def cnn_run_dropout_maxout(data_path, num_rows, num_cols, num_channels, input_path, pred_path): t = time.time() sub_window = gen_center_sub_window(76, num_cols) trn = SarDataset(ds[0][0], ds[0][1], sub_window) vld = SarDataset(ds[1][0], ds[1][1], sub_window) tst = SarDataset(ds[2][0], ds[2][1], sub_window) print 'Take {}s to read data'.format(time.time() - t) t = time.time() batch_size = 100 h1 = maxout.Maxout(layer_name='h2', num_units=1, num_pieces=100, irange=.1) hidden_layer = mlp.ConvRectifiedLinear(layer_name='h2', output_channels=8, irange=0.05, kernel_shape=[5, 5], pool_shape=[2, 2], pool_stride=[2, 2], max_kernel_norm=1.9365) hidden_layer2 = mlp.ConvRectifiedLinear(layer_name='h3', output_channels=8, irange=0.05, kernel_shape=[5, 5], pool_shape=[2, 2], pool_stride=[2, 2], max_kernel_norm=1.9365) #output_layer = mlp.Softplus(dim=1,layer_name='output',irange=0.1) output_layer = mlp.Linear(dim=1, layer_name='output', irange=0.05) trainer = sgd.SGD(learning_rate=0.001, batch_size=100, termination_criterion=EpochCounter(2000), cost=dropout.Dropout(), train_iteration_mode='even_shuffled_sequential', monitor_iteration_mode='even_shuffled_sequential', monitoring_dataset={ 'test': tst, 'valid': vld, 'train': trn }) layers = [hidden_layer, hidden_layer2, output_layer] input_space = space.Conv2DSpace(shape=[num_rows, num_cols], num_channels=num_channels) ann = mlp.MLP(layers, input_space=input_space, batch_size=batch_size) watcher = best_params.MonitorBasedSaveBest(channel_name='valid_objective', save_path='sar_cnn_mlp.pkl') experiment = Train(dataset=trn, model=ann, algorithm=trainer, extensions=[watcher]) print 'Take {}s to compile code'.format(time.time() - t) t = time.time() experiment.main_loop() print 'Training time: {}s'.format(time.time() - t) serial.save('cnn_hhv_{0}_{1}.pkl'.format(num_rows, num_cols), ann, on_overwrite='backup') #read hh and hv into a 3D numpy image = read_hhv(input_path) return ann, sar_predict(ann, image, pred_path)
#serial.save(DATA_DIR+'cae6_005_pretrained.pkl', stack) # construct DBN dbn = construct_dbn_from_stack(stack) # train DBN if submission: traindata = sup_data[2] validdata = sup_data[2] else: traindata = sup_data[0] validdata = sup_data[1] cost = dropout.Dropout(input_include_probs={'h0': 0.5}, input_scales={'h0': 1. / 0.5}, default_input_include_prob=0.5, default_input_scale=1. / 0.5) # finetune softmax layer a bit finetuner = get_finetuner(dbn, cost, traindata, validdata, batch_size, iters=100) finetuner.main_loop() # now finetune layer-by-layer lrs = [5., 2., 1., 0.5, 0.25] for ii, lr in zip(range(len(structure) - 1), lrs): # set lr to boosted value for current layer
def main(): base_name = sys.argv[1] #文件名前缀 n_epoch = int(sys.argv[2]) # epoch次数 n_hidden = int(sys.argv[3]) # 隐含层节点数 include_rate = float(sys.argv[4]) # 包含率(1-dropout) in_size = 943 # 输入层节点数目 out_size = 4760 #输出层节点数 b_size = 200 #batch的大小 l_rate = 5e-4 #学习速率 l_rate_min = 1e-5 #学习速率最小值 decay_factor = 0.9 # lr_scale = 3.0 # momentum = 0.5 #摄动因子 init_vals = np.sqrt(6.0/(np.array([in_size, n_hidden])+np.array([n_hidden, out_size]))) print 'loading data...' #读取数据Train,Validation,Test X_tr = np.load('bgedv2_X_tr_float64.npy') Y_tr = np.load('bgedv2_Y_tr_0-4760_float64.npy') Y_tr_target = np.array(Y_tr) X_va = np.load('bgedv2_X_va_float64.npy') Y_va = np.load('bgedv2_Y_va_0-4760_float64.npy') Y_va_target = np.array(Y_va) X_te = np.load('bgedv2_X_te_float64.npy') Y_te = np.load('bgedv2_Y_te_0-4760_float64.npy') Y_te_target = np.array(Y_te) X_1000G = np.load('1000G_X_float64.npy') Y_1000G = np.load('1000G_Y_0-4760_float64.npy') Y_1000G_target = np.array(Y_1000G) X_GTEx = np.load('GTEx_X_float64.npy') Y_GTEx = np.load('GTEx_Y_0-4760_float64.npy') Y_GTEx_target = np.array(Y_GTEx) #随机化 random.seed(0) #随机抽取5000样本进行训练 monitor_idx_tr = random.sample(range(88807), 5000) #将数据X,Y整合成DensenMatrix类型 data_tr = p2_dt_dd.DenseDesignMatrix(X=X_tr.astype('float32'), y=Y_tr.astype('float32')) #取出X中对应5000样本进行训练 X_tr_monitor, Y_tr_monitor_target = X_tr[monitor_idx_tr, :], Y_tr_target[monitor_idx_tr, :] #设置多层感知机的隐含层计算方式 h1_layer = p2_md_mlp.Tanh(layer_name='h1', dim=n_hidden, irange=init_vals[0], W_lr_scale=1.0, b_lr_scale=1.0) #设置多层感知机的输出层计算方式 o_layer = p2_md_mlp.Linear(layer_name='y', dim=out_size, irange=0.0001, W_lr_scale=lr_scale, b_lr_scale=1.0) #设置好模型 model = p2_md_mlp.MLP(nvis=in_size, layers=[h1_layer, o_layer], seed=1) #设置dropout比例 dropout_cost = p2_ct_mlp_dropout.Dropout(input_include_probs={'h1':1.0, 'y':include_rate}, input_scales={'h1':1.0, 'y':np.float32(1.0/include_rate)}) #设置训练算法(batch大小,学习速率,学习规则,终止条件,dropout比例) algorithm = p2_alg_sgd.SGD(batch_size=b_size, learning_rate=l_rate, learning_rule = p2_alg_lr.Momentum(momentum), termination_criterion=p2_termcri.EpochCounter(max_epochs=1000), cost=dropout_cost) #设置训练类(数据集,训练模型,训练算法) train = pylearn2.train.Train(dataset=data_tr, model=model, algorithm=algorithm) train.setup() x = T.matrix() y = model.fprop(x) #训练好的模型对X的预测值 f = theano.function([x], y) MAE_va_old = 10.0 MAE_va_best = 10.0 MAE_tr_old = 10.0 MAE_te_old = 10.0 MAE_1000G_old = 10.0 MAE_1000G_best = 10.0 MAE_GTEx_old = 10.0 outlog = open(base_name + '.log', 'w') log_str = '\t'.join(map(str, ['epoch', 'MAE_va', 'MAE_va_change', 'MAE_te', 'MAE_te_change', 'MAE_1000G', 'MAE_1000G_change', 'MAE_GTEx', 'MAE_GTEx_change', 'MAE_tr', 'MAE_tr_change', 'learing_rate', 'time(sec)'])) print log_str outlog.write(log_str + '\n') sys.stdout.flush() #刷新缓冲区 for epoch in range(0, n_epoch): t_old = time.time() #开始时间 train.algorithm.train(train.dataset)#训练 #计算不同数据集预测值 Y_va_hat = f(X_va.astype('float32')).astype('float64') Y_te_hat = f(X_te.astype('float32')).astype('float64') Y_tr_hat_monitor = f(X_tr_monitor.astype('float32')).astype('float64') Y_1000G_hat = f(X_1000G.astype('float32')).astype('float64') Y_GTEx_hat = f(X_GTEx.astype('float32')).astype('float64') #计算预测值与真实值的MAE MAE_va = np.abs(Y_va_target - Y_va_hat).mean() MAE_te = np.abs(Y_te_target - Y_te_hat).mean() MAE_tr = np.abs(Y_tr_monitor_target - Y_tr_hat_monitor).mean() MAE_1000G = np.abs(Y_1000G_target - Y_1000G_hat).mean() MAE_GTEx = np.abs(Y_GTEx_target - Y_GTEx_hat).mean() #计算迭代误差 MAE_va_change = (MAE_va - MAE_va_old)/MAE_va_old MAE_te_change = (MAE_te - MAE_te_old)/MAE_te_old MAE_tr_change = (MAE_tr - MAE_tr_old)/MAE_tr_old MAE_1000G_change = (MAE_1000G - MAE_1000G_old)/MAE_1000G_old MAE_GTEx_change = (MAE_GTEx - MAE_GTEx_old)/MAE_GTEx_old #更新MAE MAE_va_old = MAE_va MAE_te_old = MAE_te MAE_tr_old = MAE_tr MAE_1000G_old = MAE_1000G MAE_GTEx_old = MAE_GTEx t_new = time.time() #终止时间 l_rate = train.algorithm.learning_rate.get_value() log_str = '\t'.join(map(str, [epoch+1, '%.6f'%MAE_va, '%.6f'%MAE_va_change, '%.6f'%MAE_te, '%.6f'%MAE_te_change, '%.6f'%MAE_1000G, '%.6f'%MAE_1000G_change, '%.6f'%MAE_GTEx, '%.6f'%MAE_GTEx_change, '%.6f'%MAE_tr, '%.6f'%MAE_tr_change, '%.5f'%l_rate, int(t_new-t_old)])) print log_str outlog.write(log_str + '\n') sys.stdout.flush() if MAE_tr_change > 0: #如果误差增大,减小学习速率 l_rate = l_rate*decay_factor if l_rate < l_rate_min: #学习速率最小为l_rate_min l_rate = l_rate_min train.algorithm.learning_rate.set_value(np.float32(l_rate)) #更改训练类的学习速率参数 #更新Validation误差值 if MAE_va < MAE_va_best: MAE_va_best = MAE_va outmodel = open(base_name + '_bestva_model.pkl', 'wb') pkl.dump(model, outmodel) outmodel.close() np.save(base_name + '_bestva_Y_te_hat.npy', Y_te_hat) np.save(base_name + '_bestva_Y_va_hat.npy', Y_va_hat) #更新1000G误差值 if MAE_1000G < MAE_1000G_best: MAE_1000G_best = MAE_1000G outmodel = open(base_name + '_best1000G_model.pkl', 'wb') pkl.dump(model, outmodel) outmodel.close() np.save(base_name + '_best1000G_Y_1000G_hat.npy', Y_1000G_hat) np.save(base_name + '_best1000G_Y_GTEx_hat.npy', Y_GTEx_hat) print 'MAE_va_best : %.6f' % (MAE_va_best) print 'MAE_1000G_best : %.6f' % (MAE_1000G_best) outlog.write('MAE_va_best : %.6f' % (MAE_va_best) + '\n') outlog.write('MAE_1000G_best : %.6f' % (MAE_1000G_best) + '\n') outlog.close()
def train(d): print 'Creating dataset' # load mnist here # X = d.train_X # y = d.train_Y # test_X = d.test_X # test_Y = d.test_Y # nb_classes = len(np.unique(y)) # train_y = convert_one_hot(y) # train_set = DenseDesignMatrix(X=X, y=y) train = DenseDesignMatrix(X=d.train_X, y=convert_one_hot(d.train_Y)) valid = DenseDesignMatrix(X=d.valid_X, y=convert_one_hot(d.valid_Y)) test = DenseDesignMatrix(X=d.test_X, y=convert_one_hot(d.test_Y)) print 'Setting up' batch_size = 1000 conv = mlp.ConvRectifiedLinear( layer_name='c0', output_channels=20, irange=.05, kernel_shape=[5, 5], pool_shape=[4, 4], pool_stride=[2, 2], # W_lr_scale=0.25, max_kernel_norm=1.9365) mout = MaxoutConvC01B(layer_name='m0', num_pieces=4, num_channels=96, irange=.05, kernel_shape=[5, 5], pool_shape=[4, 4], pool_stride=[2, 2], W_lr_scale=0.25, max_kernel_norm=1.9365) mout2 = MaxoutConvC01B(layer_name='m1', num_pieces=4, num_channels=96, irange=.05, kernel_shape=[5, 5], pool_shape=[4, 4], pool_stride=[2, 2], W_lr_scale=0.25, max_kernel_norm=1.9365) sigmoid = mlp.Sigmoid( layer_name='Sigmoid', dim=500, sparse_init=15, ) smax = mlp.Softmax(layer_name='y', n_classes=10, irange=0.) in_space = Conv2DSpace(shape=[28, 28], num_channels=1, axes=['c', 0, 1, 'b']) net = mlp.MLP( layers=[mout, mout2, smax], input_space=in_space, # nvis=784, ) trainer = bgd.BGD(batch_size=batch_size, line_search_mode='exhaustive', conjugate=1, updates_per_batch=10, monitoring_dataset={ 'train': train, 'valid': valid, 'test': test }, termination_criterion=termination_criteria.MonitorBased( channel_name='valid_y_misclass')) trainer = sgd.SGD(learning_rate=0.15, cost=dropout.Dropout(), batch_size=batch_size, monitoring_dataset={ 'train': train, 'valid': valid, 'test': test }, termination_criterion=termination_criteria.MonitorBased( channel_name='valid_y_misclass')) trainer.setup(net, train) epoch = 0 while True: print 'Training...', epoch trainer.train(dataset=train) net.monitor() epoch += 1
def main(): base_name = sys.argv[ 1] # 获取第一个参数 sys.argv[ ]记录(获取)命令行参数 sys(system) argv(argument variable)参数变量,该变量为list列表 n_epoch = int(sys.argv[2]) #获取第二个参数 n_hidden = int(sys.argv[3]) #获取第三个参数作为隐层神经元个数 include_rate = float(sys.argv[4]) in_size = 1001 #输入层神经元个数(标记基因个数) out_size = 1 #输出层神经元个数 b_size = 200 #偏差值 l_rate = 5e-4 #学习速率 l_rate_min = 1e-5 #学习速率最小值 decay_factor = 0.9 #衰减因数 lr_scale = 3.0 momentum = 0.5 init_vals = np.sqrt(6.0 / (np.array([in_size, n_hidden]) + np.array([n_hidden, out_size]))) #初始值,返回平方根 print 'loading data...' #显示载入数据 X_tr = np.load( 'geno_X_tr_float64.npy') # tr(traing)以numpy专用二进制类型保存训练数据集的数据 Y_tr = np.load('pheno_Y_tr_0-4760_float64.npy') Y_tr_pheno = np.array(Y_tr) X_va = np.load( 'geno_X_va_float64.npy') #验证集(模型选择,在学习到不同复杂度的模型中,选择对验证集有最小预测误差的模型) Y_va = np.load('pheno_Y_va_0-4760_float64.npy') Y_va_target = np.array(Y_va) X_te = np.load('geno_te_float64.npy') #测试集(对学习方法的评估) Y_te = np.load('pheno_Y_te_0-4760_float64.npy') Y_te_target = np.array(Y_te) random.seed(0) #设置生成随机数用的整数起始值。调用任何其他random模块函数之前调用这个函数 monitor_idx_tr = random.sample(range(88807), 5000) #监测训练 #将训练数据集类型设为32位浮点型,The DenseDesignMatrix class and related code Functionality for representing data that can be described as a dense matrix (rather than a sparse matrix) with each row containing an example and each column corresponding to a different feature. data_tr = p2_dt_dd.DenseDesignMatrix(X=X_tr.astype('float32'), y=Y_tr.astype('float32')) X_tr_monitor, Y_tr_monitor_target = X_tr[monitor_idx_tr, :], Y_tr_target[ monitor_idx_tr, :] #一个隐层,用Tanh()作激活函数; 输出层用线性函数作激活函数 h1_layer = p2_md_mlp.Tanh(layer_name='h1', dim=n_hidden, irange=init_vals[0], W_lr_scale=1.0, b_lr_scale=1.0) o_layer = p2_md_mlp.Linear(layer_name='y', dim=out_size, irange=0.0001, W_lr_scale=lr_scale, b_lr_scale=1.0) #Multilayer Perceptron;nvis(Number of “visible units” input units) layers(a list of layer objects,最后1层指定MLP的输出空间) model = p2_md_mlp.MLP(nvis=in_size, layers=[h1_layer, o_layer], seed=1) dropout_cost = p2_ct_mlp_dropout.Dropout(input_include_probs={ 'h1': 1.0, 'y': include_rate }, input_scales={ 'h1': 1.0, 'y': np.float32(1.0 / include_rate) }) #随机梯度下降法 algorithm = p2_alg_sgd.SGD( batch_size=b_size, learning_rate=l_rate, learning_rule=p2_alg_lr.Momentum(momentum), termination_criterion=p2_termcri.EpochCounter(max_epochs=1000), cost=dropout_cost) #训练 根据前面的定义 :dataset为一个密集型矩阵,model为MLP多层神经网络,algorithm为SGD train = pylearn2.train.Train(dataset=data_tr, model=model, algorithm=algorithm) train.setup() x = T.matrix() #定义为一个二维数组 #fprop(state_below) does the forward prop transformation y = model.fprop(x) f = theano.function([x], y) #定义一个function函数,输入为x,输出为y MAE_va_old = 10.0 #平均绝对误差 MAE_va_best = 10.0 MAE_tr_old = 10.0 #训练误差 MAE_te_old = 10.0 MAE_1000G_old = 10.0 MAE_1000G_best = 10.0 MAE_GTEx_old = 10.0 #base_name = sys.argv[1] # 获取第一个参数 sys.argv[ ]记录(获取)命令行参数 outlog = open(base_name + '.log', 'w') log_str = '\t'.join( map(str, [ 'epoch', 'MAE_va', 'MAE_va_change', 'MAE_te', 'MAE_te_change', 'MAE_tr', 'MAE_tr_change', 'learing_rate', 'time(sec)' ])) print log_str #输出运行日志 outlog.write(log_str + '\n') #Python的标准输出缓冲(这意味着它收集“写入”标准出来之前,将其写入到终端的数据)。调用sys.stdout.flush()强制其“缓冲 sys.stdout.flush() for epoch in range(0, n_epoch): t_old = time.time() train.algorithm.train(train.dataset) Y_va_hat = f(X_va.astype('float32')).astype('float64') Y_te_hat = f(X_te.astype('float32')).astype('float64') Y_tr_hat_monitor = f(X_tr_monitor.astype('float32')).astype('float64') #计算平均绝对误差 MAE_va = np.abs(Y_va_target - Y_va_hat).mean() MAE_te = np.abs(Y_te_target - Y_te_hat).mean() MAE_tr = np.abs(Y_tr_monitor_target - Y_tr_hat_monitor).mean() #误差变换率 MAE_va_change = (MAE_va - MAE_va_old) / MAE_va_old MAE_te_change = (MAE_te - MAE_te_old) / MAE_te_old MAE_tr_change = (MAE_tr - MAE_tr_old) / MAE_tr_old #将old误差值更新为当前误差值 MAE_va_old = MAE_va MAE_te_old = MAE_te MAE_tr_old = MAE_tr #返回当前的时间戳(1970纪元后经过的浮点秒数) t_new = time.time() l_rate = train.algorithm.learning_rate.get_value() log_str = '\t'.join( map(str, [ epoch + 1, '%.6f' % MAE_va, '%.6f' % MAE_va_change, '%.6f' % MAE_te, '%.6f' % MAE_te_change, '%.6f' % MAE_tr, '%.6f' % MAE_tr_change, '%.5f' % l_rate, int(t_new - t_old) ])) print log_str outlog.write(log_str + '\n') sys.stdout.flush() if MAE_tr_change > 0: #训练误差变换率大于0时,学习速率乘上一个衰减因子 l_rate = l_rate * decay_factor if l_rate < l_rate_min: #学习速率小于最小速率时,更新为最小速率 l_rate = l_rate_min train.algorithm.learning_rate.set_value(np.float32(l_rate)) if MAE_va < MAE_va_best: MAE_va_best = MAE_va outmodel = open(base_name + '_bestva_model.pkl', 'wb') pkl.dump(model, outmodel) outmodel.close() np.save(base_name + '_bestva_Y_te_hat.npy', Y_te_hat) np.save(base_name + '_bestva_Y_va_hat.npy', Y_va_hat) print 'MAE_va_best : %.6f' % (MAE_va_best) outlog.write('MAE_va_best : %.6f' % (MAE_va_best) + '\n') outlog.close()
def main(): base_name = sys.argv[1] n_epoch = int(sys.argv[2]) n_hidden = int(sys.argv[3]) include_rate = float(sys.argv[4]) in_size = 943 out_size = 4760 b_size = 200 l_rate = 3e-4 l_rate_min = 1e-5 decay_factor = 0.9 lr_scale = 3.0 momentum = 0.5 init_vals = np.sqrt(6.0/(np.array([in_size, n_hidden, n_hidden, n_hidden])+np.array([n_hidden, n_hidden, n_hidden, out_size]))) print 'loading data...' X_tr = np.load('bgedv2_X_tr_float64.npy') Y_tr = np.load('bgedv2_Y_tr_4760-9520_float64.npy') Y_tr_target = np.array(Y_tr) X_va = np.load('bgedv2_X_va_float64.npy') Y_va = np.load('bgedv2_Y_va_4760-9520_float64.npy') Y_va_target = np.array(Y_va) X_te = np.load('bgedv2_X_te_float64.npy') Y_te = np.load('bgedv2_Y_te_4760-9520_float64.npy') Y_te_target = np.array(Y_te) X_1000G = np.load('1000G_X_float64.npy') Y_1000G = np.load('1000G_Y_4760-9520_float64.npy') Y_1000G_target = np.array(Y_1000G) X_GTEx = np.load('GTEx_X_float64.npy') Y_GTEx = np.load('GTEx_Y_4760-9520_float64.npy') Y_GTEx_target = np.array(Y_GTEx) random.seed(0) monitor_idx_tr = random.sample(range(88807), 5000) data_tr = p2_dt_dd.DenseDesignMatrix(X=X_tr.astype('float32'), y=Y_tr.astype('float32')) X_tr_monitor, Y_tr_monitor_target = X_tr[monitor_idx_tr, :], Y_tr_target[monitor_idx_tr, :] h1_layer = p2_md_mlp.Tanh(layer_name='h1', dim=n_hidden, irange=init_vals[0], W_lr_scale=1.0, b_lr_scale=1.0) h2_layer = p2_md_mlp.Tanh(layer_name='h2', dim=n_hidden, irange=init_vals[1], W_lr_scale=lr_scale, b_lr_scale=1.0) h3_layer = p2_md_mlp.Tanh(layer_name='h3', dim=n_hidden, irange=init_vals[2], W_lr_scale=lr_scale, b_lr_scale=1.0) o_layer = p2_md_mlp.Linear(layer_name='y', dim=out_size, irange=0.0001, W_lr_scale=lr_scale, b_lr_scale=1.0) model = p2_md_mlp.MLP(nvis=in_size, layers=[h1_layer, h2_layer, h3_layer, o_layer], seed=1) dropout_cost = p2_ct_mlp_dropout.Dropout(input_include_probs={'h1':1.0, 'h2':include_rate, 'h3':include_rate, 'y':include_rate}, input_scales={'h1':1.0, 'h2':np.float32(1.0/include_rate), 'h3':np.float32(1.0/include_rate), 'y':np.float32(1.0/include_rate)}) algorithm = p2_alg_sgd.SGD(batch_size=b_size, learning_rate=l_rate, learning_rule = p2_alg_lr.Momentum(momentum), termination_criterion=p2_termcri.EpochCounter(max_epochs=1000), cost=dropout_cost) train = pylearn2.train.Train(dataset=data_tr, model=model, algorithm=algorithm) train.setup() x = T.matrix() y = model.fprop(x) f = theano.function([x], y) MAE_va_old = 10.0 MAE_va_best = 10.0 MAE_tr_old = 10.0 MAE_te_old = 10.0 MAE_1000G_old = 10.0 MAE_1000G_best = 10.0 MAE_GTEx_old = 10.0 outlog = open(base_name + '.log', 'w') log_str = '\t'.join(map(str, ['epoch', 'MAE_va', 'MAE_va_change', 'MAE_te', 'MAE_te_change', 'MAE_1000G', 'MAE_1000G_change', 'MAE_GTEx', 'MAE_GTEx_change', 'MAE_tr', 'MAE_tr_change', 'learing_rate', 'time(sec)'])) print log_str outlog.write(log_str + '\n') sys.stdout.flush() for epoch in range(0, n_epoch): t_old = time.time() train.algorithm.train(train.dataset) Y_va_hat = f(X_va.astype('float32')).astype('float64') Y_te_hat = f(X_te.astype('float32')).astype('float64') Y_tr_hat_monitor = f(X_tr_monitor.astype('float32')).astype('float64') Y_1000G_hat = f(X_1000G.astype('float32')).astype('float64') Y_GTEx_hat = f(X_GTEx.astype('float32')).astype('float64') MAE_va = np.abs(Y_va_target - Y_va_hat).mean() MAE_te = np.abs(Y_te_target - Y_te_hat).mean() MAE_tr = np.abs(Y_tr_monitor_target - Y_tr_hat_monitor).mean() MAE_1000G = np.abs(Y_1000G_target - Y_1000G_hat).mean() MAE_GTEx = np.abs(Y_GTEx_target - Y_GTEx_hat).mean() MAE_va_change = (MAE_va - MAE_va_old)/MAE_va_old MAE_te_change = (MAE_te - MAE_te_old)/MAE_te_old MAE_tr_change = (MAE_tr - MAE_tr_old)/MAE_tr_old MAE_1000G_change = (MAE_1000G - MAE_1000G_old)/MAE_1000G_old MAE_GTEx_change = (MAE_GTEx - MAE_GTEx_old)/MAE_GTEx_old MAE_va_old = MAE_va MAE_te_old = MAE_te MAE_tr_old = MAE_tr MAE_1000G_old = MAE_1000G MAE_GTEx_old = MAE_GTEx t_new = time.time() l_rate = train.algorithm.learning_rate.get_value() log_str = '\t'.join(map(str, [epoch+1, '%.6f'%MAE_va, '%.6f'%MAE_va_change, '%.6f'%MAE_te, '%.6f'%MAE_te_change, '%.6f'%MAE_1000G, '%.6f'%MAE_1000G_change, '%.6f'%MAE_GTEx, '%.6f'%MAE_GTEx_change, '%.6f'%MAE_tr, '%.6f'%MAE_tr_change, '%.5f'%l_rate, int(t_new-t_old)])) print log_str outlog.write(log_str + '\n') sys.stdout.flush() if MAE_tr_change > 0: l_rate = l_rate*decay_factor if l_rate < l_rate_min: l_rate = l_rate_min train.algorithm.learning_rate.set_value(np.float32(l_rate)) if MAE_va < MAE_va_best: MAE_va_best = MAE_va outmodel = open(base_name + '_bestva_model.pkl', 'wb') pkl.dump(model, outmodel) outmodel.close() np.save(base_name + '_bestva_Y_te_hat.npy', Y_te_hat) np.save(base_name + '_bestva_Y_va_hat.npy', Y_va_hat) if MAE_1000G < MAE_1000G_best: MAE_1000G_best = MAE_1000G outmodel = open(base_name + '_best1000G_model.pkl', 'wb') pkl.dump(model, outmodel) outmodel.close() np.save(base_name + '_best1000G_Y_1000G_hat.npy', Y_1000G_hat) np.save(base_name + '_best1000G_Y_GTEx_hat.npy', Y_GTEx_hat) print 'MAE_va_best : %.6f' % (MAE_va_best) print 'MAE_1000G_best : %.6f' % (MAE_1000G_best) outlog.write('MAE_va_best : %.6f' % (MAE_va_best) + '\n') outlog.write('MAE_1000G_best : %.6f' % (MAE_1000G_best) + '\n') outlog.close()
Y_te_target = np.array(Y_te) random.seed(0) #设置生成随机数用的整数起始值。调用任何其他random模块函数之前调用这个函数 monitor_idx_tr = random.sample(range(88807), 5000) #监测训练 #将训练数据集类型设为32位浮点型,The DenseDesignMatrix class and related code Functionality for representing data that can be described as a dense matrix (rather than a sparse matrix) with each row containing an example and each column corresponding to a different feature. data_tr = p2_dt_dd.DenseDesignMatrix(X=X_tr.astype('float32'), y=Y_tr.astype('float32')) X_tr_monitor, Y_tr_monitor_target = X_tr[monitor_idx_tr, :], Y_tr_target[monitor_idx_tr, :] #一个隐层,用Tanh()作激活函数; 输出层用线性函数作激活函数 h1_layer = p2_md_mlp.Tanh(layer_name='h1', dim=n_hidden, irange=init_vals[0], W_lr_scale=1.0, b_lr_scale=1.0) o_layer = p2_md_mlp.Linear(layer_name='y', dim=out_size, irange=0.0001, W_lr_scale=lr_scale, b_lr_scale=1.0) #Multilayer Perceptron;nvis(Number of “visible units” input units) layers(a list of layer objects,最后1层指定MLP的输出空间) model = p2_md_mlp.MLP(nvis=in_size, layers=[h1_layer, o_layer], seed=1) dropout_cost = p2_ct_mlp_dropout.Dropout(input_include_probs={'h1':1.0, 'y':include_rate}, input_scales={'h1':1.0, 'y':np.float32(1.0/include_rate)}) #随机梯度下降法 algorithm = p2_alg_sgd.SGD(batch_size=b_size, learning_rate=l_rate, learning_rule = p2_alg_lr.Momentum(momentum), termination_criterion=p2_termcri.EpochCounter(max_epochs=1000), cost=dropout_cost) #训练 根据前面的定义 :dataset为一个密集型矩阵,model为MLP多层神经网络,algorithm为SGD train = pylearn2.train.Train(dataset=data_tr, model=model, algorithm=algorithm) train.setup() x = T.matrix() #定义为一个二维数组 #fprop(state_below) does the forward prop transformation y = model.fprop(x) f = theano.function([x], y) #定义一个function函数,输入为x,输出为y