Bohr radius')*1.e10
  hartree=constants.value('Hartree energy in eV')
  at_u=constants.value('atomic mass unit-kilogram relationship')
  eV=constants.value('electron volt-joule relationship')
  c=constants.value('speed of light in vacuum')
  Ang=1.0e-10
  hbar=constants.value('Planck constant over 2 pi')
  Avo=constants.value('Avogadro constant')
  kb=constants.value('Boltzmann constant in eV/K')
  pi=constants.pi
  hessian_factor   = eV/(at_u*Ang*Ang) 
  grad_dipole_factor=(eV/(1./(10*c)))/Ang  #(eV/Ang -> D/Ang)
  ir_factor = 1
  
  # Asign all filenames
  inputgeomerty = 'geometry.in.'+name
  inputcontrol  = 'control.in.'+name
  atomicmasses  = 'masses.'+name+'.dat'; 
  xyzfile       = name+'.xyz';
  moldenname    =name+'.molden';
  hessianname   = 'hessian.'+name+'.dat'; 
  graddipolename   = 'grad_dipole.'+name+'.dat'; 
  irname   = 'ir.'+name+'.dat'; 
  deltas=array([-delta,delta])
  coeff=array([-1,1])
  c_zero = - 1. / (2. * delta)


  f=open('control.in','r')                   # read control.in template
  template_control=f.read()
  f.close

  if submit_script:
    f=open(options.submit,'r')               # read submission script template
    template_job=f.read()
    f.close

  folder=''                                  # Dummy
  ########### Central Point ##################################################
  if options.relax and (mode=='0' or mode=='2'):
    # First relax input geometry
    filename=name+'.out'
    folder=name+'_relaxation' 
    if not os.path.exists(folder): os.mkdir(folder)            # Create folder
    shutil.copy('geometry.in', folder+'/geometry.in')          # Copy geometry
    new_control=open(folder+'/control.in','w')
    new_control.write(template_control+'relax_geometry trm 1E-3\n') # Relax!
    new_control.close()
    os.chdir(folder)                             # Change directoy
    print 'Central Point'
    if run_aims:
      os.system(AIMS_CALL+' > '+filename)       # Run aims and pipe the output 
						#  into a file named 'filename'
    if submit_script: replace_submission(template_job, name, 0, filename)
    os.chdir('..') 

  ############################################################################
  # Check for relaxed geometry
  if os.path.exists(folder+'/geometry.in.next_step'):  
    geometry=open(folder+'/geometry.in.next_step','r')
  else:
    geometry=open('geometry.in','r')
    
  # Read input geometry  
  n_line=0
  struc=structure()
  lines=geometry.readlines()

  for line in lines:
    n_line= n_line+1
    if line.rfind('set_vacuum_level')!=-1:   # Vacuum Level
      struc.vacuum_level=float(split_line(line)[-1])
    if line.rfind('lattice_vector')!=-1:    # Lattice vectors and periodic
      lat=split_line(line)[1:]
      struc.lattice_vector=append(struc.lattice_vector,float64(array(lat))
			  [newaxis,:],axis=0)
      struc.periodic=True
    if line.rfind('atom')!=-1:              # Set atoms
      line_vals=split_line(line)
      at=Atom(line_vals[-1],line_vals[1:-1])
      if n_line<len(lines):
	  nextline=lines[n_line]
	  if nextline.rfind('constrain_relaxation')!=-1: # constrained?
	    at=Atom(line_vals[-1],line_vals[1:-1],True)
	  else:
	    at=Atom(line_vals[-1],line_vals[1:-1])
      struc.join(at)         
  geometry.close()  
  n_atoms= struc.n()
  n_constrained=n_atoms-sum(struc.constrained)

  # Atomic mass file
  mass_file=open(atomicmasses,'w')
  mass_vector=zeros([0])
  for at_unconstrained in struc.atoms[struc.constrained==False]:
      mass_vector=append(mass_vector,ones(3)*1./sqrt(at_unconstrained.mass()))
      line='{0:10.5f}'.format(at_unconstrained.mass())
      for i in range(3):
	line=line+'{0:11.4f}'.format(at_unconstrained.coord[i])
      line=line+'{0:}\n'.format(at_unconstrained.kind)
      mass_file.writelines(line)
  mass_file.close()

  # Init
  dip = zeros([n_constrained*3,3])
  hessian = zeros([n_constrained*3,n_constrained*3])
  index=0
  counter=1
  
  # Set up / Read folders for displaced atoms
  for atom in arange(n_atoms)[struc.constrained==False]:
    for coord in arange(3):
      for delta in deltas:
	filename=name+'.i_atom_'+str(atom)+'.i_coord_'+str(coord)+'.displ_'+\
		str(delta)+'.out'
	folder=name+'.i_atom_'+str(atom)+'.i_coord_'+str(coord)+'.displ_'+\
		str(delta)       
	if mode=='0' or mode=='2':   # Put new geometry and control.in into folder
	  struc_new=copy.deepcopy(struc)
	  struc_new.atoms[atom].coord[coord]=\
	                              struc_new.atoms[atom].coord[coord]+delta
	  geoname='geometry.i_atom_'+str(atom)+'.i_coord_'+str(coord)+\
	          '.displ_'+str(delta)+'.in'
	  if not os.path.exists(folder): os.mkdir(folder)
	  new_geo=open(folder+'/geometry.in','w')
	  newline='#\n# temporary structure-file for finite-difference '+\
		  'calculation of forces\n'
	  newline=newline+'# displacement {0:8.4f} of \# atom '.format(delta)+\
			  '{0:5} direction {1:5}\n#\n'.format(atom,coord)
	  new_geo.writelines(newline+struc_new.to_str())
	  new_geo.close()
	  new_control=open(folder+'/control.in','w')
	  template_control=template_control.replace('relax_geometry',
	                                           '#relax_geometry')
	  new_control.write(template_control+'compute_forces .true. \n'+\
			    'final_forces_cleaned '+\
			    '.true. \n')
	  new_control.close()
	  os.chdir(folder)                                   # Change directoy
	  print 'Processing atom: '+str(atom+1)+'/'+str(n_atoms)+', coord.: '+\
				 str(coord+1)+'/'+str(3)+', delta: '+str(delta)
	  if run_aims:                           
	    os.system(AIMS_CALL+' > '+filename)# Run aims and pipe the output 
						#  into a file named 'filename'
	  if submit_script: replace_submission(template_job, name, counter, 
	                                       filename)
	  # os.system('qsub job.sh') # Mind the environment variables
	  os.chdir('..') 

	if mode=='1' or mode=='2':   # Read output 
	  forces_reached=False
	  atom_count=0
	  data=open(folder+'/'+filename)
	  for line in data.readlines():
	    if line.rfind('Dipole correction potential jump')!=-1:
	      dip_jump = float(split_line(line)[-2]) # Periodic
	    if line.rfind('| Total dipole moment [eAng]')!=-1:
	      dip_jump = float64(split_line(line)[-3:]) # Cluster
	    if forces_reached and atom_count<n_atoms: # Read Forces
	      struc.atoms[atom_count].force=float64(split_line(line)[2:])
	      atom_count=atom_count+1
	      if atom_count==n_atoms:
		forces_reached=False
	    if line.rfind('Total atomic forces')!=-1:
	      forces_reached=True
	  data.close()
	  if struc.periodic:
	    pass
      #dip[index,2]=dip[index,2]+dip_jump*coeff[deltas==delta]*c_zero
	  else:
	    dip[index,:]=dip[index,:]+dip_jump*coeff[deltas==delta]*c_zero
	  forces=array([])
	  for at_unconstrained in struc.atoms[struc.constrained==False]:
	    forces=append(forces,coeff[deltas==delta]*at_unconstrained.force)
	  hessian[index,:]=hessian[index,:]+forces*c_zero
	counter=counter+1
      index=index+1  
  if mode=='1' or mode=='2': # Calculate vibrations
    print 'Entering hessian diagonalization'
    print 'Number of atoms                = '+str(n_atoms)
    print 'Name of Hessian input file     = '+hessianname
    print 'Name of grad dipole input file = '+graddipolename
    print 'Name of Masses  input file     = '+atomicmasses
    print 'Name of XYZ output file        = '+xyzfile
    print 'Threshold for Matrix elements  = '+str(hessian_thresh)
    if (hessian_thresh < 0.0): print '     All matrix elements are taken'+\
				    ' into account by default\n'
    savetxt(hessianname,hessian)
    savetxt(graddipolename,dip)

    mass_mat=mass_vector[:,newaxis]*mass_vector[newaxis,:]
    hessian[abs(hessian)<hessian_thresh]=0.0
    hessian=hessian*mass_mat*hessian_factor
    hessian=(hessian+transpose(hessian))/2.
    # Diagonalize hessian (scipy)
    print 'Solving eigenvalue system for Hessian Matrix'
    freq, eig_vec = eig(hessian)
    print 'Done ... '
    eig_vec=eig_vec[:,argsort(freq)]
    freq=sort(sign(freq)*sqrt(abs(freq)))
    ZPE=hbar*(freq)/(2.0*eV)
    freq = (freq)/(200.*pi*c)
    
    
    grad_dipole = dip * grad_dipole_factor
    eig_vec = eig_vec*mass_vector[:,newaxis]*ones(len(mass_vector))[newaxis,:]
    infrared_intensity = sum(dot(transpose(grad_dipole),eig_vec)**2,axis=0)*\
                         ir_factor
    reduced_mass=sum(eig_vec**2,axis=0)
    norm = sqrt(reduced_mass)
    eig_vec = eig_vec/norm
    
    # The rest is output, xyz, IR,...
    print 'Results\n'
    print 'List of all frequencies found:'
    print 'Mode number      Frequency [cm^(-1)]   Zero point energy [eV]   '+\
          'IR-intensity [D^2/Ang^2]'
    for i in range(len(freq)):
      print '{0:11}{1:25.8f}{2:25.8f}{3:25.8f}'.format(i+1,freq[i],ZPE[i],
                                                       infrared_intensity[i])
    print '\n'
    print 'Summary of zero point energy for entire system:'
    print '| Cumulative ZPE               = {0:15.8f} eV'.format(sum(ZPE))
    print '| without first six eigenmodes = {0:15.8f} eV\n'.format(sum(ZPE)-
                                                                 sum(ZPE[:6]))
    print 'Stability checking - eigenvalues should all be positive for a '+\
           'stable structure. '
    print 'The six smallest frequencies should be (almost) zero:'
    string=''
    for zz in ZPE[:6]: string=string+'{0:25.8f}'.format(zz)
    print string
    print 'Compare this with the largest eigenvalue, '
    print '{0:25.8f}'.format(freq[-1])
    
    nums=arange(n_atoms)[struc.constrained==False]
    nums2=arange(n_atoms)[struc.constrained]
    newline=''
    newline_ir='[INT]\n'
    if options.molden:
      newline_molden='[Molden Format]\n[GEOMETRIES] XYZ\n'
      newline_molden=newline_molden+'{0:6}\n'.format(n_atoms)+'\n'
      for i_atoms in range(n_constrained):
	newline_molden=newline_molden+'{0:6}'.format(
	                                      struc.atoms[nums[i_atoms]].kind)
	for i_coord in range(3):
	  newline_molden=newline_molden+'{0:10.4f}'.format(
	                            struc.atoms[nums[i_atoms]].coord[i_coord])
	newline_molden=newline_molden+'\n'
      newline_molden=newline_molden+'[FREQ]\n'   
      for i in range(len(freq)):
	newline_molden=newline_molden+'{0:10.3f}\n'.format(freq[i])
      newline_molden=newline_molden+'[INT]\n' 
      for i in range(len(freq)):
	newline_molden=newline_molden+'{0:17.6e}\n'.format(
	                                                infrared_intensity[i])
      newline_molden=newline_molden+'[FR-COORD]\n'
      newline_molden=newline_molden+'{0:6}\n'.format(n_atoms)+'\n'
      for i_atoms in range(n_constrained):
	newline_molden=newline_molden+'{0:6}'.format(
	                                      struc.atoms[nums[i_atoms]].kind)
	for i_coord in range(3):
	  newline_molden=newline_molden+'{0:10.4f}'.format(
	                       struc.atoms[nums[i_atoms]].coord[i_coord]/bohr)
	newline_molden=newline_molden+'\n'
      newline_molden=newline_molden+'[FR-NORM-COORD]\n'
    
    for i in range(len(freq)):
      newline=newline+'{0:6}\n'.format(n_atoms)
      if freq[i]>0:
	newline=newline+'stable frequency at '
      elif freq[i]<0:
	newline=newline+'unstable frequency at '
	if options.distort and freq[i]<-50:
	  struc_new=copy.deepcopy(struc)
	  for i_atoms in range(n_constrained):
	    for i_coord in range(3):
	      struc_new.atoms[i_atoms].coord[i_coord]=\
	      struc_new.atoms[i_atoms].coord[i_coord]+\
		    eig_vec[(i_atoms)*3+i_coord,i]                        
	  geoname=name+'.distorted.vibration_'+str(i+1)+'.geometry.in'
	  new_geo=open(geoname,'w')
	  newline_geo='#\n# distorted structure-file for based on eigenmodes\n'
	  newline_geo=newline_geo+\
	          '# vibration {0:5} :{1:10.3f} 1/cm\n#\n'.format(i+1,freq[i])
	  new_geo.writelines(newline_geo+struc_new.to_str())
	  new_geo.close()
      elif freq[i]==0:
	newline=newline+'translation or rotation '
      newline=newline+'{0:10.3f} 1/cm IR int. is '.format(freq[i])
      newline=newline+'{0:10.4e} D^2/Ang^2; red. mass is '.format(
                                                        infrared_intensity[i])
      newline=newline+'{0:5.3f} a.m.u.; force const. is '.format(
                                                          1.0/reduced_mass[i])
      newline=newline+'{0:5.3f} mDyne/Ang.\n'.format(((freq[i]*(200*pi*c))**2)*
	      (1.0/reduced_mass[i])*at_u*1.e-2)
      if options.molden: newline_molden=newline_molden+\
                                               'vibration {0:6}\n'.format(i+1)
      for i_atoms in range(n_constrained):
	newline=newline+'{0:6}'.format(struc.atoms[nums[i_atoms]].kind)
	for i_coord in range(3):
	  newline=newline+'{0:10.4f}'.format(
	                            struc.atoms[nums[i_atoms]].coord[i_coord])
	for i_coord in range(3):
	  newline=newline+'{0:10.4f}'.format(eig_vec[(i_atoms)*3+i_coord,i])
	  if options.molden: newline_molden=newline_molden+'{0:10.4f}'.format(
	                     eig_vec[(i_atoms)*3+i_coord,i]/bohr)
	newline=newline+'\n'
	if options.molden: newline_molden=newline_molden+'\n'
      for i_atoms in range(n_atoms-n_constrained):
	newline=newline+'{0:6}'.format(struc.atoms[nums2[i_atoms]].kind)
	for i_coord in range(3):
	  newline=newline+'{0:10.4f}'.format(
	                           struc.atoms[nums2[i_atoms]].coord[i_coord])
	for i_coord in range(3):
	  newline=newline+'{0:10.4f}'.format(0.0)
	newline=newline+'\n'
      newline_ir=newline_ir+'{0:10.4e}\n'.format(infrared_intensity[i])
    xyz=open(xyzfile,'w')
    xyz.writelines(newline)
    xyz.close()
    ir=open(irname,'w')
    ir.writelines(newline_ir)
    ir.close()
    if options.molden:
      molden=open(moldenname,'w')
      molden.writelines(newline_molden)
      molden.close()
    
    if (mode=='1' or mode=='2') and options.plot:
      x=linspace(freq.min()-500,freq.max()+500,1000)
      z=zeros(len(x))
      for i in range(len(freq)):
	z[argmin(abs(x-freq[i]))]=infrared_intensity[i]
      window_len=150
      lorentzian=lorentz(pi,broadening,arange(250))#signal.gaussian(window_len,broadening)
      s=r_[z[window_len-1:0:-1],z,z[-1:-window_len:-1]]
      z_convolve=convolve(lorentzian/lorentzian.sum(),s,mode='same')[
	                                           window_len-1:-window_len+1]
      fig=figure(0)
      ax=fig.add_subplot(111)
      ax.plot(x,z_convolve,'r',lw=2)
      ax.set_xlim([freq.min()-500,freq.max()+500])
      ax.set_ylim([-0.01,ax.get_ylim()[1]])
      ax.set_yticks([])
      ax.set_xlabel('Frequency [1/cm]',size=20)
      ax.set_ylabel('Intensity [a.u.]',size=20)
      fig.savefig(name+'_IR_spectrum.pdf')
      
    print '\n Done. '