def write_likelihood_data(filename, coincparamsdistributions, seglists, verbose=False): utils.write_filename(ligolw_burca_tailor.gen_likelihood_control( coincparamsdistributions, seglists, name=u"string_cusp_likelihood"), filename, verbose=verbose, gz=(filename or "stdout").endswith(".gz"))
): distributions.add_injection(double_params_func(coincs, timeslide)) x_back_param.append(math.sqrt((coincs.H1.get_effective_snr()) ** 2 + (coincs.L1.get_effective_snr()) ** 2)) elif ( opts.statistic == "effective_snr" and opts.coincs == "H2L1" and hasattr(coincs, "H2") and hasattr(coincs, "L1") ): distributions.add_injection(double_params_func(coincs, timeslide)) x_back_param.append(math.sqrt((coincs.H2.get_effective_snr()) ** 2 + (coincs.L1.get_effective_snr()) ** 2)) X_back_param = asarray(x_back_param) ############################################################################# # Finish Smoothening of the Data using Gaussian Filter ############################################################################# xmldoc = ligolw_burca_tailor.gen_likelihood_control(distributions) utils.write_filename(xmldoc, "distributions.xml") distributions.finish() # 3########################################################################### # Construction of Histrogram ############################################################################# p = arange(0, 50.0, 1.0) X_Inj_norm = hist(X_inj_param, p)[0] * 1.0 / max(hist(X_back_param, p)[0]) clf() X_Back_norm = hist(X_back_param, p)[0] * 1.0 / max(hist(X_back_param, p)[0]) clf() ##########################################################################
def write_likelihood_data(filename, coincparamsdistributions, seglists, verbose = False): utils.write_filename(ligolw_burca_tailor.gen_likelihood_control(coincparamsdistributions, seglists, name = u"string_cusp_likelihood"), filename, verbose = verbose, gz = (filename or "stdout").endswith(".gz"))
elif opts.statistic == 'effective_snr' and opts.coincs == "H1L1" and hasattr(coincs, "H1") and hasattr(coincs, "L1"): distributions.add_injection(double_params_func(coincs, timeslide)) x_back_param.append(math.sqrt((coincs.H1.get_effective_snr())**2 + (coincs.L1.get_effective_snr())**2)) elif opts.statistic == 'effective_snr' and opts.coincs == "H2L1" and hasattr(coincs, "H2") and hasattr(coincs, "L1"): distributions.add_injection(double_params_func(coincs, timeslide)) x_back_param.append(math.sqrt((coincs.H2.get_effective_snr())**2 + (coincs.L1.get_effective_snr())**2)) X_back_param = asarray(x_back_param) ############################################################################# # Finish Smoothening of the Data using Gaussian Filter ############################################################################# xmldoc = ligolw_burca_tailor.gen_likelihood_control(distributions) utils.write_filename(xmldoc, "distributions.xml") distributions.finish() #3########################################################################### # Construction of Histrogram ############################################################################# p = arange(0, 50.0, 1.0) X_Inj_norm = hist(X_inj_param,p)[0]*1.0/max(hist(X_back_param,p)[0]) clf() X_Back_norm = hist(X_back_param,p)[0]*1.0/max(hist(X_back_param,p)[0]) clf() ##########################################################################