def Radon3D(taxis, hyaxis, hxaxis, pyaxis, pxaxis, kind='linear', centeredh=True, interp=True, onthefly=False, engine='numpy', dtype='float64'): r"""Three dimensional Radon transform. Apply three dimensional Radon forward (and adjoint) transform to a 3-dimensional array of size :math:`[n_{py} \times n_{px} \times n_t]` (and :math:`[n_y \times n_x \times n_t]`). In forward mode this entails to spreading the model vector along parametric curves (lines, parabolas, or hyperbolas depending on the choice of ``kind``), while stacking values in the data vector along the same parametric curves is performed in adjoint mode. Parameters ---------- taxis : :obj:`np.ndarray` Time axis hxaxis : :obj:`np.ndarray` Fast patial axis hyaxis : :obj:`np.ndarray` Slow spatial axis pyaxis : :obj:`np.ndarray` Axis of scanning variable :math:`p_y` of parametric curve pxaxis : :obj:`np.ndarray` Axis of scanning variable :math:`p_x` of parametric curve kind : :obj:`str`, optional Curve to be used for stacking/spreading (``linear``, ``parabolic``, and ``hyperbolic`` are currently supported) centeredh : :obj:`bool`, optional Assume centered spatial axis (``True``) or not (``False``) interp : :obj:`bool`, optional Apply linear interpolation (``True``) or nearest interpolation (``False``) during stacking/spreading along parametric curve onthefly : :obj:`bool`, optional Compute stacking parametric curves on-the-fly as part of forward and adjoint modelling (``True``) or at initialization and store them in look-up table (``False``). Using a look-up table is computationally more efficient but increases the memory burden engine : :obj:`str`, optional Engine used for computation (``numpy`` or ``numba``) dtype : :obj:`str`, optional Type of elements in input array. Returns ------- r3op : :obj:`pylops.LinearOperator` Radon operator Raises ------ KeyError If ``engine`` is neither ``numpy`` nor ``numba`` NotImplementedError If ``kind`` is not ``linear``, ``parabolic``, or ``hyperbolic`` See Also -------- pylops.signalprocessing.Radon2D: Two dimensional Radon transform pylops.Spread: Spread operator Notes ----- The Radon3D operator applies the following linear transform in adjoint mode to the data after reshaping it into a 3-dimensional array of size :math:`[n_y \times n_x \times n_t]` in adjoint mode: .. math:: m(p_y, p_x, t_0) = \int{d(y, x, t = f(p_y, p_x, y, x, t))} dx dy where :math:`f(p_y, p_x, y, x, t) = t_0 + p_y * y + p_x * x` in linear mode, :math:`f(p_y, p_x, y, x, t) = t_0 + p_y * y^2 + p_x * x^2` in parabolic mode, and :math:`f(p_y, p_x, y, x, t) = \sqrt{t_0^2 + y^2 / p_y^2 + x^2 / p_x^2}` in hyperbolic mode. Note that internally the :math:`p_x` and :math:`p_y` axes will be normalized by the ratio of the spatial and time axes and used alongside unitless axes. Whilst this makes the linear mode fully unitless, users are required to apply additional scalings to the :math:`p_x` axis for other relationships (e.g., :math:`p_x` should be pre-multipled by :math:`(d_t/d_x)^2` for the hyperbolic relationship). As the adjoint operator can be interpreted as a repeated summation of sets of elements of the model vector along chosen parametric curves, the forward is implemented as spreading of values in the data vector along the same parametric curves. This operator is actually a thin wrapper around the :class:`pylops.Spread` operator. """ # engine if not engine in ['numpy', 'numba']: raise KeyError('engine must be numpy or numba') if engine == 'numba' and jit is None: engine = 'numpy' # axes nt, nhy, nhx = taxis.size, hyaxis.size, hxaxis.size npy, npx = pyaxis.size, pxaxis.size if kind == 'linear': f = _linear if engine == 'numpy' else _linear_numba elif kind == 'parabolic': f = _parabolic if engine == 'numpy' else _parabolic_numba elif kind == 'hyperbolic': f = _hyperbolic if engine == 'numpy' else _hyperbolic_numba else: raise NotImplementedError('kind must be linear, ' 'parabolic, or hyperbolic...') # make axes unitless dpy = (np.abs(hyaxis[1] - hyaxis[0]) / np.abs(taxis[1] - taxis[0])) pyaxis = pyaxis * dpy hyaxisunitless = np.arange(nhy) dpx = (np.abs(hxaxis[1] - hxaxis[0]) / np.abs(taxis[1] - taxis[0])) pxaxis = pxaxis * dpx hxaxisunitless = np.arange(nhx) if centeredh: hyaxisunitless -= nhy // 2 hxaxisunitless -= nhx // 2 # create grid for py and px axis hyaxisunitless, hxaxisunitless = \ np.meshgrid(hyaxisunitless, hxaxisunitless, indexing='ij') pyaxis, pxaxis = np.meshgrid(pyaxis, pxaxis, indexing='ij') dims = (npy*npx, nt) dimsd = (nhy*nhx, nt) if onthefly: if engine == 'numba': @jit(nopython=True, nogil=True) def ontheflyfunc(x, y): return _indices_3d_onthefly_numba(f, hyaxisunitless.ravel(), hxaxisunitless.ravel(), pyaxis.ravel(), pxaxis.ravel(), x, y, nt, interp=interp)[1:] else: if interp: ontheflyfunc = \ lambda x, y: _indices_3d_onthefly(f, hyaxisunitless.ravel(), hxaxisunitless.ravel(), pyaxis.ravel(), pxaxis.ravel(), x, y, nt, interp=interp)[1:] else: ontheflyfunc = \ lambda x, y: _indices_3d_onthefly(f, hyaxisunitless.ravel(), hxaxisunitless.ravel(), pyaxis.ravel(), pxaxis.ravel(), x, y, nt, interp=interp)[1] r3op = Spread(dims, dimsd, fh=ontheflyfunc, interp=interp, engine=engine, dtype=dtype) else: if engine == 'numba': tablefunc = _create_table_numba else: tablefunc = _create_table table, dtable = tablefunc(f, hyaxisunitless.ravel(), hxaxisunitless.ravel(), pyaxis.ravel(), pxaxis.ravel(), nt, npy, npx, nhy, nhx, interp=interp) if not interp: dtable = None r3op = Spread(dims, dimsd, table=table, dtable=dtable, interp=interp, engine=engine, dtype=dtype) return r3op
def Radon2D(taxis, haxis, pxaxis, kind='linear', centeredh=True, interp=True, onthefly=False, engine='numpy', dtype='float64'): r"""Two dimensional Radon transform. Apply two dimensional Radon forward (and adjoint) transform to a 2-dimensional array of size :math:`[n_{px} \times n_t]` (and :math:`[n_x \times n_t]`). In forward mode this entails to spreading the model vector along parametric curves (lines, parabolas, or hyperbolas depending on the choice of ``kind``), while stacking values in the data vector along the same parametric curves is performed in adjoint mode. Parameters ---------- taxis : :obj:`np.ndarray` Time axis haxis : :obj:`np.ndarray` Spatial axis pxaxis : :obj:`np.ndarray` Axis of scanning variable :math:`p_x` of parametric curve kind : :obj:`str`, optional Curve to be used for stacking/spreading (``linear``, ``parabolic``, and ``hyperbolic`` are currently supported) centeredh : :obj:`bool`, optional Assume centered spatial axis (``True``) or not (``False``) interp : :obj:`bool`, optional Apply linear interpolation (``True``) or nearest interpolation (``False``) during stacking/spreading along parametric curve onthefly : :obj:`bool`, optional Compute stacking parametric curves on-the-fly as part of forward and adjoint modelling (``True``) or at initialization and store them in look-up table (``False``). Using a look-up table is computationally more efficient but increases the memory burden engine : :obj:`str`, optional Engine used for computation (``numpy`` or ``numba``) dtype : :obj:`str`, optional Type of elements in input array. Returns ------- r2op : :obj:`pylops.LinearOperator` Radon operator Raises ------ KeyError If ``engine`` is neither ``numpy`` nor ``numba`` NotImplementedError If ``kind`` is not ``linear``, ``parabolic``, or ``hyperbolic`` See Also -------- pylops.signalprocessing.Radon3D: Three dimensional Radon transform pylops.Spread: Spread operator Notes ----- The Radon2D operator applies the following linear transform in adjoint mode to the data after reshaping it into a 2-dimensional array of size :math:`[n_x \times n_t]` in adjoint mode: .. math:: m(p_x, t_0) = \int{d(x, t = f(p_x, x, t))} dx where :math:`f(p_x, x, t) = t_0 + p_x * x` where :math:`p_x = sin( \theta)/v` in linear mode, :math:`f(p_x, x, t) = t_0 + p_x * x^2` in parabolic mode, and :math:`f(p_x, x, t) = \sqrt{t_0^2 + x^2 / p_x^2}` in hyperbolic mode. As the adjoint operator can be interpreted as a repeated summation of sets of elements of the model vector along chosen parametric curves, the forward is implemented as spreading of values in the data vector along the same parametric curves. This operator is actually a thin wrapper around the :class:`pylops.Spread` operator. """ # engine if not engine in ['numpy', 'numba']: raise KeyError('engine must be numpy or numba') if engine == 'numba' and jit is None: engine = 'numpy' # axes nt, nh, npx = taxis.size, haxis.size, pxaxis.size if kind == 'linear': f = _linear if engine == 'numpy' else _linear_numba elif kind == 'parabolic': f = _parabolic if engine == 'numpy' else _parabolic_numba elif kind == 'hyperbolic': f = _hyperbolic if engine == 'numpy' else _hyperbolic_numba else: raise NotImplementedError('kind must be linear, ' 'parabolic, or hyperbolic...') # make axes unitless dpx = (np.abs(haxis[1] - haxis[0]) / np.abs(taxis[1] - taxis[0])) pxaxis = pxaxis * dpx haxisunitless = np.arange(nh) if centeredh: haxisunitless -= nh // 2 dims = (npx, nt) dimsd = (nh, nt) if onthefly: if engine == 'numba': @jit(nopython=True, nogil=True) def ontheflyfunc(x, y): return _indices_2d_onthefly_numba(f, haxisunitless, pxaxis, x, y, nt, interp=interp)[1:] else: if interp: ontheflyfunc = \ lambda x, y : _indices_2d_onthefly(f, haxisunitless, pxaxis, x, y, nt, interp=interp)[1:] else: ontheflyfunc = \ lambda x, y: _indices_2d_onthefly(f, haxisunitless, pxaxis, x, y, nt, interp=interp)[1] r2op = Spread(dims, dimsd, fh=ontheflyfunc, interp=interp, engine=engine, dtype=dtype) else: if engine == 'numba': tablefunc = _create_table_numba else: tablefunc = _create_table table, dtable = tablefunc(f, haxisunitless, pxaxis, nt, npx, nh, interp) if not interp: dtable = None r2op = Spread(dims, dimsd, table=table, dtable=dtable, interp=interp, engine=engine, dtype=dtype) return r2op
def Radon2D( taxis, haxis, pxaxis, kind="linear", centeredh=True, interp=True, onthefly=False, engine="numpy", dtype="float64", ): r"""Two dimensional Radon transform. Apply two dimensional Radon forward (and adjoint) transform to a 2-dimensional array of size :math:`[n_{p_x} \times n_t]` (and :math:`[n_x \times n_t]`). In forward mode this entails to spreading the model vector along parametric curves (lines, parabolas, or hyperbolas depending on the choice of ``kind``), while stacking values in the data vector along the same parametric curves is performed in adjoint mode. Parameters ---------- taxis : :obj:`np.ndarray` Time axis haxis : :obj:`np.ndarray` Spatial axis pxaxis : :obj:`np.ndarray` Axis of scanning variable :math:`p_x` of parametric curve kind : :obj:`str`, optional Curve to be used for stacking/spreading (``linear``, ``parabolic``, and ``hyperbolic`` are currently supported) or a function that takes :math:`(x, t_0, p_x)` as input and returns :math:`t` as output centeredh : :obj:`bool`, optional Assume centered spatial axis (``True``) or not (``False``). If ``True`` the original ``haxis`` is ignored and a new axis is created. interp : :obj:`bool`, optional Apply linear interpolation (``True``) or nearest interpolation (``False``) during stacking/spreading along parametric curve onthefly : :obj:`bool`, optional Compute stacking parametric curves on-the-fly as part of forward and adjoint modelling (``True``) or at initialization and store them in look-up table (``False``). Using a look-up table is computationally more efficient but increases the memory burden engine : :obj:`str`, optional Engine used for computation (``numpy`` or ``numba``) dtype : :obj:`str`, optional Type of elements in input array. Returns ------- r2op : :obj:`pylops.LinearOperator` Radon operator Raises ------ KeyError If ``engine`` is neither ``numpy`` nor ``numba`` NotImplementedError If ``kind`` is not ``linear``, ``parabolic``, or ``hyperbolic`` See Also -------- pylops.signalprocessing.Radon3D: Three dimensional Radon transform pylops.Spread: Spread operator Notes ----- The Radon2D operator applies the following linear transform in adjoint mode to the data after reshaping it into a 2-dimensional array of size :math:`[n_x \times n_t]` in adjoint mode: .. math:: m(p_x, t_0) = \int{d(x, t = f(p_x, x, t))} \,\mathrm{d}x where :math:`f(p_x, x, t) = t_0 + p_x x` where :math:`p_x = \sin(\theta)/v` in linear mode, :math:`f(p_x, x, t) = t_0 + p_x x^2` in parabolic mode, and :math:`f(p_x, x, t) = \sqrt{t_0^2 + x^2 / p_x^2}` in hyperbolic mode. Note that internally the :math:`p_x` axis will be normalized by the ratio of the spatial and time axes and used alongside unitless axes. Whilst this makes the linear mode fully unitless, users are required to apply additional scalings to the :math:`p_x` axis for other relationships: - :math:`p_x` should be pre-multipled by :math:`d_x` for the parabolic relationship; - :math:`p_x` should be pre-multipled by :math:`(d_t/d_x)^2` for the hyperbolic relationship. As the adjoint operator can be interpreted as a repeated summation of sets of elements of the model vector along chosen parametric curves, the forward is implemented as spreading of values in the data vector along the same parametric curves. This operator is actually a thin wrapper around the :class:`pylops.Spread` operator. """ # engine if engine not in ["numpy", "numba"]: raise KeyError("engine must be numpy or numba") if engine == "numba" and jit is None: engine = "numpy" # axes nt, nh, npx = taxis.size, haxis.size, pxaxis.size if kind == "linear": f = _linear if engine == "numpy" else _linear_numba elif kind == "parabolic": f = _parabolic if engine == "numpy" else _parabolic_numba elif kind == "hyperbolic": f = _hyperbolic if engine == "numpy" else _hyperbolic_numba elif callable(kind): f = kind else: raise NotImplementedError("kind must be linear, " "parabolic, or hyperbolic...") # make axes unitless dh, dt = np.abs(haxis[1] - haxis[0]), np.abs(taxis[1] - taxis[0]) dpx = dh / dt pxaxis = pxaxis * dpx if not centeredh: haxisunitless = haxis // dh else: haxisunitless = np.arange(nh) - nh // 2 dims = (npx, nt) dimsd = (nh, nt) if onthefly: if engine == "numba": @jit(nopython=True, nogil=True) def ontheflyfunc(x, y): return _indices_2d_onthefly_numba(f, haxisunitless, pxaxis, x, y, nt, interp=interp)[1:] else: if interp: def ontheflyfunc(x, y): return _indices_2d_onthefly(f, haxisunitless, pxaxis, x, y, nt, interp=interp)[1:] else: def ontheflyfunc(x, y): return _indices_2d_onthefly(f, haxisunitless, pxaxis, x, y, nt, interp=interp)[1] r2op = Spread(dims, dimsd, fh=ontheflyfunc, interp=interp, engine=engine, dtype=dtype) else: if engine == "numba": tablefunc = _create_table_numba else: tablefunc = _create_table table, dtable = tablefunc(f, haxisunitless, pxaxis, nt, npx, nh, interp) if not interp: dtable = None r2op = Spread( dims, dimsd, table=table, dtable=dtable, interp=interp, engine=engine, dtype=dtype, ) return r2op